Commonly, potable water is distributed to the consumer in plastic or glass bottles of various sizes and shapes, whereas ice is distributed in blocks or in individual plastic bags.
Distribution of water in bottles has a number of disadvantages. Firstly, when the bottles are empty they tend to retain their shape, thus creating a large volume of waste material. Secondly, bottles tend to crack or split if the water in them is frozen, since water expands as it cools. Bottles are therefore not suited to the distribution of ice.
In some situations, such as when emergency relief is needed at a particular location, there is often a need for both ice and water. Ice may be needed for a variety of purposes, included the preservation of perishable foods and for personal cooling, while water is required for hydration. In such situations, those seeking relief must carry unwieldy containers of water (either large containers or multiple bottles) as well as bags or blocks of ice.
The accompanying figures, in which like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of method steps and apparatus components related to water (frozen or liquid) storage and transport. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
In the embodiment shown in
The loop of flexible material may be removably attached to the container. For example, the loop could be attached to the container using a low strength adhesive that allows the loop to be ‘peeled’ from the container when it is no longer needed.
The container and the loop may be constructed of thermoplastic. In one embodiment, the container is constructed of puncture resistant, polyethylene film and does not contain bisphenol-A. Biodegradable materials may also be used. The chambers may be formed by heat sealing the periphery of the bag. Various types of heat sealing are known to those of ordinary skill in the art, these include continuous heat-sealers (also known as Band type heat sealers), impulse heat sealers that use a stationary element which is heated with each sealing cycle, hot bar sealers, and ultrasonic welders. Other methods of manufacture will be apparent to those of ordinary skill in the art.
The loop may be welded to the container and may be perforated at intervals to allow adjacent bags to be separated from one another.
The plastic sheet 110 forming a corner of each of the bags may be removable so as to allow water to be removed from the chamber. The corner may be partially notched or slit to facilitate tearing off the corner.
The number of chambers may be varied. The chambers may be arranged in a strip, as shown, or in a two-dimensional array.
The apparatus may be used for distributing water in liquid form or as ice. For example, when emergency relief is needed at a particular location there may be a need for both ice and water. Ice may be needed for a variety of reasons, included the preservation of perishable foods and for personal cooling. The apparatus of the present invention is well suited to this application.
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.