The present invention relates to the field of stator winding machines, and precisely it relates to a method for wire termination on outwardly spooled multi-pole stators. Furthermore, the invention relates to an apparatus that carries out this method.
Outwardly spooled multi-pole stators are known, formed by a substantially star-shaped stack of sheets featuring a plurality of poles extending from a tubular core. The stators of this type are suitable for coupling with an inner concentric armature or outer ring armature. They are common in brushless motors.
The peripheries of the poles, or pole extensions, form substantially a cylinder with a plurality of slits parallel or oblique with respect to the axis of the stator. The peripheries of the poles are connected to the core by means of pole walls that define corresponding grooves, accessible through the slits. The grooves have to be filled with insulated lead wire, by creating coils spooled about the pole walls.
At winding, where possible, the wire must pass necessarily through the slits for entering the grooves, and has to be guided to avoid collisions against the edges of the grooves. To this purpose, winding machines exist having a winding arm, or flier, which rotates causing the wire to follow a circular trajectory and thus spooling the coil about each pole wall. The wire follows the circular trajectory while it is guided in the slits by means of special winding shrouds.
The shrouds are normally of two types, usually enough to wind the most common outwardly spooled multi-pole stators: a couple of lateral guiding plates, which form substantially a channel that aids the wire to enter the slits; hits are thus avoided of the wire against the edges of the poles adjacent to the pole being wound; a shroud that allows the wire to overtake the pole making substantially a double slide guide that deviates the wire from its own circular trajectory and brings it to wind about the pole wall. The shroud normally is mounted on a support shaft, that is co-axial to the flier and is movable towards/away from the axis of the stator, for laying uniformly the wire helically about the pole wall. It can be either a whole block, or formed by two symmetrical mobile halves.
The flier, at winding, rotates about the support shaft of the shroud in order to have its free end needle that moves in orbital position both with respect to the pole being wound and to the shroud that guides the wire in the grooves.
Every portion of wire wound about one or more poles has at least two ends. To assure the electrical contact necessary for the induction current to pass, which causes the armature to rotate and causes the motor to work, the ends have to be inserted into terminals. The terminals, in turn, when the motor is assembled, are connected to the current supply circuits for operation of the motor. The terminals are integrated in a terminal board, which is a body of plastic material that insulates axially the stack of sheets that form the ferromagnetic core of the stator.
The termination, in outwardly spooled multi-pole stators, which allow a winding by means of a flier, is carried out in the way indicated hereinafter: before winding each pole, or plurality of in-phase poles, the flier cooperates to put the wire ends in the terminals with a termination apparatus; at the end of winding of each pole or several poles, the outgoing wire is kept stretched by the flier so that the termination apparatus can catch it, cooperating with the flier for carrying out the termination, and finally cutting the wire close to the terminal, gripping the end of the wire that comes from the flier and awaiting the start of next winding step; in the two termination steps as above described, the movement of the flier is programmed with fractions of clockwise and/or anticlockwise rotation and with approaching motion of the stator, for cooperating with the termination apparatus and causing the wire to follow a path that approaches the terminal.
Traditionally, the termination apparatus comprises tools like lead pulls, cutters, clamps, which move in a direction which, normally, is orthogonal to the axis of the stator. When winding stators with inner poles, by means of a reciprocating shaft with wire distribution needles, owing to the central position of the shaft, the termination apparatus can be arranged in the easiest way for catching the ends. Instead, when winding stators with external poles, with a flier, the position of the termination tools interferes with the movement of the flier, and they are therefore complex to arrange.
Furthermore, when the flier moves the wire must be blocked in the terminal, to avoid that it can move away from the terminal at winding in the first coils. In fact, the movement of the flier keeps the wire stretched while the termination is carried out. The wire can be blocked, in most of cases, at a suitable moment with a special instrument on board of the machine and that engages the terminal, approaching orthogonally to the axis of the stator.
However when the terminal is located outside, on the external boundary of the stator, a tool that approaches the terminal, for blocking the wire and avoiding that slides in the terminal, would obstruct the flier, which as above said moves in a orbital position about the pole.
On the other hand, a manoeuvre of terminating carried out without blocking the wire is risky, even with a terminal with special auto blocking shape, owing to the tension on the wire stretched by the flier, which can cause it to disengage.
A further problem is that, when introducing an end of wire in a terminal, the end protrudes of a certain amount beyond the terminal, and has to be trimmed. Thus, an off-cut wire portion would fall at the base of the machine or, where possible, in a container located underneath. This has the risk that the off-cut portion can sometimes jam into the machine or remain accidentally wound in the stator, causing in both cases a serious drawback.
It is therefore object of the present invention to provide a method of wire termination on outwardly spooled multi-pole stators in which the termination steps do not obstruct the movement of the flier.
Another object of the present invention is to provide a terminating device that moves without obstructing the movement of the flier during the termination.
It is a particular object of the present invention to provide a method of wire termination on outwardly spooled multi-pole stators, with terminals located outside, where the wire can be blocked with respect to the terminals during the step of terminating with the aid of the flier.
It is another particular object of the present invention to provide a terminating device that carries out the above method in case of outwardly spooled multi-pole stators with terminals arranged on the boundary, directly onto the poles.
It is a further particular object of the present invention to provide a terminating device that carries out this method in case of outwardly spooled multi-pole stators with terminals arranged within the poles.
It is still another particular object of the present invention to provide a terminating device wherein an end of wire after the introduction into the terminals does not protrude from them, or protrudes in minimum way, without the need of being trimmed and making an off-cut portion.
According to a first aspect of the invention, a method for wire termination on outwardly spooled multi-pole stators, wherein the stators are formed by a core of ferromagnetic sheets, having an axis and a plurality of poles that radially extend defining grooves between them, and by a terminal board that covers in part the core and has a plurality of terminals, wherein the wire is wound about the poles distributed by a rotatable arm and guided by shrouds that move radially with respect to the stator overlapping the respective polar extension, and wherein before and/or after winding wire termination operations are provided of the wire in the terminals with the aid of the rotatable arm, the operations of terminating comprising steps of catching, moving, introducing in the terminals and cutting a portion of wire, has the characteristic that the steps of catching, moving, introducing and cutting the wire occur by means of a single multifunctional instrument having an axis parallel to the axis of the stator, capable of carrying out a plurality of movements parallel to and/or rotations about said axis.
Preferably, the axis of the multifunctional instrument is incident to the stator.
Preferably, the step of introducing the wire comprises, before starting winding step, a step of creating a bridge of wire between a clamp and a taker-in element, and a step of introducing the wire bridge in the terminal by translating the bridge parallel to the axis. The step of creating the bridge can be carried out by rotating the clamp and the taker-in element about the axis.
Advantageously, the step of cutting the wire is carried out by bringing a blade parallel to the axis up to intersecting the wire, kept by a clamp.
The step of cutting the wire being associated to a movement of folding the portion of cut wire protruding from a terminal to bend along the terminal side before the start of winding.
The portion of cut wire bent along the terminal side, advantageously, is kept pressed against the terminal at least during the first winding phases. In a preferred embodiment, when the terminal is arranged peripherally on the polar extension, the portion of cut wire is kept pressed elastically by an element associated to the shroud that extends from the shroud in a direction orthogonal to the axis.
Preferably, the step of catching the wire, when after winding a portion of wire is stretched between the flier and a spooled coil, is carried out by translating a clamp parallel to the axis up to a predetermined position, opening the clamp, rotating the flier until the stretched wire portion does not intersect the predetermined position, closing the clamp.
The steps of catching the wire and of terminating can be aided by indexing the stator about its own axis.
Advantageously, a step is provided of bringing the portion of wire to the predetermined position by a protruding element that rotates coaxially to the clamp and intersects the portion of wire.
According to another aspect of the invention, a method for wire termination on outwardly spooled multi-pole stators, wherein the stators have a core from which radially extend a plurality of pole walls with poles defining grooves between them, the pole extensions having longitudinal edges, which define the slits for entering the grooves, and circumferential edges that define the height of the stator, the poles having terminals, wherein the wire is wound about the pole walls by means of a rotatable arm guided by shrouds that overlap the circumferential edges of the pole and that move along a radial direction with respect to the stator for laying the wire along the pole walls, and wherein the rotatable arm carries out operations of wire termination on the wire ends in the terminals before and/or after winding, whose characteristic is that a step is provided of blocking the wire ends near to or at the terminals, the step of blocking being carried out in a direction parallel to said radial direction.
According to still another aspect of the invention, in a stator winding machine of the above type a device is provided for wire termination on outwardly spooled multi-pole stators, wherein the stators are formed by a core of ferromagnetic sheets, having an axis and a plurality of poles that radially extend defining grooves between them, and by a terminal board that covers in part the core and has a plurality of terminals, associated to a stator winding machine comprising at least a flier and a shroud that moves radially with respect to the stator overlapping the respective polar extension.
The device has means for terminating wire ends in the terminals with the aid of the flier and of an index motion of the stator, and has the characteristic of having an axis parallel to the axis of the stator and of being equipped with means for catching, moving, introducing in the terminals and cutting a portion of wire associated to means for their movement in a direction parallel to said axis.
The means for introducing the wire can comprise means for creating a bridge of wire between a clamp and a taker-in element, and means for introducing in a terminal the bridge by translating the bridge parallel to the axis. Preferably, the means for creating the bridge comprise means for rotating the clamp and the taker-in element about the axis.
Advantageously, the means for cutting the wire comprise a blade sliding parallel to the axis up to intersecting the wire, kept by the clamp.
The means for cutting the wire can be associated to a deflector movable parallel to the axis and suitable for folding the portion of cut wire protruding from a terminal bending along an end of same before the start of winding.
When the terminal is arranged peripherally on the pole means can be provided for pushing the portion of cut wire bent along the terminal side at least during the first winding phases. Preferably, such pushing means comprise an element associated to the shroud that extends from the shroud in a direction orthogonal to the axis, the pushing element being biased by a spring.
Advantageously, the means for catching the wire comprise a clamp movable parallel to the axis up to a predetermined position, the clamp being formed by a first and a second gripper suitable for closing on each other with movement parallel to the axis.
Preferably, a second deflector is provided for bringing a portion of wire stretched between the flier and the stator to the predetermined position, the second deflector comprising a protruding element that rotates coaxially.
According to a further aspect of the invention, a stator winding machine of the above type, comprising a rotatable arm suitable for winding the wire about the pole walls and shrouds that approach the circumferential edges of the polar extension, overtaking them and moving along an axis that is radial with respect to the stator for spooling the wire along the pole walls, has the characteristic that lock means are provided of the wire ends near to or at the terminals, the lock means moving in a direction parallel to said radial axis and having an end suitable for pushing an end against the stator near to or at the terminal.
Preferably, the shroud comprises a first portion that approaches form outside the polar extension, allowing a second portion to overtake the circumferential edges of the pole and move along the radial axis, the lock means being mounted on the first portion.
Advantageously the lock means comprise a pin parallel to the radial axis and slidingly engaged in the first portion, being provided a resilient element opposing to the sliding of the pin in the first portion.
Further characteristics and the advantages of the method and of the device according to the invention for winding of multi-pole stators will be made clearer with the following description of an embodiment thereof, exemplifying but not limitative, with reference to the attached drawings, wherein:
Figures from 5 to the 18 show the succession of the steps to provide the wire termination on the multi-pole stator of
Figures from 23 to 36 show the succession of steps for wire termination on a multi-pole stator, according to an alternative embodiment.
With reference to
A winding step, for example, is shown in
Before and after winding wire termination operations are provided on the ends of wire 15 into terminals 4 with the aid of flier 10, carried out by an apparatus equipped with a terminating device shown in
Device 20 comprises a first deflector 21, a second deflector 22, a blade 23, and a clamp formed by a movable gripper 24 and a fixed gripper 25, the former being suitable for closing onto the latter for gripping wire 15. Device 20 can carry out steps of catching, moving, introducing and cutting wire 15 with movements parallel to its own axis 27, which coincide or is parallel to axis 7 of stator 1.
The device 20 can translate along axis 27 and rotate about axis 27 owing to a motor 24′. Fixed gripper 25 remains integral to it, which guides other tools 21, 22, 23, 24 as hereinafter indicated. Other tools can then move parallel to axis 27, and in particular: movable gripper 24 is operated by actuator 23′; blade 23 can move owing to actuator 23′ same; first deflector 21 is operated by actuator 21′; second deflector 22 can move owing to actuator 22′.
The drives are not shown in detail since they comprise motors and linear actuators of known type to a man of the art.
The steps of termination, according to the invention, are the following: before starting a winding cycle on one pole of a stator without previous windings, or on which previous winding step has already been made a of a coil 5, with end 5′ in a terminal 6, wire 15 is kept by gripper 24-25 in a way shown in
Then, first deflector 21 (
A step follows of introducing into a terminal 4 bridge 15′ of wire 15 by translating along axis 27 (
Then, as shown in
Pusher 17 keeps an end 5′ pressed against terminal 4, so that winding can start (
At the end of winding, shroud withdraws, and the stator, in a way not shown, is subject to an index movement for winding a pole not next to that already wound. The wire, in this step, is not cut. Winding starts again, and eventually shroud 20 withdraws again (FIG. 15). Wire 15, that is stretched between flier 10 and stator, and to be cut and terminated into respective terminal 4.
Then, device 20 is lowered, with gripper 24-25 open, in order to engage wire 15. A movement of flier 10 can make this step easier. Then second deflector 22 is lowered and (
It must be noted that shroud 16, as shown in the Figures, can be replaced by a shroud much easier, of the type formed by a single shield with central opening through which the pole of stator passes when spooling. In this case, pushing element 17 is equally present, arranged in the central opening of this type of shroud.
A embodiment of the method according to the invention relates to winding an outwardly spooled multi-pole stator 41,
A winding step, for example, is shown in
The device 50 comprises a first deflector 51, a second deflector 52, a blade 53, and a clamp formed by a movable gripper 54 and a fixed gripper 55, the latter being suitable for closing on the former for gripping wire 15. The device 50 can carry out the steps of catching, moving, introducing and cutting the wire 15 with movements parallel to its own axis 27, which coincides with or is parallel to axis 7 of stator 1.
The device 50 can translate along axis 57 and rotate about axis 57 owing to a motor 50′. Fixed gripper 55 remains integral to it. The other tools can then move parallel to axis 57, and in particular: movable gripper 54 is operated by actuator 54′; blade 53 can move integrally to movable gripper always owing to actuator 54′; first deflector 51 is operated by actuator 51′; second deflector 52 can move owing to actuator 52′, partially hidden in the figure.
In a way similar to the previous case, the steps of termination, according to the invention, are the following: before starting a winding cycle on one pole of a stator without windings, or on which have already been spooled some coils 45, with end 45′ in a terminal 46, the wire 15 is kept by the gripper 54-55 in the way shown in
Then, the first deflector 51 (
The rotation of flier 10 about an angle orients correctly wire 15 for introducing it in an end 44 (
Then, as shown in
At the end of winding, the shroud withdraws, and the stator, in a way not shown, is subject to an index movement for winding a pole different from that already wound. The wire, in this step, is not cut. Winding starts again, and eventually the shroud 50 withdraws again (
Then, device 50 is lowered, with gripper 54-55 open and second deflector 52 rotated about the axis 57 at the edge that is oriented towards the shroud 16, in order to engage wire 15. A movement of flier 10 can make this step easier. Second deflector 52 then rotates (
Then (
Finally,
The foregoing description of a specific embodiment will so fully reveal the invention according to the conceptual point of view, so that others, by applying current knowledge, will be able to modify and/or adapt for various applications such an embodiment without further research and without parting from the invention, and it is therefore to be understood that such adaptations and modifications will have to be considered as equivalent to the specific embodiment. The means and the materials to realise the different functions described herein could have a different nature without, for this reason, departing from the field of the invention. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation.
Number | Date | Country | Kind |
---|---|---|---|
EP02425221.5 | Apr 2002 | EP | regional |
This application is a continuation of U.S. application Ser. No. 10/406,471, filed on Apr. 3, 2003, which application claims foreign priority under 35 U.S.C. §119 to European Patent Application No. 02425221.5, which application was filed on Apr. 10, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10406471 | Apr 2003 | US |
Child | 11078459 | Mar 2005 | US |