The present invention relates to a method and an apparatus of friction welding a pair of workpieces together by pressing one of the workpieces against the other workpiece while rotating the workpieces relatively.
When a workpiece joined by friction welding a pair of workpieces together is tested in tensile strength, the joined workpiece is ruptured generally in its heat-affected zone adjacent to a joint of the workpiece. When the joined workpiece is annealed, the heat-affected zone of the annealed workpiece is strengthened. Thus, when the annealed workpiece is tested in tensile strength, the annealed workpiece is ruptured in its base portion. On the other hand, Japanese Unexamined Patent Application Publication No. 6-248350 discloses welding a pair of pipes together by other than the friction welding. In this publication, however, a pipe joined by welding a pair of pipes is heat-treated at a position adjacent to a joint of the pipe by high frequency induction heating.
It is common to use an electric furnace in annealing the joined workpiece. When the electric furnace anneals the joined workpiece made of carbon steel of S55C with a diameter of 12 mm, for example, it takes about two hours under a temperature of 650° C. In this case, the outer surface of the joined workpiece is oxidized and looks ugly. In view of the problems, the present invention is directed to a method and an apparatus of friction welding wherein the joined workpiece is increased in tensile strength and improved in appearance.
In accordance with an aspect of the present invention, a friction welding method includes a step of friction welding a first workpiece and a second workpiece together by pressing the first workpiece against the second workpiece relatively while rotating the two workpieces relatively, and a step of annealing the friction welded workpiece at a position adjacent to a welded portion thereof with high frequency induction heating.
In accordance with another aspect of the present invention, there is provided a friction welding apparatus for friction welding a first workpiece and a second workpiece together by pressing the first workpiece against the second workpiece relatively while rotating the two workpieces relatively. The friction welding apparatus includes a high frequency induction heater for annealing the friction welded workpiece at a position adjacent to a welded portion thereof with high frequency induction heating.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The features of the present invention that are believed to be novel are set forth with particularity in the appended claims. The invention together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
The following will describe an embodiment of the present invention with reference to
A high frequency induction heater 7 is mounted on the first holder 2 for induction heating a workpiece W. It is noted that the workpiece W is formed by friction welding the first workpiece W1 and the second workpiece W2 together. The high frequency induction heater 7 includes a coil 7A and a moving mechanism 7B. The moving mechanism 7B has a stationary part 7B1 mounted on the first holder 2 and a movable part 7B2 mounted so as to be vertically movable relative to the stationary part 7B1. The coil 7A is mounted on the movable part 7B2 at the lower end thereof. As shown in
To join the first workpiece W1 and the second workpiece W2 together by the friction welding apparatus 1 the step of friction welding is first performed and the step of anneal treatment is then performed as shown in
Referring to
Then, operation of the thrust motor is controlled to provide the first holder 2 with an axial pressure P0 thereby to move the first workpiece W1 toward the second workpiece W2. When the first workpiece W1 is brought into contact with the second workpiece W2 to generate frictional heat therebetween, operation of the thrust motor is controlled to provide the first holder 2 with an axial pressure P1. In this case, the first holder 2 is movably held in the direction away from the second holder 3 without moving toward the second holder 3 from the position where the first and second workpieces W1 and W2 are in contact with each other (refer to the period of time T1 of
After the friction step is finished, restricting the rotation of the first workpiece W1 is initiated. Then, operation of the thrust motor is controlled to provide an upset pressure P2 between the two workpieces W1 and W2. The upset pressure P2 is preferably set larger than the axial pressure P1 in the friction step by a factor of two to four times. The upset pressure P2 is set, for example, in the range of 10 through 30 MPa When restricting the rotation of the first workpiece W1 is initiated, operation of the motor 5 is controlled to allow the chuck 3A to be rotatable on its axis. Thus, the second workpiece W2 starts to freely run with the first workpiece W1 so that the two workpieces W1 and W2 rotate at the same speed after a lapse of time T1 and T2 (refer to the period of time T2 of
After the step of friction welding, the step of anneal treatment is performed as shown in
The high frequency current flowed through the coil 7A is controlled to keep the outermost peripheral surface of the welded portion W3 at a predetermined temperature ranging from Temp1 to Temp1+α as shown in
The two workpieces W1 and W2 are made of steel, including high carbon steel such as S55C and mild steel such as S15C. The two workpieces W1 and W2 are in the shape of solid or hollow rod or round bar. The two workpieces W1 and W2 are formed by extrusion molding as shown in
While conventional electric furnaces tend to heat the outer surface of the workpiece W, they hardly heat the center of the workpiece W. On the other hand, the high frequency induction heating has a property in which induction current tends to flow along a fiber flow. When the high frequency current is flowed through the coil 7A adjacent to the welded portion W3 of the workpiece W, therefore, high frequency induction heating tends to be generated at a position adjacent to the welded portion W3 along the fiber flow W7 in the radial direction of the workpiece W rather than in the axial direction thereof. Thus, temperature rises in a heat-affected zone W4 of the workpiece W adjacent to the welded portion W3 that is thermally affected in the step of friction welding, so that anneal treatment tends to be performed in the heat-affected zone W4. It is noted that burr W8 formed in the step of friction welding is eliminated from the workpiece W after or before the step of anneal treatment.
The anneal treatment was actually tested and its effect was confirmed. To begin with, the round bar made of S55C is friction welded by a method of low heat input to prepare eight specimens Nos 1 to 8. Then, temperature of the outermost peripheral surface of the welded portion W3 of each specimen was controlled using a frequency for a period of retention time as shown in Table 1. The step includes a process of heating up for 5 seconds, a process of retaining a target temperature and a process of cooling.
Then, the workpiece which had not undergone the step of anneal treatment and the workpiece which had undergone the step of anneal treatment were tested in tensile strength. As a result, the workpiece which had not undergone the step of anneal treatment was ruptured at the heat-affected zone under a pressure of 756 MPa. On the other hand, the workpiece which had undergone the step of anneal treatment was ruptured at the base portion rather than at the heat-affected zone and Rts tensile strength was also increased. For example, the tensile strengths of the specimens Nos. 6 and 7 were 782 MPa and 773 MPa, respectively. Even when the outermost peripheral surface was kept at 300° C. for 10 seconds as in the case of the specimen No. 1, the specimen No. 1 was ruptured at the base portion to be found out that anneal treatment of the welded portion W3 was sufficient. Even when the retention time was zero second as in the case of the specimen No. 5, the specimen No. 5 was ruptured at the base portion to be found out that anneal treatment of the welded portion W3 was sufficient.
As described above, as shown in
Anneal treatment according to the present embodiment is not conventionally performed and effectively applied to the workpiece W. More specifically, friction welding the first and second workpieces W1 and W2 together, the friction welded workpiece W has the fiber flow W7 that extends radially, which is not formed by other welding process. Because induction current tends to flow along such a fiber flow, high frequency induction heating tends to be generated at a position adjacent to the welded portion W3 along the fiber flow W7 in the radial direction of the workpiece W rather than in the axial direction thereof. Therefore, the microscopic region of which hardness is distinctly changed adjacent to the welded portion W3 is gradated efficiently by high frequency induction heating. The high frequency induction heating reduces an oxidized region of the workpiece W compared to the conventional electric furnace. Thus, annealed workpiece W is improved in appearance.
As shown in
In the step of anneal treatment, the high frequency induction heating is executed so as to keep the outermost peripheral surface of the welded portion W3 at a temperature of 300 to 650° C. for 1 to 15 seconds. Therefore, the high frequency induction heating has lower preset temperature and shorter treating time than the conventional electric.
The step of friction welding preferably includes a friction step (T1) and an upset step (T2, T3) as shown in
The friction welding apparatus 1 is provided with the high frequency induction heater 7 as shown in
The high frequency induction heater 7 has the coil 7A that is allowed to be disposed at a position adjacent to a part of the outer peripheral surface of the welded portion W3 of the workpiece W as shown in
The present invention is not limited to the above-described embodiment, but it may be modified as exemplified below.
Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein but may be modified within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
P2008-094930 | Apr 2008 | JP | national |