The present invention relates generally to water sports and, more particularly, to a method and an apparatus for automating and enhancing situational awareness for enabling safe towable recreation. The implementation of the disclosed method and apparatus automates several manual elements currently required during the towable recreation and enables safe vessel (tow watercraft) recreation. It also improves the safety of participants and property in the area of the tow watercraft recreational operation. When a participant gets submerged in the water, the communication is ceased, thus initiating a flag to go up automatically and alarm a captain of the watercraft. Deployment of the flag lets surrounding watercraft to know that the participant is in the water.
People participate in a wide variety of watersports, with more seemingly being created all the time. Such sports include surfing, stand up paddling, rafting, kayaking, wake boarding, water skiing, tow watercraft recreation, snorkeling, kite boarding, canoeing, parasailing, diving, or the like. Among all these water activities, towboat recreation has become a more popular activity both at the participant, athletic, and tournament levels. As is well known, the outboard or inboard motors of tow watercrafts produce a wake which extends rearwardly from the stern of the tow watercrafts for a number of feet. The participant grasps a tow rope attached to a pylon mounted to the tow watercraft and/or Bimini of the tow watercraft, typically maneuver in a side-to-side direction, back and forth across the wake, during a towing run. The extent of side-to-side movement of the participant can vary significantly depending on the length of the tow rope, the skill of the participant, the type of activities being performed during a tow run, and the like. However, during the towable recreation, safety of the participants has been always a big concern. Due to lack of efficient and effective safety measures while practicing towing recreation, accidents are on the rise. Currently, the safety management of the participant is done manually. Also, while recreating, it is not uncommon for a tow watercraft driver and/or a person monitoring the participant to become fatigued, board, or distracted. This may lead to accidents and inefficiencies in boating operations. In light of the foregoing, there exists a need for a technical and reliable solution that solves the above-mentioned problems and automates these manual functions and make them more reliable, effective, and safe.
It will be understood that this disclosure is not limited to the apparatus described herein, as there can be multiple possible embodiments of the present disclosure which are not expressly illustrated in the present disclosure. It is also to be understood that the terminology used in the description is for the purpose of describing the versions or embodiments only and is not intended to limit the scope of the present disclosure.
When a participant wants to be towed, it generally requires two other people to facilitate the activity. A first person may operate a tow watercraft by controlling both speed and direction. The watercraft may correspond to at least one of but not limited to a stand-up paddle board, rowboat, canoe, river raft, jet ski, jet boat, hydrofoil, or inner tube. Also, the first person is responsible for detecting and avoiding potential collisions and myriad of other dangers in and around the tow watercraft in the water. A second person is generally required to manage the logistics of towing the person behind the tow watercraft. The present invention, disclosed herein, provides a central controller or actuator to reduce the manual effort required to support tow watercraft recreation, while improving situational awareness to all the stakeholders, thereby, improving safety, increasing fun, and reducing maintenance and operating cost. As the components of the tow watercraft recreational equipment become connected to the Internet, big data analytics may be incorporated to identify trends that can be leverage for further product optimization. Prior to the identification of the trends, the relevant data is acquired from one or more controllers of one or more tow watercrafts, and then the relevant data is processed to determine useful and real-time trends associated with the tow watercraft recreational activities that are happening in and around. Further, at least one of the acquired data and the one or more trends may be discernment to one or more other tow watercrafts, participants, or equipment. These data and trends may be rendered via one or more application portals (i.e., software applications) running on one or more respective devices such as user devices or tow watercraft devices. In addition to this, the present invention also discloses capturing, transferring, and using user data. The main purposes include data collection and mining, machine learning, social sharing, or the like.
Another objective of the present invention is to manage the rope operation during the tow watercraft recreation. In an embodiment, both the launching and retrieval of a tow rope that is tethered to the tow watercraft and projected to a participant may be managed to facilitate towing behind the tow watercraft. In an embodiment, the participant may hold on to the tow rope to be towed at speeds which allow the participant to glide on top of the water and recreate. The disclosed invention facilitates monitoring of all the personnel (such as the participant, driver, observer, swimmers, passengers, and others) engaged in being towed operation. The disclosed invention further facilitates automatic generation of signals when the participant is down. The disclosed invention further facilitates to create a network of multiple tow watercrafts on the lake to provide an extended level of system operation, control, and optimization. For example, the acquired data and the generated trends may be discernment to the one or more tow watercrafts on the lake for facilitating ease of operation and control, along with the extended optimization.
Another objective of the present invention is to provide an apparatus for RTB (recreational tow watercraft) automation and enhanced situational awareness. The apparatus is configured to facilitate:
The apparatus may be configured to integrate these primary functions using various components such as a controller (for facilitating one or more outputs), one or more sensors (for sensing and collecting input data), a memory (for data acquisition and discernment to one or more vessels, participants, and equipment), engagement (via one or more application portals), and networking (for establishing connectivity of one vessel (for example, tow watercraft) to other like vessels (for example, other tow watercrafts in its vicinity). Each part of the present invention complements the overall performance and safety of the total tow watercraft recreation system. This concept may be a full system or a sub-system implementation that could fully or partially enhance the operation and safety of the tow watercraft recreation or blend into a top-level system provided by another party.
Another objective includes to provide a system to sense immersion of a participant into water. The system comprises a smart flag and an alarm device of a watercraft, and an FOB device of a participant. The smart flag, the alarm, and the FOB device are wirelessly connected to each other. The FOB device detects the immersion of the participant in the water. The smart flag is automatically deployed based on the detected immersion. The alarm device is automatically turned ON creating an alarm indicating an SOS signal. When the participant gets submerged in the water, the communication is ceased, thus initiating the flag to go up automatically and alarm a captain of the watercraft. Deployment of the flag lets surrounding watercraft to know that the participant is in the water. The watercraft may include a kill engine or switch that is ignited to turn OFF an ignition system of the watercraft. In case of any emergency, the operator may turn ON or ignite the kill engine or switch. This causes the engine and motion of the craft to stop, presumably enabling the overboard person to swim back to the watercraft.
These and other features and advantages of the present invention will become apparent from the detailed description below, in light of the accompanying drawings.
The novel features which are believed to be characteristic of the present invention, as to its structure, organization, use and method of operation, together with further objectives and advantages thereof, will be better understood from the following drawings in which a presently preferred embodiment of the invention will now be illustrated by way of various examples. It is expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. Embodiments of this invention will now be described by way of example in association with the accompanying drawings in which:
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be further understood that the detailed description of exemplary embodiments is intended for illustration purposes only and is, therefore, not intended to necessarily limit the scope of the invention.
As used in the specification and claims, the singular forms “a”, “an”, and “the” may also include plural references. For example, the term “an article” may include a plurality of articles. Those with ordinary skill in the art will appreciate that the elements in the figures are illustrated for simplicity and clarity and are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated, relative to other elements, to improve the understanding of the present invention. There may be additional components described in the foregoing application that are not depicted on one of the described drawings. In the event such a component is described, but not depicted in a drawing, the absence of such a drawing should not be considered as an omission of such design from the specification.
Before describing the present invention in detail, it should be observed that the present invention utilizes a combination of components, which constitutes an apparatus for water sports automation and enhanced situational awareness. The implementation of the disclosed apparatus automates several manual elements currently required for a participant to be towed for recreation. It also improves the safety of operators, participants, guests, boaters, swimmers, and other people and property in the area of the tow watercraft recreational (TBR) operation. Accordingly, the components have been represented, showing only specific details that are pertinent for an understanding of the present invention so as not to obscure the disclosure with details that will be readily apparent to those with ordinary skill in the art having the benefit of the description herein. As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the present invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting but rather to provide an understandable description of the present invention.
The present invention will now be described with reference to the accompanying drawings, which should be regarded as merely illustrative without restricting the scope and ambit of the present invention. Embodiments of the present invention will now be described with reference to
In an embodiment, the RTB 100 may be equipped with a surf or ski or recreational wake system for modifying a wake formed by the RTB 100 while travelling or towing through water. Advantageously, the wake system may enhance surf or ski or recreational wakes with or without supplemental ballast and thus it is possible to enhance wake with less watercraft lean. The wake system may include one or more water diverters such as a water diverter 106. Each water diverter may be adjustably mounted relative to the RTB 100 for deflecting water travelling past a transom 102 of the RTB 100. Broadly, the water diverters are movably mounted with respect to the transom 102. Although the illustrated embodiment shows the flaps mounted directly on the transom 102, one will appreciate that the flaps may be moveably mounted directly or indirectly to the transom 102. For example, the flaps and associated hardware may be mounted on a removable swim platform or other structure that is mounted on or adjacent to the transom 102. As also shown in
The data and visualization center may include a controller 402, a notification element 404, a memory 406, a communication interface 408, one or more sensors 410, a ballast 412, and a user interface 414. In an embodiment, the user interface 414 may include a button that corresponds to a relatively linear left-side surf wake, a button that corresponds to a relatively linear right-side surf wake, a button that corresponds to a relatively curved left-side surf wake, and a button that corresponds to a relatively curved right-side surf wake. Additional buttons may be included for selecting other wake types or other wake features (e.g., wake height, length, or the like). The user interface 414 may include other buttons for specified preset wake types. The user interface 414 may include user input elements (e.g., buttons) that allow the operator to adjust one or more aspects (e.g., wake height, length, steepness, etc.) of the wake. The user interface 414 may permit the operator to store the adjusted settings (e.g., in the memory 406) for later use. The controller 402 may be configured to adjust multiple features (e.g., water diverters, wedge, and/or ballast) based on the selection of a single wake-type button. The controller 402 may also adjust the ballast 412, as well as other wave shaping features such as trim tabs, watercraft speed, positions of the water diverters, or the like to produce the selected wake type. In some embodiments, the controller 402 may be configured to set the watercraft speed, or to present a recommended watercraft speed. In some embodiments, the controller 402 may set the watercraft speed upon the selection of the wake type. In some embodiments, the controller 402 may determine a recommended watercraft speed and may communicate (e.g., via a visual display or an audio speaker) the recommended watercraft speed to the operator (e.g., a driver). In some embodiments, the amount or distribution of the ballast can be changed by the controller 402 in response to a selection of a wave type by the operator. The ballast (e.g., water held in containers in the RTB 100) can be automatically moved from one side of the RTB 100 (e.g., right side) to the other side of the RTB 100 (e.g., left side) based on a selection that changes the surf or ski or recreational wake from one side to the other. The distribution of the ballast may be changed by the controller 402 based on a selection of a wake type by the operator. In response to the selection of the wake type, the controller 402 may automatically move ballast in the RTB 100 from the front to the rear or from the rear to the front of the RTB 100. In some embodiments, the controller 402 may consider both static variables (such as the type of tow watercraft) and dynamic variables (such as the depth of water, the number of passengers or participants on board, etc.) when setting the wake shaping features to achieve a specified wake type. Because the dynamic variables can have different values at different times, the controller 402 may be configured to adjust the wake shaping features differently at different times even when trying to achieve the same wake type. For example, the controller 402 may use less ballast 412 when more passengers or participants are on the RTB 100. In some embodiments, the controller 402 may be configured to adjust the wake shaping features on the fly, while the tow watercraft is moving, for example, to try and keep the wake consistent when dynamic variables change. For example, if the depth of water under the RTB 100 changes, the shape of the wake can also change, and the controller 402 may be configured to adjust the wake shaping features to compensate for the change in water depth to minimize the change in shape in the wake. In some embodiments, the RTB 100 may include the sensors 410 to sense and measure static or dynamic variables. For example, a water depth sensor may be included. A watercraft speed sensor may be included, especially where the operator is permitted to adjust the speed of the tow watercraft. The RTB 100 may include weight sensors for determining how much passenger or participant weight is on the RTB 100 and/or the distribution of the passenger or participant weight. Other sensors such as image, Lidar, Radar, Sonar, GPS sensors, or the like may be included in the RTB 100 for collecting the image data, Lidar data, Radar data, Sonar data, and GPS data of the participant and other personnel in and around the RTB 100. Using the Sonar, Lidar, Radar, Visual, and GPS data, the controller 402 may facilitates location tracking of all stakeholders and manage movements to safely operate tow watercraft recreational activities. The aim is to find the participant during the recreational activity, keep a track of the participant, detect one or more objectionable items in the vicinity of the participant, and avoid everything else. In case of any accidental events or mishap during the recreational activity, the operator (such as the driver or observer of the RTB 100) notifies or signals that the participant is down. Such notifications or signals may be communicated to rescue personnel or other watercrafts in its vicinity. Signaling may be achieved with multiple modalities. These include, but are not limited to, auditory, visual, mechanical, or any combination thereof.
In some embodiments, the user interface 414 may be configured to receive input from the operator regarding at least some of the dynamic variables. For example, the user interface 414 may allow the operator to specify a number of passengers or participants on the RTB 100 and/or the distribution of the passengers or participants on the RTB 100. In some cases, the memory 406 may store different settings for different participants, to account for the individual preferences. The user interface 414 may allow the operator to identify any specific participant. In some embodiments, settings and/or algorithms for particular wake shapes may be downloaded to the memory 406 from a remote source such as a data center.
In an exemplary embodiment, a participant may hold on to the handle 506 of the tow rope 504 during the start of a towable run. The tow rope 504 may pull the participant up out of the water as the RTB 500A starts moving. In some instances, the tow rope 504 may interfere with the participant. For example, a participant may toss the tow rope 504 aside, but the flow of water may drive the tow rope 504 back towards the participant, which can cause the participant to fall and/or become tangled in the tow rope 504. When the participant releases the tow rope 504, a passenger or an observer in the RTB 500A may gather the tow rope 504 into the watercraft, which can be burdensome on the passenger or the observer. In some embodiments, the RTB 500A may include the retractable tow rope 504. The tow rope 504 can automatically retract (e.g., into a rope retracting chamber 502 of the RTB 500A) when the participant releases the tow rope 504. The rope retracting mechanism 508 may include a spool that is rotatable about an axis. The tow rope 504 may be coupled to the spool such that rotation of the spool in a first direction causes the tow rope 504 to wrap around the spool. Accordingly, rotation of the spool in the first direction can cause the tow rope 504 to be gathered into the rope retracting mechanism 508. Rotation of the spool in a second direction can release the tow rope 504 from the spool, which can allow the tow rope 504 to exit the rope retracting mechanism 508. The rope retracting mechanism 508 may include a spring coupled to the spool such that rotation of the spool in the second direction causes potential energy to build up in the spring. When the participant releases the tow rope 504, the tow rope 504 may be automatically retracted to the RTB 500A. In some embodiments, the tow rope 504 may be locked at a desired length. For example, one or more engagement features on the spool may be selectively engaged by one or more locking features, which can lock the spool in place, thereby preventing the spool from retracting the tow rope 504 and/or preventing the spool from releasing more of the tow rope 504. An actuator (e.g., a button or lever) may be configured to engage and/or disengage the locking features and the engagement features. To lock the tow rope 504 at a particular length, the tow rope 504 may be extracted to the particular length, and the actuator can be actuated to engage the locking features with the engagement features. Different participants may prefer to use different lengths of the tow rope 504. Different lengths of the tow rope 504 may be preferable for different recreation types and settings. Accordingly, in some embodiments, a maximum length of the tow rope 504 may be set such that the spool is impeded from rotating further in the second direction. The spool may be permitted to rotate in the first direction. Thus, in some embodiments, when the locking mechanism is activated, the length of the tow rope 504 behind the RTB 500A may only shorten and cannot increase in length. In some embodiments, the locking mechanism can include a ratchet system, e.g., which can include one or more pawls and one or more teeth. When engaged with each other, the pawls and teeth may be configured to ratchet in a first direction to allow the spool to rotate in the first direction to retract the tow rope 504 and to prevent rotation of the spool in the second direction.
In addition, the tow rope 504 may be provided with a rope resistance mechanism to create drag for proper spooling. One end of the tow rope 504 may be electromagnetically coupled to the rope retracting mechanism 508 or the RTB controlling device of the RTB 500A. Further, one or more life vests may be provided for the participants during the tow watercraft recreational activities. The life vests may include one or more sensors (such as location beacons) to indicate middle of 45-degree launch trajectory and distance needed to retract to bring the handle 506 to the participant. Further, one or more surf boards may be provided that may be used by the participants to perform the tow watercraft recreational activities. The surf boards may also include one or more sensors for location tracking during the recreational activities. The surf boards may also be provided with one or more bots for retrieval. Further, one or more smart towable rafts may be provided that may be used by the participants to perform the tow watercraft recreational activities. The smart towable rafts may indicate and communicate relevant signals when the participants feel off during the recreational activities. The smart towable rafts may be integrated with one or more cameras that are configured to capture images or videos in real time and communicate the same to a controller of the RTB 500A or a remote server. Further, one or more smart wake boards may be provided to release the rope coupling when edge catches to prevent blood nose and concussion. In some embodiments, the participants may be able to change the RTB parameters, speed, wavelength size, or the like. Further, the tow rope 504 may be of monofilament style that can light up and float in the water and is easy to view. Further, weight and size of the tow rope 504 may be chosen such that it maximizes minimal space.
In an embodiment, the RTB controlling device 702 integrates these primary functions:
The controller of each RTB may be configured to receive input or provide output, for example:
In an embodiment, the controller 202 or 402 in conjunction with the RTB controlling device 702 further facilitates automatic delivery of a rope handler (such as the handle 506) with safety as the primary concern.
In an embodiment, the controller 202 or 402 in conjunction with the RTB controlling device 702 facilitates automatic notification of the participant who is down during the tow watercraft recreational activities. The RTB controlling device 702 performs:
In an embodiment, the RTB controlling device 702 further facilitates various types of connectors such as a watercraft to rope connector. This may be a smart rope that can automatically retract as per the requirement and applications of use. The smart rope is configured to maintain steady state, impulse, and torque during its use during the recreational activities. Other connector may include a rope to participant connector that can also automatically connect and release. This connector may be based on magnetics and advance material properties.
In an embodiment, the RTB controlling device 702 further facilitates path optimization based on real time conditions. One or more condition parameters may include, but are not limited to, other watercraft(s), other participants, wind, visual conditions, temperature, fuel quantity, engine horsepower, watercraft weight, viscosity, passengers, water depth, or the like.
In an embodiment, the RTB controlling device 702 further facilitates path or course optimization based on the participants' preferences or degree of difficulty. The degree of difficulty may be identified based on a category of the participant such as whether the participant is a child, a beginner, an intermediate, an expert, a stuntman, or women, a disabled, a blind, a deaf, or a limb deficiency.
In another embodiment, the RTB controlling device 702 further facilitates network coupling (i.e., communicative coupling) among various entities. For example,
The application server 1006 is a computing device, a software framework, or a combination thereof, that may provide a generalized approach to create the application server implementation. Examples of the application server 1006 include, but are not limited to, a personal computer, a laptop, or a network of computer systems. The application server 1006 may be realized through various web-based technologies such as, but not limited to, a Java web-framework, a .NET framework, a PHP (Hypertext Preprocessor) framework, or any other web-application framework. The application server 1006 may operate on one or more operating systems such as Windows, Android, Unix, Ubuntu, Mac OS, or the like. Various operations of the application server 1006 may be dedicated to execution of procedures, such as, but are not limited to, programs, routines, or scripts stored in one or more memory units for supporting its applied applications and performing defined operations. For example, the application server 1006 may be configured to collect the data from one or more data sources such as the RTB controlling device 1002 of the one or more RTBs. The collected data may be stored in the database server 1008. The database server 1008 may include suitable logic, circuitry, interfaces, and/or code, executable by the circuitry that may be configured to perform one or more data management and storage operations such as receiving, storing, processing, and transmitting queries, data, or content. In an embodiment, the database server 1008 may be a data management and storage computing device that is communicatively coupled to the application server 1006 or the mobile device 1004 via the network 1010 to perform the one or more operations mining, machine learning, social sharing, or the like.
The RTB controlling device 1002 may be configured to establish a network (such as the communication network 1010) among the devices or servers and other tow watercrafts via the one or more communication networks such as the communication network 1010. The communication network may include suitable logic, circuitry, interfaces, and/or code, executable by the circuitry, that may be configured to transmit queries, messages, data, and requests between various entities such as all other watercrafts in its vicinity. Examples of the communication network may include, but are not limited to, a Wi-Fi network, a light fidelity (Li-Fi) network, a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a satellite network, the Internet, a fiber optic network, a coaxial cable network, an infrared (IR) network, a radio frequency (RF) network, and a combination thereof. Various entities may be coupled to the communication network in accordance with various wired and wireless communication protocols, such as Transmission Control Protocol and Internet Protocol (TCP/IP), User Datagram Protocol (UDP), Long Term Evolution (LTE) communication protocols, or any combination thereof. In an exemplary embodiment, the communication network may be a controlled area network (CAN) bus. The CAN bus provides a common communication channel to various devices and components installed in the watercrafts for communicating with each other. The CAN bus is a message-based protocol that allows the various devices and components connected therewith to communicate with each other. In an embodiment, the RTB controlling device 702 may create or establish the network 1010 among the multiple participants, drivers, and/or tow watercrafts during recreation activities to provide an extended level of system operation, control, and optimization. For example, the acquired data and the generated trends may be discernment to the one or more tow watercrafts or the mobile devices of one or more drivers of the one or more tow watercrafts on the lake for facilitating ease of operation and control, along with the extended optimization. These data and trends may be rendered via one or more application portals (i.e., software applications) running on one or more respective devices such as mobile devices 1004 or tow watercraft devices. In addition to this, the present invention also discloses capturing, transferring, and using user data. The main purposes include data collection and mining, machine learning, social sharing, or the like
In an embodiment, the RTB controlling device 702 further facilitates big data analytics based on the data collected from the various sensors such as water depth, watercraft speed, weight, image, Lidar, Radar, Sonar, or GPS sensors. As the components of the recreational equipment become connected to the Internet, the big data analytics may be incorporated to identify trends that can be leverage for further product optimization. The Sonar data, Lidar data, Visual data, and Position data may be collected and processed in real time to track movements in and around the watercraft and participant and automatically generate signals in case of one or more emergency situations.
In another embodiment, the RTB controlling device 702 further facilitates communication links between two or more entities (such as Watercraft to Watercraft, Watercraft to Shore, Watercraft to Satellite, Watercraft to Participant, Driver to Participant, Participant to Driver, Watercraft to Server, or the like) over the one or more communication networks.
As discussed above, there are 7 main components such as smart flag, captain's console, captain's FOB, swimmer's FOB, smart device application (App), SOS protocol, and man down switch. The first 6 components depend on the wireless communication (such as Wi-Fi, Bluetooth, IOT, etc.). The man down switch, which must be installed, puts the watercraft's gear into neutral and if desired can lower the volume of the watercraft's radio when participant is submerged in the water. The current range of the wireless communication from the FOB to the smart flag and caption's console is 240 feet when in direct line of sight, which is the case with water sports. The direct line of communication acts as a wireless tether connecting the FOBs to the captain's console and the smart flag. When the Fobs are submerged in the water, the tether is broken, which then activates the console, the flag, the alarm, and the app. The smart flag activates rising into position and noting it's GPS location. In addition to the activation, the flag has manual buttons for UP, DOWN, WAVE, and RESET functions. The smart flag is also capable of indicating its connection and the status of the FOBs, captain's console, the App. The captain's console activates both visual and auditory alarms, the Man down switch if installed, GPS location via the App, and the SOS protocol if the captain's FOB broke its tether. The SOS alarm triggers rescue protocol on the smart device via AIS, text, call for help etc. The captain's console will also mark GPS location when FOB tethers are broken. The captain's console has manual buttons for controlling functions of the flag, the man down switch, SOS protocol activation, and the connectivity to FOB's and App's on smart devices. The smart device App may be configured to alarm the captain when the swimmers is in the water along with their location. The location information may include location of the flag, the captain's console, and FOBs. The smart device App may provide status on the system, activate SOS protocol, and provide information and direction. The watercraft may include a kill engine or switch that is ignited to turn OFF an ignition system of the watercraft. Generally, the spring action within the kill engine or switch breaks the electric circuit of the engine ignition system, thereby turning OFF, or “killing” the engine of the watercraft.
While various embodiments of the disclosure have been illustrated and described, it will be clear that the disclosure is not limited to these embodiments only. Numerous modifications, changes, variations, substitutions, and equivalents will be apparent to those skilled in the art, without departing from the spirit and scope of the disclosure, as described in the claims. Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. The scope of the invention is accordingly defined by the following claims.
This patent application claims the benefit of priority of U.S. Provisional Application No. 63/081,489, entitled “METHOD AND APPARATUS FOR AUTOMATING AND ENHANCING SITUATIONAL AWARENESS FOR ENABLING SAFE TOWABLE RECREATION,” filed Sep. 22, 2020, and U.S. Provisional Application No. 63/218,030, entitled “METHOD AND APPARATUS FOR WATER SPORTS AUTOMATION AND ENHANCED SITUATIONAL AWARENESS,” filed Jul. 2, 2021, which are hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63081489 | Sep 2020 | US | |
63218030 | Jul 2021 | US |