This application claims the benefit of the European patent application No. 15 199 470.4 filed on Dec. 11, 2015, the entire disclosures of which are incorporated herein by way of reference.
The present invention relates to a method and an apparatus for welding together a first object and a second object.
In aircraft construction, efforts are being made increasingly to use, as load-bearing components, components that are made entirely or partially of fiber-reinforced composite materials, for example carbon fiber-reinforced plastics (CFRP). One type of carbon fiber-reinforced plastic is carbon fiber-reinforced thermoplastic (thermoplastic CFRP), which comprises thermoplastic resin having thermoplastic properties. Compared to other types of carbon fiber-reinforced plastic materials (e.g., thermoset CFRP), thermoplastic CFRP has a plurality of advantages, in particular with regard to its curing process.
In particular, due to these advantages, thermoplastic CFRP is recently increasingly used, e.g., in aircraft construction. However, some aspects regarding the processing of thermoplastic CFRP are still challenging. For example, until now the most common way of joining two thermoplastic CFRP objects is by so-called “co-consolidation” in an autoclave, i.e., a large pressurized heat oven that consumes much energy and requires a long process time. Improvement has been achieved in recent years by better thermoplastic resins requiring a scaled down version of the autoclave, i.e., TP-ovens. Separate welding processes for thermoplastic parts have also been developed, but have not yet reached an optimum. They typically all require external heating sources, such as: torches, infrared radiation, on ultrasonic devices applying mechanical vibrations. Further, known welding processes for thermoplastic objects sometimes require separate induction circuits or electrical circuits that need to be attached to the objects to be welded in order to cause heating.
The invention is directed to an object of providing a method and an apparatus for welding together a first object and a second object, which reduces the aforementioned problems and which is simplified compared to known welding methods and apparatuses, respectively.
According to a first aspect of the disclosure, a method for welding together a first object and a second object comprises applying a layer of carbon nanotubes onto a surface of the first object and bringing the first object and the second object into contact, such that the layer of carbon nanotubes on the surface of the first object is in contact with a surface of the second object. The method further comprises applying a voltage to the layer of carbon nanotubes, such that an electrical current flows through the layer of carbon nanotubes, wherein material of the first object adjacent to the layer of carbon nanotubes and material of the second object adjacent to the layer of carbon nanotubes is heated and melted by the electrical current and thereby welded together.
The first object and the second object may be objects of any desired material or shape. The shape and/or material of the first object does not have to be identical to the shape and/or material of the second object. In particular, the first object and the second object may each be formed of one or a plurality of layers of carbon fiber-reinforced thermoplastic, i.e., thermoplastic carbon fiber-reinforced plastic (thermoplastic CFRP). Applying a layer of carbon nanotubes (CNTs) is not limited to a single layer of carbon nanotubes. A plurality of sub-layers of carbon nanotubes may be applied, which, in their entirety, are considered as the layer of carbon nanotubes. Thus, a plurality of carbon nanotubes may be stacked above each other in the layer of carbon nanotubes. The layer of carbon nanotubes may comprise long carbon nanotubes, which are applied in a grid-like structure. The layer of carbon nanotubes may be applied such that the individual carbon nanotubes overlap each other and thereby form a continuous layer of electrically interconnected carbon nanotubes. The surface of the first object and the surface of the second object may each be flat surfaces. Further, the surface of the first object may have a curvature, whereas the surface of the second object has a curvature corresponding to the curvature of the surface of the first object.
In the step of bringing the first object and the second object into contact, the surface of the first object and the surface of the second object may be pressed together by a predefined pressure. This pressure may be maintained during the step of applying a voltage to the layer of carbon nanotubes.
In the step of applying a voltage to the layer of carbon nanotubes, a control can be carried out, such that a predefined voltage is applied. Further, control can be carried out, such that a predefined current flows through the layer of carbon nanotubes. The voltage may be applied for a predefined amount of time. During the step of applying a voltage to the layer of carbon nanotubes, the first object and the second object may be pressed together. The material of the first object and/or the material of the second object may be thermoplastic material. In particular, the material of the first object and/or the material of the second object may be thermoplastic material used as thermoplastic resin material in the respective object made of thermoplastic CFRP. After the step of applying a voltage to the layer of carbon nanotubes, a cooling step may follow in order to harden the melted material.
The method may further comprise, before the step of bringing the first object and the second object into contact, applying a further layer of carbon nanotubes onto the surface of the second object, wherein in the step of applying the voltage, the electrical current also flows through the further layer of carbon nanotubes. By applying the further layer of carbon nanotubes onto the surface of the second object, both surfaces that are brought into contact are provided with an associated layer of carbon nanotubes. In the step of bringing the first object and the second object into contact, the two layers of carbon nanotubes may conjoin to one layer of carbon nanotubes between the two objects. The carbon nanotubes in the layer of carbon nanotubes as well as the carbon nanotubes in the further layer of carbo nanotubes may be homogeneously distributed over the entire surface of the first object and/or the second object, respectively. After the first object and the second object have been brought into contact, the carbon nanotubes in the layer of carbon nanotubes or in the conjoined layer of carbon nanotubes may be arranged such that an electric current may flow through the layer of carbon nanotubes or through the conjoined layer of carbon nanotubes from one end of the respective layer to another, opposite end of the respective layer.
The material of the first object and the material of the second object may be heated by remote Joule heating. The material of the first object and the material of the second object adjacent to the layer of carbon nanotubes may be heated such that a current flow is generated in the carbon nanotubes of the layer of carbon nanotubes, wherein this current couples to vibrational modes of surrounding material. Atoms of the surrounding material may be caused to oscillate, which causes a heating of the material. In case the heating reaches a particular temperature (a melting temperature of the respective material), the material will start melting.
At least one of the first object and the second object may comprise carbon fiber-reinforced plastic. The carbon fiber-reinforced plastic (CFRP) may be provided in one layer or in a plurality of layers stacked upon each other. The carbon fiber-reinforced plastic may comprise a plurality of carbon fibers embedded in a matrix of plastic resin. The first object and/or the second object may each either be entirely formed of carbon fiber-reinforced plastic or comprise parts which are made of carbon fiber-reinforced plastic.
At least the one of the first object and the second object may comprise carbon fiber-reinforced thermoplastic. In other words, the one of the first object and the second object may comprise CFRP having thermoplastic properties. The used CFRP may comprise a resin having thermoplastic properties.
The layer of carbon nanotubes may be applied by using a solvent comprising a plurality of carbon nanotubes. The layer of carbon nanotubes may be applied by pouring the solvent under controlled conditions. The solvent may be a solvent comprising a plurality of long carbon nanotubes. The layer of carbon nanotubes may also be applied by spraying the solvent onto the surface of the first object. Further, other types of application of the solvent are possible, wherein the solvent is applied in a controlled manner, such that a uniform layer of solvent is achieved on the surface on the first object and, alternatively, on the surface of the second object.
The carbon nanotubes in the layer of carbon nanotubes may be arranged in a grid-like structure. In the grid-like structure, the individual carbon nanotubes may be arranged such that the carbon nanotubes overlap each other and thereby form an electrical connection between them. Although not every single carbon nanotube needs to overlap another carbon nanotube, the carbon nanotubes in the grid may be arranged such that an electrical connection between one end of the layer of carbon nanotubes to an opposite end of the layer of carbon nanotubes is established. The layer of carbon nanotubes may be arranged such that the grid-like structure homogeneously covers the surface of the first object. The layer of carbon nanotubes may be arranged such that it extends up to at least two edges of the first object.
The method may further comprise, during the step of applying the voltage, measuring a temperature of the material of the first object and/or of the material of the second object. The method may further comprise controlling the applied voltage based on the measured temperature. The temperature may be measured at one particular point at the first object or the second object. For example, the temperature may be measured at an interface between the first object and the second object, i.e., where the first object contacts the second object. For example, the temperature may be measured in the layer of carbon nanotubes. Further, not only one but a plurality of temperatures may be measured. For example, a two-dimensional thermal image may be generated for an entire contact surface of the first object and the second object. The applied voltage may be controlled such that the measured temperature remains substantially constant. For example, a feedback loop may be used. In case a plurality of temperatures is measured, the applied voltage may be controlled such that each measured temperature is higher than a particular threshold temperature. The measured temperature may be fed into a control unit in the form of an electrical signal. The electrical signal may be used by the control unit in order to control the applied voltage based on the measured temperature.
A thermal camera may be used for measuring the temperature. The thermal camera may be used, e.g., for generating a two-dimensional thermal image. The two-dimensional thermal image may show a temperature distribution of the entire contact surface between the first object and the second object.
According to a second aspect of the present disclosure, an apparatus for welding together a first object and a second object comprises at least two contact units configured to apply a voltage to a layer of carbon nanotubes, which is arranged at a contact surface between a first object and a second object. The apparatus further comprises a temperature measuring device configured to measure a temperature of material of the first object adjacent to the layer of carbon nanotubes and/or of material of the second object adjacent to the layer of carbon nanotubes and a control unit configured to apply a voltage to the layer of carbon nanotubes via the contact units, and to control the applied voltage based on the measured temperature.
The contact units may be electrically connected to the control unit. The temperature measuring device may be configured to output an electrical signal indicative of the measured temperature. The control device may comprise an input interface for receiving the electrical signal of the temperature measuring device. The control unit may be configured to control the applied voltage, such that a predefined current is flowing through the layer of carbon nanotubes. The control unit may be configured to control the voltage, such that the measured temperature is maintained substantially constant at a predefined temperature value.
The temperature measuring device may be a thermal camera. The thermal camera may be configured to generate a thermal image and to output the thermal image in the form of an electrical signal. The control unit may comprise an input interface for receiving an electrical signal indicative of a thermal image generated by the thermal camera.
Preferred embodiments of the invention are now described in greater detail with reference to the appended schematic drawings, wherein
Although the following disclosure describes welding of two objects together, wherein each of these objects comprises at least one layer of thermoplastic CFRP, it should be appreciated by those skilled in the art that the invention is not limited to this material. Any kind of suitable materials may be welded together by the method described herein, as long as these materials are suitable for being welded by heat. Further, only one of the two objects that are welded together may comprise thermoplastic CFRP, whereas the other object may be made of another suitable material. Further, although the present disclosure describes a welding process with reference to the physical phenomenon called “remote Joule heating,” other physical principles, such as direct (or classical) Joule heating, may be used for generating heat at a contact surface between the two objects.
A voltage source 8 is used to apply a particular voltage U, which leads to a predetermined current I in the carbon nanotube 2. For this, the current I in the carbon nanotube 2 may be monitored by a current measurement device (not shown) and the voltage U of the voltage source 8 may be controlled accordingly.
In the first step shown in
As shown in
Further, the same process step as shown in
Further, also the second object 18 has a surface, on which a layer of carbon nanotubes 2 has been applied. However, the layer of carbon nanotubes 2 on the second object 18 is optional. In the described example, both the first object 12 and the second object 18 are made of thermoplastic CFRP. As shown in
A voltage is applied to the layer of carbon nanotubes 2 by a control unit 24 of the apparatus 21. The control unit 24 comprises a voltage source 8. The voltage may be controlled by the control unit 24 such that a constant, predefined current I flows through the layer of carbon nanotubes 2. A temperature measuring device 26 for measuring a temperature T of the material of the first object 12 and/or of the material of the second object 18 may be provided. In the example shown in
According to the principle of remote Joule heating (see above) the current flowing through the layer of carbon nanotubes 2 causes the material surrounding the carbon nanotubes 2 to be heated. This heating is observed by the thermal camera 26 in the form of temperature values. The electrical signal output by the thermal camera 26 is input into the control device 24 of the apparatus 21 via a respective input interface (not shown). This makes it possible for the control unit 24 to control the applied voltage U and/or the flowing current I based on a measured temperature T. For example, a feedback loop may be used in the control unit 24. For example, the control unit 24 may carried out control such that it is ensured that the temperature T at the contact surface 20 is within a predetermined temperature range. The predetermined temperature range may be set such that the temperature is high enough to melt the material of the first object 12 and the second object 18 at the contact surface 20, but not too high in order to not burn the surrounding material.
For carrying out the control of the control unit 24, a processor (for example, a CPU) may be used with a respective programming by software and/or by hardware.
As shown in
As described above, the contact surface 20 is heated up by the effect of remote Joule heating, which causes material adjacent to the layer of carbon nanotubes 2 to melt. Material of the first object 12 and of the second object 18 melts and conjoins with each other, which welds the first object 12 and the second object 18 together. After a step of cooling, the material is hardened again and the first object 12 and the second object 18 are welded together.
The above-described technique provides a method and an apparatus for welding together a first object and a second object without requiring an external heating source or an external vibration source, and without connecting any magnetic circuits or complex electric circuits. Thus, the presented technique is cheap, easy to use and convenient, compared to welding techniques of the prior art.
Although the above description is given with reference to the appended
While at least one exemplary embodiment of the present invention(s) is disclosed herein, it should be understood that modifications, substitutions and alternatives may be apparent to one of ordinary skill in the art and can be made without departing from the scope of this disclosure. This disclosure is intended to cover any adaptations or variations of the exemplary embodiment(s). In addition, in this disclosure, the terms “comprise” or “comprising” do not exclude other elements or steps, the terms “a” or “one” do not exclude a plural number, and the term “or” means either or both. Furthermore, characteristics or steps which have been described may also be used in combination with other characteristics or steps and in any order unless the disclosure or context suggests otherwise. This disclosure hereby incorporates by reference the complete disclosure of any patent or application from which it claims benefit or priority.
Number | Date | Country | Kind |
---|---|---|---|
15199470.4 | Dec 2015 | EP | regional |