Method and apparatus for welding to laminated metal

Information

  • Patent Application
  • 20070272660
  • Publication Number
    20070272660
  • Date Filed
    May 25, 2006
    18 years ago
  • Date Published
    November 29, 2007
    17 years ago
Abstract
A method is provided for the projection electric resistance welding of a component to a laminated metal member. The laminated metal member is comprised of top and bottom metal sheets adhered together by a polymer layer provided between the top and bottom metal sheets. A plurality of projections is provided on the component and the projections extend toward the top metal sheet of the laminated metal. Force is applied to the component and the projections have a pointed shape so that the projections pierce through the top metal sheet and contact the bottom metal sheet. Weld current is then applied to flow through the projections so that the projections are electric resistance welded to both the top and bottom metal sheets.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is an elevation view of a fastener resting upon a sheet of laminated metal;



FIG. 2 is an elevation view having parts broken away and in section showing the laminated metal supported by a back-up electrode and a movable electrode forcing sharp projections formed on the fastener to pierce through the top layer of sheet metal and polymer and into contact with the bottom layer of sheet metal; and,



FIG. 3 is an elevation view having parts broken away and in section showing the fastener welded to the laminated metal.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

The following description of certain exemplary embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or uses.


Referring to FIG. 1, a component 10, more particularly a bolt 12. Bolt 12 includes a threaded shank 14 and a head 16 that is to be welded to a sheet of laminated metal 20. The sheet of laminated metal 20 includes a top layer 22 of sheet metal, a bottom layer 24 of sheet metal and a middle layer of polymer 26 that binds the top layers 22 and the bottom layer 24.


As seen in FIG. 1, projections 28, 30 and 32 are provided on the head 16 on the side thereof opposite to the threaded shank 14. The projections may be cold headed during the conventional manufacture of the treaded shank 14, or otherwise formed thereon as convenient to the bolt manufacturing process.


The projections are sharpened or pointed at their tips to enable the projections to pierce through the laminated metal 20 as will be described in particular hereinafter.



FIG. 2 shows the laminated metal 20 supported by a backup electrode 36 that engages with the bottom layer 24 of sheet metal. A welding electrode 38 is seated over top the bolt 12 and has a bore 40 that receives the threaded shank 14 and an end face 44 that engages with the head 16 of the bolt 12. The welding electrode 38 is mounted on a press or hydraulic cylinder. As seen in FIG. 2, force is applied to the electrode 38 in the direction of arrows “F” and causes the bolt 12 to be forcibly advanced toward the laminated metal 20 so that the pointed projections 28, 30 and 32 are caused to pierce through the top layer 22, and through the polymer layer 26. The length of the projections is such that the projections 28, 30, and 32 also pierce into the bottom layer 24, or at least come into close contact or near close contact with the bottom layer 24. Thus, although the presence of the layer 26 would normally prevent the flow of electrical current between the top and metal sheets 22 and 24, the projections 28, 30 and 32 will provide a path for flow of electrical current.


A welder 50 is connected to the weld electrode 38 by a cable 52 and to the back up weld electrode 36 by a cable 54. After the projections of the bolt 12 have pierced though the laminated metal 20 as shown in FIG. 2, weld current is applied to the weld electrode 38 and back up electrode 36, so that the weld current passes through the head 16 and its projections 28, 30 and 32 to the laminated metal top layer 22 and bottom layer 24. This induces electrical resistance heating and welding so that welds 56, 58 and 60 are formed as shown in FIG. 3.


It will be appreciated that the welds 56, 58 and 60 reach between the bolt head 16 and both metal layers of the laminated metal. Thus when either axial force or torque is applied to the bolt 12 during its eventual use in an automobile or other products, the bolt 12 will have the advantage of being fixedly attached to both layers of the laminated metal 20.


The foregoing description of the invention is merely exemplary in nature and, thus, variations thereof are intended to be within the scope of the invention. For example, although the drawing shows the component 10 as being a bolt 12, the component could be a rivet, a threaded nut, or some other type of fastener. Alternatively the component could be a mounting bracket or other component that is to be welded directly to the laminated metal 20 rather than being attached to the laminated metal by a fastener such a the bolt 12.


Although the example shown herein has three projections 28, 30 and 32, it will be appreciated that any number of projections can be employed, depending upon how many welds are desired. In addition, the length of the projections can vary, provided however that the projections assure the formation of the weld nugget to fuse with the bottom layer 24 of the laminated metal 20.

Claims
  • 1. A method for projection electric resistance welding of a component to a laminated metal member having top and bottom metal sheets with a polymer layer between the top and bottom metal sheets; comprising: providing a plurality of projections upon the component, said projections extending toward the top metal sheet of the laminated metal and being shaped to permit the projections to pierce through metal;placing the component on the top metal sheet of the laminated metal member and applying force to the component so that the projections pierce through the top metal sheet and contact the bottom metal sheet;and applying weld current to flow between the component and the bottom metal sheet so that the projections are electric resistance welded to the top and bottom metal sheets.
  • 2. The method of claim 1 in which a back up electrode is applied to the bottom metal sheet and a movable electrode engages with the component.
  • 3. The method of claim 2 in which the movable electrode applies force to the component to cause the projections to pierce through the top metal sheet.
  • 4. The method of claim 1 in which the component is a fastener.
  • 5. The method of claim 1 in which the component is a bolt and the projections are formed on the head of the bolt.
  • 6. The method of claim 1 in which the projections are sufficiently long to assure that the projections engage with the bottom metal sheet after piercing through the top metal sheet.
  • 7. The method of claim 2 in which the electric current is applied by a source of resistance electric weld current source that is connected to the back up electrode and the movable electrode.
  • 8. A method for projection electric resistance welding of the head of a fastener to a laminated metal member having top and bottom metal sheets with a dielectric polymer layer between the top and bottom metal sheets; comprising: providing a plurality of projections upon the fastener, said projections extending toward the top metal sheet of the laminated metal and being shaped to permit the projections to pierce through metal;placing the fastener head on the top metal sheet of the laminated metal member;engaging the faster with an electrode and engaging the bottom metal sheet of the laminated metal with an electrode;applying force to the electrodes so that the projections of the fastener head pierce through the top metal sheet and contact the bottom metal sheet to provide an electrically conductive path through the dielectric polymer layer;and applying weld current to flow between the fastener and the bottom metal sheet so that the projections are electric resistance welded to the top and bottom metal sheets.
  • 9. The method of claim 8 in which the projections have a pointed shape.
  • 10. The method of claim 8 in which the length of the projections cause the projection to pierce through the top layer of metal and pierce at least part way into the bottom layer of metal.
  • 11. The method of claim 8 in which the length of the projections cause the projections to pierce fully through the top layer of metal and extend at least sufficient close to the bottom layer of metal to permit flow of the electrical current between the top and bottom layers and to form a weld nugget that extends between the top and bottom layer of metal and attaches the fastener to both the top and bottom layers.
  • 12. A component adapted to be electric resistance welded to a laminated metal panel having a top metal plate and a bottom metal plate with a layer of polymer between the metal plates; comprising: a base of the component, and a plurality of projections integral with the base and having a pointed shape enabling the projections to be forcibly pierced through the top layer and a length sufficient to enable the projections to conduct electric resistance weld current through the projections and the projections will be welded to both the top and bottom metal sheets of the laminated metal.
  • 13. The component of claim 12 being a male fastener and having a threaded shank.
  • 14. The component of claim 12 being a female fastener and having a threaded hole.
  • 15. The component of claim 12 in which the projections are of sufficient length to enable the projections to pierce at least part way into the bottom metal sheet.
  • 16. The component of claim 12 in which the projections are of a length to have the projections contact with but not pierce the bottom sheet metal.
  • 17. The component of claim 12 in which the projections are of a length at which the projections do not physically contact the bottom sheet metal but are sufficiently close to conduct current and form a weld nugget that extends between the projections and the bottom metal sheet.