The subject matter disclosed herein relates to heat exchangers. More specifically, the present disclosure relates to forming enhanced tubes for microchannel heat exchangers.
Present microchannel heat exchanger systems are refrigerant to air applications. These systems include a plurality of microchannel tubes, typically formed of aluminum. The tubes each contain a number of channels or ports through which a flow of refrigerant is circulated. Thermal energy from the refrigerant flow is dissipated to an airflow, typically in a cross-flow orientation relative to the flow in the tubes. Such microchannel heat exchangers are typically applied to motor vehicle cooling systems.
Typical industrial air conditioning and refrigeration systems include a refrigerant evaporator or chiller. Chillers remove heat from a cooling medium that enters the unit, and deliver refreshed cooling medium to the air conditioning or refrigeration system to effect cooling of a structure, device or a given volume. Refrigerant evaporators or chillers use a liquid refrigerant or other working fluid to accomplish this task. Refrigerant evaporators or chillers lower the temperature of a cooling medium, such as water or other fluid, below that which could be obtained from ambient conditions.
One type of chiller is a flooded chiller, which typically includes a number of typically round heat exchange tubes submerged in a volume of a two-phase boiling refrigerant, having a specified boiling temperature. A cooling medium, often water, is processed by the chiller. The cooling medium enters the evaporator and is delivered to the heat exchange tubes. The cooling medium passing through the tubes releases its thermal energy to the boiling refrigerant.
According to one aspect of the invention, a heat exchange tube for a refrigerant-flooded evaporator includes a tube body and a plurality of channels for conveying a cooling medium therethrough located in the tube body. One or more outer wall textural elements are included at the outer wall of the tube body to improve thermal energy transfer between the cooling medium and a volume of boiling refrigerant.
According to another aspect of the invention, a refrigerant-flooded evaporator includes a volume of two-phase refrigerant and a plurality of heat exchange tubes submerged in the volume of refrigerant. At least one heat exchange tube of the plurality of heat exchange tubes includes a tube body and a plurality of channels having a cooling medium flowing therethrough located in the tube body. One or more outer wall textural elements are located at the outer wall of the tube body to improve thermal energy transfer between the cooling medium and the volume of two-phase refrigerant.
According to yet another aspect of the invention, a method of forming a heat exchange tube for a refrigerant-flooded evaporator includes urging a billet into an extruded section and forming the billet into two tube halves including an outer wall and an inner wall having a plurality of channel halves. A textural element is formed at one or more of the outer wall and the inner wall via one or more rotating dies, and the two tube halves are joined to form the heat exchange tube.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Shown in
Referring again to
Referring again to
Referring now to
In another embodiment, as shown in
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US12/66822 | 11/28/2012 | WO | 00 | 6/9/2014 |
Number | Date | Country | |
---|---|---|---|
61568424 | Dec 2011 | US |