Information
-
Patent Grant
-
6313742
-
Patent Number
6,313,742
-
Date Filed
Wednesday, August 9, 200024 years ago
-
Date Issued
Tuesday, November 6, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Hofsass; Jeffery
- Nguyen; Phung T
Agents
- Sullivan; Dennis Kelly
- Calfa; Jeffrey
- Neil Powell Gilberto Hernandez
-
CPC
-
US Classifications
Field of Search
US
- 340 442
- 340 441
- 340 444
- 340 438
- 340 445
- 340 443
- 701 29
- 701 30
- 701 65
- 701 71
- 701 74
-
International Classifications
-
Abstract
A system and a method for detecting compromised vehicle wheel and tire operating characteristics includes detection for out of round new tires, under pressure tires, poor front wheel alignment and off center line loads. The instantaneous rotational velocity signal generated for each wheel by an existing antilock braking system (ABS) provides data for the basic comparison of wheel speed is against an instantaneous indication of vehicle speed. Once calibrated, the system provides operational monitoring of the wheels includes initializing the trip odometer, collecting wheel speeds, and sampling vehicle speed. Tire radius and tolerance data as a function of estimated wear and tire temperature. Tire temperature is in turn a function of ambient temperature and trip distance. The rotational velocities for the wheels are estimated as functions of vehicle speed and the updated tire radius data. Wheels rotational velocity is compared to estimated velocity and the difference is compared to the allowed, updated tolerances. A possible pressurization error is indicated if one wheel departs outside of the updated tolerances from estimated rotational velocity.
Description
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a method and apparatus for monitoring wheel conditions on a moving truck and more particularly to a method and apparatus for detecting wheel alignment and inflation problems and for monitoring load positioning.
2. Background to the Invention
Poor wheel alignment and tire under inflation are factors contributing to premature tire wear and poor vehicle handling. A system which alerts a vehicle operator of low tire pressure and misalignment would help control one of the factors contributing to the accelerated wear of tires. Unfortunately, the direct provision of pressure sensors in wheels to monitor tire pressure has proven unreliable and expensive. Pressure sensors mounted in wheels are subjected to a hostile environment of high temperatures, road shock and high rotational velocities. The data transmission linkage from the wheel to the vehicle is necessarily indirect and adds expense to the system, and it requires an independent power supply, such as a battery, which must periodically be removed from the tire for replacement.
Tire pressure directly relates to the rolling radius of a tire, which shrinks with reduced pressure. As the tire's rolling radius is compressed, side wall flex increases causing the tire's temperature to increase. Increased operating temperature of a tire promotes degradition of the synthetic rubber of the tire and results in excessive tire wear. As an alternative to measuring tire pressure, a wheel's rotational speed can also be measured as an indirect indication of tire under inflation. The increasingly widespread use of antilock braking systems (ABS) on cars and trucks affords a convenient source of wheel rotational speed information which can be used to implement pressure monitoring methods involving wheel rotational speed monitoring.
U.S. Pat. No. 6,064,936 to Nakajima describes a system utilizing an ABS to provide inputs for tire pressure monitoring system. While increases in one wheel's velocity suggest low inflation of the tire mounted on that wheel, other circumstances may exist which be the cause of a relative increase in wheel angular velocity. The Liu, et al. reference, U.S. Pat. No. 5,760,682 develops calibration coefficients to compensate for factors such as wheel slippage, rough road fluctuations, vehicle cornering, and uphill and downhill travel. Desirable though is a system which can identify different conditions affecting wheel rotational velocity so that the proper corrective steps may be taken.
Numerous patents relate specifically to the application of indirect tire pressure measurement using ABS wheel speed sensors on automobiles. With trucks additional issues are raised due to the much higher sidewall stiffness of tires compared to automobile tires (and consequent relatively lower sensitivity of rolling radius to tire pressure) and the differences in wheel layout used for trucks, for example 4×6 (a front steering axle with two tires with a rear driven axle carrying four tires) and 6×10 (a front steering axle with two rear driven axles, each with four tires) wheel arrangements. Truck suspensions are designed for maximum load conditions and loading varies much more than for passenger autos. Vehicle speed for trucks is commonly measured by a tachometer. The tach is attached to track the rotational velocity of a drive shaft installed between the vehicle's transmission and a rear end differential. As a result measured velocity is proportional to the average rotational velocity of the driven wheels. ABS wheel sensors provide an alternative source of data with which to generate vehicle speed, among values for other operating variables.
SUMMARY OF THE INVENTION
The objects, features, and advantages of the invention will be apparent from the written description that follows. The invention provides an apparatus and a method for detecting compromised vehicle wheel and tire operating characteristics. Among the condition indication of which can be detected are out of round new tires, under pressure tires, poor front wheel alignment and either a longitudinally or latitudinally off center load. The invention provides that an instantaneous rotational velocity signal for each wheel is generated, typically using an existing antilock braking system (ABS). Wheel speed is compared against an instantaneous indication of vehicle speed, which is usually, but not necessarily, generated from the rotational speed of the drive shaft take-off from the vehicle's transmission.
Operation of the method and system requires calibrating newly mounted tires. As part of the calibration process it is determined if each newly installed tire is within tolerances for the tire and if the front tires appear to be correctly aligned. Calibration is done to generate a scalar relating wheel rotational velocity for each wheel to straight line vehicle speed. Once scalars have been obtained for each wheel they are stored, and then adjusted for estimated wear of the tires as a function of distance traveled. To obtain these numbers, the distance traveled on the tires currently mounted on the wheels and distance traveled since a current trip began are tracked. Vehicle speed can be calibrated utilizing the global positioning system, which involves installation of the appropriate sensor on the vehicle.
Operational monitoring of the wheels includes initializing the trip odometer, collecting wheel speeds, and sampling vehicle speed. Tire radius and tolerance data are generated as a function of estimated wear and tire temperature. Tire temperature is in turn a function of ambient temperature and trip distance. Rotational velocity of the wheels are estimated as functions of vehicle speed and the updated tire radius data. Rotational velocity for each wheel is subtracted from estimated velocity and the difference is compared to the allowed, updated tolerances. A possible pressurization error is indicated if one wheel departs outside of the updated tolerances from estimated rotational velocity.
Additional effects, features and advantages will be apparent in the written description that follows.
BRIEF DESCRIPTION OF THE DRAWINGS
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
FIG. 1
is a schematic view of a vehicle drive train.
FIG. 2
a block diagram of a data processing system and connections to external data inputs used in practicing the invention,
FIG. 3
is a data flow diagram.
FIGS. 4
A-C are a flow chart of an algorithm used in practicing the invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the drawings, a preferred embodiment of the invention and its manner of use will be described.
FIG. 1
illustrates a vehicle drive train
10
to which the system and method of the invention are applied. Vehicle drive train
10
provides for the application of motive power generated by an engine
12
to each of a plurality of rear drive wheels
22
,
24
,
26
and
28
. Engine
12
applies power directly to a transmission
14
, which includes a plurality of step down gears. Transmission
14
turns a drive shaft
16
which is coupled between the output end of transmission
14
and forward rear differential
18
A and aft rear differential
18
B. Forward rear differential
18
A drives wheels
22
and
26
mounted on forward rear axle
20
and aft rear differential
18
B drives wheels
24
and
28
mounted on aft rear axle
21
. Wheels
22
and
26
, and wheels
24
and
28
are mounted on the outside ends of rear axles
20
and
21
, respectively. Forward left and right steering wheels
34
and
36
are mounted on the outside ends of forward steering axle
32
. Each of the rear drive wheels
22
,
24
,
26
and
28
support two tires
30
. Forward wheels
34
and
36
each have one tire
30
. Vehicle drive train
10
is illustrated as an 8×10 configuration (i.e. two driven axles) commonly found on trucks, but the invention is equally applicable to a 4×6 configuration (i.e. one driven axle).
The vehicle incorporating vehicle drive train
10
is equipped with an antilock braking system (ABS) which provides wheel speed sensors for each wheel. These include a wheel rotational speed sensor
38
A positioned adjacent and on left forward wheel
34
. Wheel rotational speed sensor
38
B is adjacent drive wheel
22
. Wheel rotational speed sensor
38
C is adjacent drive wheel
24
. Wheel rotational speed sensor
38
D is adjacent wheel
36
. Wheel rotational speed sensor
38
E is adjacent drive wheel
26
. Wheel rotational speed sensor
38
F is adjacent drive wheel
28
. Vehicle speed may be generated from a tachometer
40
mounted to the output end of transmission
14
. The signal generated from tachometer
40
represents an average of the rotational velocity of the vehicle's rear wheels
22
,
24
,
26
and
28
. Vehicle speed is generated by factoring the tachometer's output by a standard wheel radius and the step down ratio of the rear differentials to produce a desired speed. However, as is well known, rear drive wheels are subject to slippage during acceleration (and deceleration) and in climbing and descending from hills, among other situations. Accordingly, the speed signal produced by tachometer
40
is not the most accurate way to measure speed, though it remains commonly employed. As will be described below, one embodiment of the invention eliminates the vehicle speed tachometer
40
and substitute the ABS sensors
38
A-F as the data gathering element in a speed signal generating system.
FIG. 2
is a block diagram illustrating the component elements of the present invention. A wheel and tire condition monitoring computer
42
is connected to receive data inputs from the vehicle speed tachometer
40
, an ambient temperature measuring thermometer
44
and a global positioning sensor (GPS)
48
. Tachometer
40
and GPS
48
are optional components. Computer
42
is equivalent in power to common personal computers contemporary to the date of preparation of this application, although the computational burdens entailed by the method of the invention can be effectively carried out on a minimal system based on an embedded micro computer system. Computer
42
requires some writeable, non-volatile memory
52
for the storage of long term data and programs. In addition, computer
42
is connected to an antilock braking system computer
54
whereby computer
42
reads wheel rotational speeds (or output pulses) passed through from wheel rotational sensors
38
A-F. (For a 4×6 drive train configuration there are only four rotational sensors.) The functions of ABS computer
54
and computer
42
could be combined. However, given that the ABS computer must give priority to the execution of antilock braking functions, prudence suggests the use of separate computers. The data link
55
from ABS computer
54
to computer
42
is preferably provided by a link conforming to the SAE J1939 standard. Computer
42
must be able to provide warning signals to an operator and accordingly the computer is attached to an operator input/output interface
50
. I/O interface
50
also allows the input of tire data at the time of installation of new tires
30
on a vehicle. The stored data in memory
52
includes odometer registers
53
.
I/O interface
50
includes warning indicators mounted within a truck cab which may emit aural warnings or include warning lights for the indication of particular problems with particular wheels. The interface includes a numerical keypad or other interface for the entry of data relating to tires for each wheel of the vehicle. The minimum data to be entered includes tire size, tread depth, mileage when installed and manufacturer. Wear profiled are supplied in a data base indexed by manufacturer for operation at rated inflations and loads. To accommodate replacement of a tire, positions are also entered. Further data may include a wear profile for each tire against distance traveled. Upon installation a base mileage is saved for projecting tire rolling radius over the life of the tires. Data entry initiates a calibration algorithm function to obtain and store new tire rolling radius for each tire and to calibrate the vehicle odometer and speedometer.
FIG. 3
is a data flow diagram illustrating data manipulation steps for two preferred embodiments of the invention. A highly accurate, more expensive version of the system relies on vehicle geographical coordinate data
300
, preferably supplied by the global positioning sensor
48
.
If available, vehicle coordinate data
300
is passed to vehicle speed and direction calculation at algorithm
302
. Coordinate data
300
is refreshed on a periodic basis, e.g. once a second. A minimum vehicle speed will support consistently reliable calculations of velocity. At the time of filing of this patent a speed of 50 k.p.h. is adequate. Improved accuracy in the global positioning system will allow for determination of vehicle speed and direction at lower speeds. Sampled speed over consecutive data samples is a direct matter of determining the distance between successive sampled location coordinates and dividing by the elapsed time.
It will now be obvious to those skilled in the art that such a direct calculation does not allow for the possibility that the vehicle followed a path other than the most direct one between successive locations corresponding to GPS
48
initiated inquiries. Vehicle turns, whether turns along a highway at a sustained velocity, or events involving an actual change of speed, will be reflected by changes in speed determined by the vehicle speed and direction calculation algorithm
302
if using GPS data. In the first case, the detected change in speed may not be the product of an actual change in vehicle velocity. Thus the calculations of calibration algorithm
304
and wheel algorithm
306
depend, primarily, on the vehicle following a constant direction. Substantially unvarying vehicle speed for a sustained period, for example 2 minutes, is taken as indicating a constant vehicle direction, permitting full execution of the calibration and wheel algorithm
304
and
306
. If a vehicle has a steering position sensor, then an input from that sensor can be used to determine straight line operation.
Calibration algorithm
304
is entered upon installation of one or more new or replacement tires. Data is entered relating to all replacement tires, and their positions. The vehicle is then driven at a constant speed on a straight stretch of road allowing speed data V
0
to be developed and the individual wheel speed signals (V
1-k
) be generated. As described below, individual wheel signals are analyzed to determine conformity of the newly fitted tire(s) to expected values.
Once wheel speed signals are brought into conformance with expected operating characteristics, the calibration algorithm
304
passes wheel by wheel velocity reference values V
1ref
−v
kref
to the wheel algorithm for use in detecting later occurring changes to tires, such as premature wear or low pressure. The reference values are found by applying the following general equation to the specific cases:
V
iref
=1
/t
(ò
V
i
dt
) for 0,
T
(1.)
The calibration algorithm
304
may supply a vehicle speed reference value V
ref
to be used for calibration of the speedometer and odometer signals. V
ref
is tailored to the specific tire set installed on the vehicle and may be subject to further correction factors relating to tire wear. The use of V
ref
may depend upon whether GPS data is available on the vehicle.
Alternative sources for vehicle speed may be utilized where no GPS unit
48
is provided on a vehicle. Tachometer
40
is one source of speed data
310
. As described above, tachometer data represent an average of drive wheels' rotational velocity. Wheel speed averages
312
can supply a velocity signal (V
out
) which is an average of wheel rotational speeds for all of the which, i.e.
If one signal of the wheel rotational signal departs by more than a threshold deviation from the average for the remaining wheel rotational speed signals, that value may be dropped from the calibration of vehicle speed before the value is passed to vehicle speed and direction calculation algorithm
302
and application to the calibration algorithm
304
. Vehicle direction determinations need not change greatly with changes in the source of the velocity signal. Neither the tachometer unit
40
or the GPS unit
48
is strictly required to practice the invention and either or both may be eliminated from the vehicle. Use of GPS unit
48
has a number of benefits however including increased accuracy in the calculations called for and as a way of updating calibration of the vehicle speedometer and odometer. Where both are eliminated vehicle speed is determined using equation 2. Where the GPS
40
is available, vehicle speed is still determined using equation 2, but the result is calibrated using GPS
40
data.
Once calibration is complete the wheel algorithm
306
is initiated, utilize the raw wheel rotational velocity signals V
1-k
, V
1 ref
through V
k ref
and indication of the vehicle traveling in constant direction.
Referring now to
FIGS. 4A-C
, a flow chart is described illustrating one method for practicing the invention adapted to serve as an algorithm executable on a computer
42
. Those skilled in the art will recognize that the sequence of steps of the program is subject to considerable rearrangement without changing the essence of the processes. The program is initiated upon starting step
60
the vehicle on which the wheel and tire monitoring system is installed. It is immediately determined, from operator input on I/O interface
50
, if new tires have been installed. If not, processing branches to step
84
along the NO branch from decision box
62
. If new tires have been installed calibration of the tires is required and processing follows the YES branch. The calibration of any new or replacement tires
30
requires the data inputs described above, including the expected rolling radius of the tire at each wheel position, the wear factor expected for that position and the tolerances the rolling radius must meet.
A tire, if out of round, will exhibit a variable rolling radius. A variable rolling radius results in the wheel on which the out of round tire is mounted exhibiting a varying rotational velocity profile. At step
70
the rotational velocity profile for each wheel is examined. If one or more wheels is out of round it is determined at decision step
70
and the NO branch (i.e. No to the question, are wheel speeds constant?) is taken to step
78
where a warning is issued that one or more tires
30
suffer from a possible out of round condition. Processing is then indicated as terminating at step
79
, indicating opportunity for remedial action to be taken before calibration is resumed.
If wheel speeds are constant at the outset of calibration then the YES branch is taken from decision step
70
to decision step
72
. At decision step
72
the rotational velocity for each wheel is compared with the expected wheel velocity as determined from vehicle speed (derived from tachometer
40
). The output from tachometer
40
is assumed to be equated to a vehicle speed based on knowledge of the rear end differential ratios and a standard wheel rolling radius, the latter of which is a characteristic which compromises tachometer
40
's accuracy as an indication of vehicle speed. Measured wheel speeds should match, or fall within a predetermined margin of error of the estimated speeds. If they do, the YES branch is taken from decision step
72
and scalars for each wheel are calculated to equate measured wheel rotational velocity to the estimate for wheel rotational velocity derived from vehicle velocity at step
80
. After the scalars are calculated, a database on the tires
30
and the scalars calculated at step
80
is flagged as usable. At step
82
an odometer is initialized which records the distance traveled on the tires. Where fewer than the entire set of tires is replaced, individual odometers may be set for each wheel. Processing than can continue to step
84
for normal operational processing.
Wheel rotational velocities which are constant, but out of tolerance, do not necessarily indicate any one problem, although the circumstances under which the deviant rotational velocities occur exhibit a correlation with certain compromised tire, or wheel, operating characteristics. Frequently, a deviation from predicted wheel rotational velocity indicates a deviation from tire rated pressure. However, during mounting of tires it is probable that the tires were correctly pressurized for the calibration test. Under these circumstances other possible problems should be considered and are highlighted through the portion of the algorithm occurring following the NO branch from decision step
72
.
Among the problems which may be present are an alignment problem which can occur with either of the front wheels
34
and
36
. Accordingly, along the NO branch from decision step
72
it is determined if the wheels exhibiting unexpected rotational velocities are front wheels. If not, processing advances along the NO branch to step
77
where an indication of a tire out of tolerance warning is issued. If a wheel exhibiting an out of tolerance variation from expected rotational velocity is a front wheel then the YES branch is taken to step
76
allowing signaling of a possible alignment error. From step
76
processing continues to step
77
to allow generation of a possible tire size outside tolerance signal to be generated. Step
77
may also be taken as possible indication of an incorrect entry of data, which would also require correction. From step
77
processing is terminated by step
79
to allow corrective steps to be made.
Operational monitoring of wheel and tire condition begins at step
84
. The accuracy of certain measurements is enhanced by estimating operational tire temperature, the formula for the generation of which utilizes the distance traveled on the current trip. Step
84
provides for initialization of a trip odometer to provide this input. Initially, data points are collected for several variable inputs. Among the variable inputs developed are measured wheel speed, vehicle speed, and, if available, positional data provided by a global positioning sensor unit. The data sampling is represented as a sequence of steps
86
,
88
and
90
. Sampling continues until statistically significant accumulations of data have been collected (step
100
). Positional data is collected to provide a measurement of straight line distance traveled against time. This data is used to generate a vehicle velocity measurement which can be used to calibrate the vehicle speedometer, and in part compensate for distortions introduced into the speed measurement by wear of the tires or inadequate inflation of tires mounted on the drive wheels
22
,
24
,
26
and
28
. A sufficient number of data points is collected from GPS
48
to provide a more accurate measurement of vehicle speed than is provided by the tachometer
40
. Speed during data sampling is monitored and if a deviation from a consistent speed is detected sampling is aborted at step
99
due to possible initiation of a turn.
Once a statistically significant sample set has been collected processing of the data begins. At step
102
the signals from the GPS (if available) are used to calibrate the instantaneous measurement of vehicle speed. Next, at step
104
, the rotational velocity of each wheel is calculated. At step
106
the odometer is interrogated to retrieve the distance traveled on the tires at each wheel location. This figure is used to update the estimate of each tire's rolling radius and to update the allowable variation in that diameter. Tire characteristics are also a function of tire temperature, which, as is well known, can increase pressure. Tire temperature is indirectly calculated from the distance traveled on the instant trip, or since the last prolonged stop and ambient temperature. From these calculations an estimate for the rotational velocity for each vehicle wheel is generated from the estimated wear, estimated tire temperature and vehicle speed. The estimated and measured wheel rotational speeds are compared at step
112
to determine if the differences between measured values and estimated values are within tolerances. If the differences are within tolerances, processing is returned to step
86
to collect another data set along the YES branch from decision step
112
. The return loop includes a variable reinitialization and update step
114
.
Certain diagnostic processes require tracking certain designated variables for longer periods then each sample collection period. For example, a running tally of wheel rotations, and relative wheel speed during a trip may be maintained for comparison with the other wheels to detect situations that develop during a trip that might otherwise falsely indicate a pressurization problem, These values may be updated at step
114
.
The NO branch from decision step
112
advances the algorithm to a series of diagnostic tests represented by steps
116
-
125
. Initially it is determined if there is side to side pattern in the variation of wheel speeds, e.g. are wheels
22
,
24
and
34
turning faster than expected compared to wheels
28
,
26
and
36
. Such a pattern can indicate that the vehicle is overloaded to one side, which may occur due to poor loading or shifts in a load during travel. It may be observed that this test is depicted as occurring only if some of the wheels have a rotational velocity outside of tolerances for the observed vehicle speed, which implies a minimum wheel rotational velocity variation as a threshold before an unbalanced load is indicated. This test can be moved ahead of the wheel speed out of range step
112
, provided a set of threshold differences in side to side wheel rotational speed are applied. If load is off balance along the roll axis, wheels on one side of the vehicle will show a speed difference compared to wheels on the other side.
The NO branch from step
116
advances processing along a path where the likely cause of wheel rotational velocity is loss of tire pressure. At step
118
it is determined whether the wheel departing from norms is a front wheel. Whether it is or not, a warning is issued of a possible pressurization problem (step
122
). If the wheel is a front wheel a second warning is issued also indicating the possibility that an alignment error may have developed (step
120
).
Careful readers will note that multiple problems can occur simultaneously. For example, tire pressure may be low and the vehicle load out of balance. It is conceivable that a slow leak leading to developing low tire pressure could contribute to a shift in load, also putting a vehicle out of acceptable balance. Step
123
following step
124
may be used to detect the largest variation in wheel speed among wheels on one side of a vehicle for recomparison to its estimated rotational speed. A YES result at step
123
returns process execution to step
118
. A NO result results in processing returning to step
114
.
The system and method of the present invention must have a mechanism for distinguishing turns from load imbalances. A secondary benefit of the ability to detect the onset and termination of turns is the possibility of replacing the automatic cancellation mechanism for turn signals. A side to side variation in wheel speed may indicate an unbalanced load, or it may indicate that the vehicle is turning, in which case the inside wheels will turn more slowly than the outside wheels. Step
125
, which follows along the YES branch from decision step
99
is used to determine occurrence of a turn. Turns are likely to occur as temporary side to side variations in wheel rotational velocity which span several sampling intervals. To determine the occurrence of a turn the mid-term wheel rotational velocity signals may be recalled to determine the persistence of the side to side variation. Along the YES branch from step
125
, i.e. detection of a turn, step
126
may be provided to activate the turn signal if not on during a turn. At step
128
the difference in wheel speeds is compared until the side to side difference approaches
0
. Cancellation of the signal follows that event after a brief time delay at step
130
. Since data points collected in a turn are distorted processing is returned to step
114
to reset counters before the collection of a new set of data points.
The system and method of indirect tire pressure measurement using ABS wheel speed sensors of the present inventions has several advantages. Trucks require greater sensitivity of measurement due to the much higher sidewall stiffness of tires compared to automobile tires. Various drive train patterns are allowed for including both 4×6 and 6×10 wheel arrangements. Load imbalance, wheel alignment, out of specification tires and other problems are also handled.
While the invention is shown in only one of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit and scope of the invention.
Claims
- 1. Apparatus for monitoring the condition of each of a plurality of wheels of a vehicle, the apparatus comprising:a computer; a wheel rotational velocity sensing system generating wheel rotational speeds respective to each wheel, coupled to the computer to apply rotational velocity signals for each wheel to the computer; a vehicle speed signal generator; computer memory in which is stored data relating to tire wear rates for tires mounted on each wheel, tire mileage since installation, current trip mileage, running average wheel rotational velocities, and a scaling factor for estimating wheel speed based on the vehicle speed signal; and a stored program for execution on the computer for referencing the stored data in determining out of tolerance wheel speeds indicative of compromised operating conditions.
- 2. Apparatus as claimed in claim 1, further comprising an input/output interface allowing an operator to enter data relating to newly installed tires.
- 3. Apparatus as claimed in claim 2, further comprising:an ambient temperature sensor; and the stored program further referencing ambient temperature in determining out of tolerance wheel speeds.
- 4. Apparatus as claimed in claim 3, further comprising:a global positioning sensor; and a stored program for execution on the computer for calibrating measured vehicle speed against changes in position of the vehicle determined by the global positioning sensor.
- 5. Apparatus for detecting compromised vehicle wheel and tire operating characteristics, the apparatus comprising:wheel rotational velocity sensors mounted on the vehicle in relation to each wheel and generating an instantaneous rotational velocity signal for each wheel; a vehicle instantaneous speed signal generator; an odometer indicating distance traveled on the tires currently mounted on the wheels; a trip odometer indicating distance traveled since a current trip began; computer memory storing and wheel and tire condition monitoring algorithm and data including the instant distance indications, wheel by wheel scalars for the currently mounted tires relating rotational velocity to vehicle speed, tire wear profile data and recent average vehicle speed; and a computer coupled to the computer memory for reading and writing the data and executing the wheel and tire condition monitoring algorithm for detecting compromised wheel and tire conditions.
- 6. Apparatus as claimed in claim 5, further comprising:an operator interface allowing entry of data relating to the newly mounted tires including running radius and running radius tolerances at rated pressure.
- 7. Apparatus as claimed in claim 6, wherein the wheel and tire condition monitoring algorithm further comprises:means for calibrating newly mounted tires determining if each newly installed tire is within tolerances and generating a scalar relating wheel rotational velocity to straight line vehicle speed; means for indicating a possible out of alignment condition for any wheel varying out of tolerance during calibration; means for recording all calibrations on operator entered data; means for operational monitoring of the wheels including means for initializing the trip odometer, means for collecting wheel speeds and means for collecting vehicle speed; means for updating tire radius and tolerance data as a function of estimated wear and estimating wheel rotational velocity as a function of vehicle speed; means for comparing wheel rotational velocity to estimated velocity and comparing the difference to the allowed, updated tolerances; and means for indicating possible pressurization error if one wheel departs outside of the updated tolerances from estimated rotational velocity.
- 8. Apparatus as claimed in claim 7, the wheel and tire condition monitoring algorithm further comprising:means utilizing the running averages for wheel rotational speeds for detecting side to side variation in wheel rotational speeds; threshold means responsive to detection of side to side variation in wheel rotational speeds for deciding if the variation in wheel rotational speeds indicates onset of a turn; and duration means responsive to detection of side to side variation in wheel rotational speeds for determining if the variation indicates an out of balance load.
- 9. Apparatus as claimed in claim 8, further comprising:a thermometer coupled to the computer to apply ambient temperature signals thereto; the means for updating tire radius and tolerance data as a function of estimated wear being further responsive to the ambient temperature signal.
- 10. Apparatus as claimed in claim 9, further comprising:a global positioning sensor; means for calibrating the vehicle instantaneous speed signal and the odometer and trip odometer indications based on comparison with estimates of speed and distance traveled derived from position readings supplied by the global positioning sensor.
- 11. Apparatus as claimed in claim 10, wherein the vehicle speed signal g enervators takes wheel rotational speed as inputs calibrated by position readings from the global positioning sensor.
- 12. Apparatus as claimed in claim 11, wherein the vehicle speed signal generator is a tachometer counting rotations of a drive shaft from the output end of a transmission.
- 13. Apparatus as claimed in claim 12, wherein the wheel rotational velocity sensors comprises a vehicle anti-lock braking system.
- 14. A method for detecting compromised vehicle wheel and tire operating characteristics, the method comprising the steps of:generating an instantaneous rotational velocity signal for each wheel; generating an instantaneous indication of vehicle speed; calibrating newly mounted tires determining if each newly installed tire is within tolerances and generating a scalar relating wheel rotational velocity to straight line vehicle speed; tracking distance traveled on the tires currently mounted on the wheels; tracking distance traveled since a current trip began; keeping wheel by wheel scalars for the currently mounted tires relating rotational velocity to vehicle speed, tire wear profile data, and recent average vehicle speed; means for indicating a possible out of alignment condition for any wheel varying out of tolerance during calibration; means for recording all calibration an operator entered data; means for operational monitoring of the wheels including means for initializing the trip odometer, means for collecting wheel speeds, means for collecting vehicle speed; updating tire radius and tolerance data as a function of estimated wear and estimating wheel rotational velocity as a function of vehicle speed and the updated tire radius data; comparing wheel rotational velocity to estimated velocity and comparing the difference to the allowed, updated tolerances; and indicating possible pressurization error if one wheel departs outside of the updated tolerances from estimated rotational velocity.
- 15. A method as claimed in claim 14, further comprising the steps of:measuring ambient temperature and modifying the tire radius and tolerance data as a function in ambient temperature.
- 16. A method as claimed in claim 15, further comprising the steps of:using a global positioning sensor repeatedly to determine position; calculating vehicle speed from positions determined by the global positioning sensor; and calibrating distance traveled and speed measurements based on the vehicle speed calculated from the positions.
US Referenced Citations (15)