METHOD AND APPARATUS OF GNSS RECEIVER HEADING DETERMINATION

Information

  • Patent Application
  • 20150097724
  • Publication Number
    20150097724
  • Date Filed
    July 08, 2014
    10 years ago
  • Date Published
    April 09, 2015
    9 years ago
Abstract
The present invention relates to processing information generated by GNSS receivers received signals such as GPS, GLONASS, etc. GNSS receivers can determine their position in space. The receivers are capable of determining both coordinates and velocity of their spatial movement. When a receiver is used in any machine control systems, velocity vector heading (in other words, velocity vector orientation) should be determined along with velocity vector's absolute value. Angle, determining velocity vector orientation, is calculated based on velocity vector projections which are computed in navigation receivers. The accuracy of velocity vector orientation calculated based on velocity vector projections strongly enough depends on velocity vector's absolute value. To enhance the accuracy, a method of smoothing primary estimates of velocity vector orientation angles using a modified Kalman filter has been proposed. The bandwidth of this filter is varied depending on current estimates of velocity vector's absolute value which were calculated based on the same velocity vector projections.
Description
BACKGROUND OF THE INVENTION

Navigation receivers capable of positioning with the help of GNSS signals, such as GPS, GLONASS etc., are widely used today. The receivers are employed both in geodetic operations and for automatic, semi-automatic and information support in various machine control systems. For such applications, the navigation receiver has to provide not only a current coordinate estimates, but also estimates of velocity.


Navigation receiver receives and processes signals transmitted by GNSS satellites within a line-of-sight. Satellite signals are modulated by a pseudo-random binary code which is used to measure delays of the received signal relative to a local reference signal. These measurements, normally called “code” measurements, enable pseudo-ranges to be determined, which are different from true ranges-to-satellites due to satellite board-user time scale discrepancy. If the number of satellites is large enough, user coordinates can be determined and time scales coordinated by processing the measured pseudo-ranges.


As soon as satellite signals are received, the receiver can measure pseudo-Doppler offsets of carrier frequency for each satellite. Second- or third-order phase-lock loops (PLLs) are used in receivers for this purpose, and measure the frequency of the received signal, along with a phase of the received signal. Since the satellite's emitted nominal frequency is known, and satellite radial velocity can be calculated by using known satellite orbit and receiver positioning results, the pseudo-Doppler carrier offset related to receiver movement can be obtained. Pseudo-Doppler carrier frequency offset is different from the true one mostly due to instability of a reference oscillator. By co-processing a large amount of satellite measurements, actual receiver velocity and inaccuracy of reference oscillator frequency can be determined. Processing of signal parameters received from all GNSS satellites in view, which enables the receiver to estimate its own coordinates and velocity, is often called the “navigation problem/task”.


One common way of solving the navigation problem is the least squares method (LSM), see Global Positioning System: Theory and Application, edited by B. W. Parkinson, J. J. Spilker, Jr., AIAA, Inc., Washington, vol. 1, 1996. By applying this technique to pseudo-Doppler carrier offsets, estimates of receiver's velocity vector projections can be calculated.


The accuracy of estimates for velocity vector projections depend on the type and settings of a particular receiver, PDOP (position dilution of precision) values, which characterize the GNSS satellites in view, signal-to-noise ratio for received signals and satellite-to-receiver signal propagation conditions. To enhance accuracy of velocity estimations, different filter methods are applied.


U.S. Pat. No. 6,664,923, issued on Dec. 16, 2003, discusses a Kalman filter to simultaneously estimate both position and velocity vector projections using co-processing code and phase measurements in receiver for all GNSS satellites in view. An initialization stage is used to get information about covariance matrix, which is further applied to update the filter state.


U.S. Pat. No. 7,706,976, issued on Apr. 27, 2010, discusses an estimation of velocity vector projections using increments of receiver coordinates, with such coordinates to be used for calculating increments that would be different from each other by a value exceeding statistical accuracy.


Another approach to this problem is based upon integration of measurements taken from the navigation receiver and inertial sensors. Accelerometers are often used as sensors. Three accelerometers measure three acceleration axes. By integrating these accelerations at known original conditions, the three velocity vector projections can be obtained. In the process of taking integrals of accelerations, errors of measurements are, naturally, integrated as well. Variance of vector estimates obtained by accelerometer data is grows over time, and usefulness of such measurements eventually becomes smaller. Co-processing navigation receiver and inertial sensor measurements has to make their coordinate systems consistent. If off-centering of these systems is constant and fixed by a rigid enough design of the device, then angular rotation of one system relative to another remains unknown and should be determined from measurement results.


There are different ways of integration. U.S. Pat. No. 7,193,559, issued on Mar. 20, 2007, for example, discusses a Kalman filter that co-processes a set of code and carrier phase receiver measurements from all GNSS satellites in view, as well as data from additional inertial sensors, thereby estimating receiver position and velocity vector projections.


Generally, each references refer to determining Cartesian coordinate projection and receiver velocity vector projection in a geocentric coordinate system.


Kuzmin, S. Z., Digital processing of radio location information, Moscow, “Soviet Radio”, 1967 (in Russian) (pages 340-341) discloses an approach, including the determination velocity vector modulus (absolute value) and velocity vector orientation angle in space first, and then separate filtering of these values. The benefits of such an approach for radiolocation include a possibility of applying a simpler mechanism of detecting a radiolocation object maneuver and independent identification of instantaneous velocity vector's absolute value changes and directional change in velocity vector. It is important that for radiolocation the measurement, accuracy of an object's moving direction does not depend on movement velocity, and selection of angle filtering parameters depends only on dynamic characteristics of the observed object.


In GNSS, velocity vector projections in the Cartesian coordinate system are primary information. The techniques of obtaining estimates of the velocity vector's absolute value and its direction are well-known. For example, to determine these values for the case of in-plane movement, let VE is the projection of velocity vector onto axis E oriented to the East, and VN is the projection of velocity vector onto axis N directed to the North. Then velocity vector's absolute value is determined by






V=√{square root over (VE2+VN2)}  (1)


and on angle which defines its direction is as follows









θ
=

arctg


(


V
E


V
N


)






(
2
)







Note that the inverse trigonometric function used in (2) is a periodic function, uniquely determined within an interval






θ



{


-

π
2


,

+

π
2



}

.





The user is usually interested in heading/azimuth angle θ, which is uniquely determined within interval θε{0,+2π}. This angle is normally reckoned from the North in a clockwise direction. Transformation (3) is used together with (2):









Θ
=

{



θ



if









(


V
N


0

)






and






(


V
E


0

)










θ
+

2

π





if









(


V
N


0

)






and






(


V
E

<
0

)










θ
+
π




if








(


V
N

<
0

)












(
3
)







Variance of angle estimates obtained from expression (2) depends on variance of velocity vector projection estimates VE and VN. If the values VE and VN are not correlated










σ
Θ
2

=


1

V
4


·

(



V
E
2

·

σ

V
N

2


+


V
N
2

·

σ

V
E

2



)






(
4
)







Considering that σVE2≈σVN2≈σV2, which is often true in practice of navigation receivers, the variance of angle estimates is as follows:










σ
Θ
2




σ
V
2


V
2






(
5
)







where σV2 is the variance of velocity vector's absolute value estimate.


It should be noted that expressions (4) and (5) are true if V>>σV. The smaller the velocity vector's absolute value is, the smaller the accuracy of angle measurements will be, and the distribution law of angle estimates tends to become equally probable within a range {0,2π}, and at full stop (V=0), the notation of velocity vector direction has no meaning.


SUMMARY OF THE INVENTION

The present invention is related to methods and systems for improving GNSS accuracy and for determining velocity vector orientation angle using measurements of GNSS receiver, that substantially obviates one or several of the disadvantages of the related art.


The method includes determination of velocity vector projections as a result of processing radio signals from GNSS satellites. Statistical accuracy estimate for these projections, or a statistical estimate of velocity vector's absolute value, is assumed to be a priori known, for a particular receiver, and can be known, for example, from testing the receiver, or from device specifications, etc.


To determine an orientation angle of the velocity vector, primary estimates of the velocity vector orientation angle and primary estimates of the velocity vector's absolute value are generated using velocity vector projections, and then these primary estimates are smoothed by a modified Kalman filter. Implementation of the modified Kalman filter considers, first, cyclicity/periodicity of the filtered value and, second, accuracy changes of the primary angle estimates. Current accuracy of primary estimates of orientation angle is calculated by using primary estimates of velocity vector's absolute value. Two possible methods of determining “Stop” intervals are considered when movement direction is uncertain and filtering of orientation angle should be terminated.


Additional independent measurements of velocity vector orientation angle rate can be used for dual-frequency navigation receivers in filtering. These independent measurements can be obtained from carrier phase increments in different frequency bands. Additional measurements enable enhancing estimate accuracy of the velocity vector orientation angle at low velocity of movement and to continue filtering at full stop of the receiver.


Additional features and advantages of the invention will be set forth in the description that follows, and in part will be apparent from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE ATTACHED FIGURES

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.


In the drawings:



FIG. 1 shows a determination of receiver velocity vector orientation;



FIG. 2 shows a determination of a navigation receiver heading using smoothed estimates of velocity vector projections;



FIG. 3 shows a determination of a navigation receiver heading using smoothed velocity vector projections and angle rate estimates;



FIG. 4 shows a block-diagram of general information connections which provide determination of velocity vector heading.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.


Coordinate and velocity vector estimates in the geocentric coordinate system are obtained as a result of solving the navigation problem. At the same time, the user is often interested a coordinate system whose center of which is located on the Earth's surface. In this case, measured coordinates and velocity vector projections are re-calculated in accordance with the local coordinate system. Moreover, for a number of applications both in geodesy and machine control, projections are not always practical. Often, velocity vector's absolute value and angles determining this vector orientation within the local coordinate system are much more convenient.


For example, in surveying applications, the surveyor needs to find a ground point with certain coordinates. To do this, the surveyor calculates an azimuth angle for the point in question. Moving in this direction, he needs periodically to check the movement direction against the desired direction and correct his movement as needed. In automatic and semi-automatic machine control systems, a difference between measured and desired heading angles/moving directions is used to control steering mechanisms, while a difference between the measured velocity vector's absolute value and desired velocity is used to control the engine.


The present invention relates to such determination of movement direction/heading based on measurements of a GNSS receiver, when the accuracy of heading determination is somewhat dependent upon velocity vector's absolute value.


The method in question suggests that primary velocity vector's absolute value estimates and primary vector orientation angle estimates will be first generated from primary velocity vector projections, and then these primary measurements will be filtered. Unlike the approach stated in Kuzmin, S. Z., Digital processing of radio location information, Moscow, “Soviet Radio”, 1967 (in Russian) pages 340-341, filter parameters for smoothing velocity vector orientation angle can depend upon velocity vector's absolute value estimates. Such an approach provides a desired accuracy of velocity vector orientation angle when velocity vector's absolute value varies in a wide range.


As an embodiment of the method, consider a case when the receiver generates two primary measurements of velocity vector projections: VEn is the projection of the velocity vector onto axis E directed to the East, and VNn is the projection of the velocity vector onto axis N towards the North. Hereafter, subscript n designates the number of current operation clock cycle. The order of the steps is shown in FIG. 1.


To get a primary estimate of velocity vector's absolute value Vn, equation (1) is used. A primary estimate of velocity orientation angle Θn is obtained from equations (2) and (3). Equation (4) is applied to get an accuracy estimate of the velocity vector orientation angle primary estimates using velocity vector's absolute value estimates of equation (1). (See steps (A), (B) and (C) in FIG. 1).


To obtain the desired accuracy of angle estimates independent of velocity vector's absolute value, filtering of primary angle measurements made by a modified Kalman filter is applied. The design of the filter takes into account that primary angle estimates are not equally accurate, and variance of each primary angle estimate is determined by velocity vector's absolute value estimates.


The stop condition (i.e., termination of receiver movement) at which the concept of “velocity vector direction” makes no sense, is predicted, (i.e., extrapolated) velocity vector's absolute value Vnpred (step (B) in FIG. 1) becomes smaller than a certain minimal value (step (E) in FIG. 1)






V
n
pred
<V
min  (6)


Filtering of the angle stops as soon as the stop condition occurs (step (F) in FIG. 1). When the stop condition fails to occur, filtering of velocity vector resumes, the primary angle estimate is used as the first (after stop) smoothed angle estimate. Such operation logic results in noticeably reducing transition processes in the filter, which are especially great in case of backward movement of the receiver.


To extrapolate velocity vector's absolute value Vnpred, either (a) filtering of primary estimates of velocity vector's absolute value Vn is applied, enabling acceleration {dot over ({circumflex over (V)}n to be estimated and, therefore Vnpred={tilde over (V)}n-1+{dot over ({tilde over (V)}n-1; or (b) a linear prediction of primary estimates Vn is used and then (for the case, for example, τn=const) equation Vnpred=2·Vn-1−Vn-2, can be applied where Vn-1 and Vn-2 are the primary estimates of the velocity vector's absolute value at n−1 and n−2 clocks cycles, respectively.


If the estimates of velocity vector projections VEn and VNn have not been previously filtered, then the stop condition can be governed by the inequality Vn<Kmin. The use of Vnpred in (6), gives in this case practically the same result. If the estimates of velocity vector projections VEn and VNn were preliminary filtered, then, the use of Vnpred to detect a stop becomes needed and such a case will be considered below (see illustration of the method in FIG. 2).


The value Vmin typically depends on accuracy characteristics of the GNSS receiver. For example, if the GNSS receiver measures velocity vector projections with variances σVE2 and τVN2, then the value of minimal velocity can be selected within a range Vmin=(1 . . . 3)·√{square root over (σVE2VN2)}=(1 . . . 3)·σV, where σV is the square root of variance of absolute value of the velocity vector error.



FIG. 1 and FIG. 2 show the order of actions to implement the approach described herein. However, there are a number of peculiarities that require a more detailed description given below.


Estimating Accuracy of Velocity Vector's Absolute Value


Variance of velocity vector projection estimates can be calculated in solving the navigation problem, by taking into account measurement accuracy for each satellite and GDOP (Geodetic Dilution of Precision). Estimates of velocity vector projections will be characterized by a correlation matrix whose sum of diagonal elements determines variance of velocity vector's absolute value σVn2.


For a number of cases (large enough number of GNSS satellites in view, low enough multipath level, lack of harsh interference, and so on), variance of velocity vector's absolute value estimates σV2 can be first determined in the process of preliminary tests and, if needed, corrected at each receiver stop.


Equations of Kalman filtering


Equations of Kalman filtering are well-known, see Kuzmin, S. Z, Design basics for systems of radio location information digital processing, Moscow, “Radio and communications”, 1986 (in Russian), page 163. In general form, they are given as follows:





θnpredn·{tilde over (θ)}n-1  (7.1)





Ψnpredn·Ψn-1·ΦnT  (7.2)






K
nnpred·HnT·(Hn·Ψnpred·HnT+Rn)−1  (7.3)





{tilde over (θ)}nnpred+Kn·(Yn−Hn·θnpred)  (7.4)





Ψnnpred−Kn·Hn·Ψnpred  (7.5)


where Yn is the vector of measured parameters at the n-th clock cycle of executing the filtering algorithm; {tilde over (θ)}n is the vector of estimated parameters; Φn is the extrapolation (prediction) matrix; θnpred is i the extrapolated (predicted) value of the estimated parameters for the n-th clock cycle; Hn is the connection matrix, i.e., matrix establishing relationship between measured and estimated parameters; Ψn is the error correlation matrix for estimated parameters at the n-th clock cycle; Ψnpred is the error correlation matrix for extrapolation (prediction) of estimated parameters; Kn is the Kalman filter matrix gain; Rn is the correlation matrix of primary measurement errors; superscript ( . . . )T means matrix transposition operation, and ( . . . )−1 means inverse matrix calculation.


Angle Filtering


Let us consider specifics of using a Kalman filter for angle filtering.


Matrix Rn, the scalar equal to variance of the primary measurement of velocity vector orientation angle, can be calculated as follows:










R
n

=


σ

Θ





n

2

=


σ
V
2


V
n
2







(
8.1
)





or











R
n

=


σ

Θ





n

2

=


1

V
n
4


·

(



V
En
2

·

σ

V
N

2


+


V
Nn
2

·

σ

V
E

2



)







(
8.2
)







where Vn is the velocity vector's absolute value estimate according to equation (1).


Due to measurement errors, the velocity vector's absolute value Vn can be so small that it will be impossible to perform a division operation. To eliminate such situations, the following known rule can be applied: if |Vn|<Vmin, then σΘn2ΘMAX2. Value σΘMAX can be almost arbitrary. The only condition should be met at selecting







σ

Θ





MA





X

2

>



σ
V
2


V

m





i





n



.





If a linear pattern of angle change is applied, the vector of estimated parameters










ϑ
~

n






is







ϑ
~

n


=







Θ
~

n








Θ
.

~

n







,




where {tilde over (Θ)}n is the estimate of smoothed velocity vector orientation angle at the n-th clock cycle, and {dot over ({tilde over (Θ)}n is the estimate of smoothed angular rate at the n-th clock cycle; connection matrix Hn is in the form of Hn=∥1 0∥; extrapolation matrix Φn is








Φ
n

=





1



τ
n





0


1






,




where τn is the time interval between the current and previous clock cycles.


Extrapolated angle in this case can be written as








Θ
n
pred

=








Θ
~


n
-
1


+


τ
n

·



Θ
.

~


n
-
1











Θ
.

~


n
-
1








,




and the expression (Yn−Hn·θnpred) in (7.4) converts to Δn=(Θn−Θnpred)


Modification of Kalman Filtering for Periodic/Cyclic Value


The value Δn is the current difference between primary measured and extrapolated values of the estimated value, which is usually called a “mismatch” or an “error signal” in filtering theory. In the present case, it is angle mismatch ΔΘ which is a cyclic value, and hence it should be calculated through the shortest arc, see Berezin L. V., Veitsel V. A. Theory and design of radio systems, Moscow, “Soviet Radio”, 1977 (in Russian), page 361:










Δ

Θ





n


=

{




(


Δ
n

-

2

π


)



if





π
<

Δ
n

<

2

π









Δ
n



if






-
π

<

Δ
n

<
π








(


Δ
n

+

2

π


)



if







-
2


π

<

Δ
n

<

-
π












(
9
)







Note that primary measurements Θn (as a cyclic value) are determined within a range of Θε{0,+2π}, and therefore, the smoothed {tilde over (Θ)}n estimated in filtering, and the extrapolated angles Θnpred calculated from (7.1) and (7.4), respectively, should be re-calculated within the range of:











Θ
~

n



{





Θ
~

n




if








0
<


Θ
~

n

<

2

π












Θ
~

n

-

2

π





if










Θ
~

n

>

2

π












Θ
~

n

+

2

π





if










Θ
~

n

<
0












(
10
)







Θ
n
pred



{




Θ
n
pred




if








0
<

Θ
n
pred

<

2

π











Θ
n
pred

-

2

π





if









Θ
n
pred

>

2

π











Θ
n
pred

+

2

π





if









Θ
n
pred

<
0












(
11
)







Upon completion of these operations, the values {tilde over (Θ)}n and Θnpred will be defined within {0,+2π} similar to primary measurement Θn. Operations (10) and (11) will be called “setting up the angle estimate to a given range of definition”.


To ensure filter stability, an approach mentioned in Kuzmin, S. Z, Design basics for systems of radio location information digital processing, Moscow, “Radio and communications”, 1986 (in Russian), page 167, can be used, then expression (7.2) is written as (7.2*):





Ψnpredn·(Ψn-10)·ΦnT  (7.2*)


where Ψ0 is generally a certain positively defined matrix. In the example in question Ψ0 has the form of








Ψ
0

=






ψ
0

1
,
1




0




0



ψ
0

2
,
2








,




where ψ01,1 and ψ02,2 are the desired (pre-assigned) values of variances of smoothed angle estimates and angle rates respectively which limit the equivalent filter memory. The use of the modified Kalman filter for smoothing the angle estimates is shown in FIGS. 1 and 2 as step (G).


Using Smoothed Estimates of Velocity Vector Projections


Sometimes, estimates of velocity vector projections, smoothed in some manner by a filter, have to be used to obtain velocity vector orientation angle. In this case, when varying the velocity vector's absolute value (slowdown or acceleration), projection estimates include the corresponding dynamic errors. Linear filtering gives dynamic error proportional to the filtered value itself. One might think that if the filters for each of projections are identical, these errors would not cause errors of the velocity vector orientation angle estimate. However, slowdown can, in fact, produce a large dynamic error in the orientation angle estimate. Indeed, at low movement velocity, both velocity vector projections can change sign and then, the primary angle estimate (2) and (3) will be opposite (i.e., will change in 180°). When dynamic error in projection estimates decreases, the angle will again change by 180°


Such sharp changes in primary angle estimates will cause transition events at filtering velocity vector orientation angles, and dynamic errors in angle estimates can become unacceptably large.


Reverse movement direction (change of 180°) is also possible, either at turns, or after a full stop, and further backward movement. To distinguish these situations from reverse change due to dynamic errors, the moment of stop is proposed to detect according to the value of extrapolated velocity vector's absolute value, i.e., under conditions stipulated by (6).


Extrapolated velocity vector's absolute value Vpred, unlike velocity vector's absolute value V, can take both positive and negative values. In accordance with this logic (Vmin>0), a negative value of Vpred will be regarded as a stop.


After a stop, movement can be initiated in a random direction, and therefore the velocity vector orientation angle is in the range Θε{0,+2π}, irrespective of its position before the stop. To reduce transition events, filtering of angles after stop should start from the first primary angle estimate.


For some cases, the procedure described above may not be efficient enough. For example, if the velocity vector projections are smoothed by a second or third order narrow-band filter, and the receiver is sharply slowing down, the transition process will cause oscillation and die out for time T, equal to 3 . . . 5 filter time constants. In this case, satisfying condition VpredVmin cannot be taken as a complete transition process, and meeting this condition cannot be regarded as a movement start.


To resolve this situation, two mutually exclusive states “movement” and “stop” are distinguished. The state “movement” will be associated with the flag “SS”=0, and state “stop” with the flag “SS”=1. Transition from one state to the other are governed by the rule:


If two conditions are met at the same time:





(Vpred>Vmin) and (ts>T)  (15)


a decision about moving the object is taken and then “SS”=0, but if at least one condition is not satisfied, a decision about a stationary object is taken, and then “SS”=1;

    • where ts is the time elapsed from the moment of detecting the stop. Value ts will be incremented by τn each clock cycle until “SS”=1, and set to zero ts=0 until “SS”=0;
    • τn is the time interval between the current and previous clock cycles;
    • T is the time of dying out transition processes in velocity vector projections in filtering.



FIG. 2 illustrates the steps for this case. Comparison of FIG. 2 to FIG. 1 shows that when using smoothed estimates of projection of the velocity vector to determine movement direction, the steps (E), (F) and (G) need to be modified.


Using Dual-Frequency Measurements


High-accuracy professional receivers often measure carrier phases in two frequency bands, designated L1 and L2. These measurements are used in high-precision positioning. But the same measurements can be useful to get additional independent estimates of velocity vector angle rates (changes). As is well-known, GNSS satellites transmit circularly-polarized signals. Measured phase of the signals depends on the direction to a satellite (satellite line). When the antenna turns in the horizontal plane, signal phase changes in angle are equal to the turning angle. If dual-frequency measurements are available, the antenna's rotation angle can be determined from












Δθ
n
ϕ

=



k
2

·

ΔΦ

L





1



-


k
1

·

ΔΦ

L





2











k
1

=


f

L





1




f

L





1


-

f

L





2





;


k
2

=


f

L





2




f

L





1


-

f

L





2









(
12
)









    • where fL1 and fL2 are nominal carrier values in the corresponding ranges;

    • ΔΦL1nL1−Φn-1L1custom-characterΔΦL2nL2−Φn-1L2 are the full carrier phase increments measured by the receiver on the corresponding carrier frequencies at the n-th clock cycle.





Since estimate (12) does not depend on satellite line, the antenna rotation angle rate can be determined as a weighted mean value over all satellites in view











Θ
.

n
ϕ

=


1

τ
n


·




j
=
1


N
SV





w
j

·

Δθ

n
,
j

ϕ








(
13
)









    • where NSV is the number of GNSS satellites tracked by the receiver;

    • τn is the time interval between the current and previous clocks










w
j

=


σ
j
2





j
=
1


N
SV




σ
j
2







is the weight of estimate (12) for the j-th satellite;







σ
j
2

=


2
·

(



k
1
2

·

SNR
j

L





2



+


k
2
2

·

SNR
j

L





1




)




SNR
j

L





1


·

SNR
j

L





2








is the variance of estimate (12) for the j-th satellite;

    • SNRjL1 and SNRj2 are signal-to-noise estimates for the j-th satellite in the L1 and L2 bands respectively.


Estimated variance (13) at each clock cycle can be calculated from expression










σ



Θ
.

ϕ

,
n

2

=





j
=
1


N
sv








σ
j
6




τ
n
2

·


(




j
=
1


N
sv








σ
j
2


)

2







(
14
)







Strictly speaking, estimate (13) is the antenna rotation rate rather than velocity vector rotation that is of interest. However, for most of cases, this can be regarded as the same thing, if the antenna is firmly fixed on the housing of the moving object. Estimate (13) can be then used as an independent measurement in filtering (7) velocity vector orientation angle. Then, in (7), vector of measured values Yn is








Y
n

=








Θ
n







Θ
.

n
ϕ









,




matrix Hn is written in the form








H
n

=








1




0







0




1









,




and matrix









R
n

-

R
n


=









σ
Θ
2





0







0





σ


Θ
.

ϕ

2










,




the other variables are the same as before. Note that taking an additional angle rate enables increasing extrapolation accuracy; the slower the receiver moves, the higher accuracy, and the accuracy of the estimates of interest becomes higher








ϑ
~

n

=










Θ
~

n








Θ
.

~

n








.





In addition, when movement stops, filtering of angular velocity estimates is still going on, and, therefore, when movement resumes, the filter keeps generating smoothed velocity vector values without transition processes using the previous estimate.



FIG. 3 shows the order of operations for this case. The modifications of the Kalman filter described above, for the case of processing two types of measurements








Y
n

=








Θ
n







Θ
.

n
ϕ









,




are reflected in FIG. 3 in the modified step (G). The option of received smoothed estimates of the angle of the movement direction even when a “stop” is detected is shown in FIG. 3 by an arrow, showing that after step (F), step (G) is performed. Also, to ensure that incorrect primary angle estimates from step (C) do not affect the results of the filtering during a “stop”, the maximum possible value of σΘn2ΘMAX2 is used. This modification is shown in FIG. 3, step (F).


Detection Of Angular Maneuver


For the sake of brevity, any change in velocity vector orientation angle different from the pre-selected model of filtering angle changes will be referred to as “angular maneuver”. For example, a linear model of angle change is used for filtering velocity vector orientation Θ(t)=Θ0+{dot over (Θ)}·t. During straight line movement, {dot over (Θ)}=0, and during movement along a circle {dot over (Θ)}=const, the selected model matches the true motion pattern, while over intervals at the beginning and at the end of turning there will be higher-order derivatives {umlaut over (Θ)}, custom-character and so on, which naturally cause some dynamic errors in smoothed estimates.


To reduce dynamic errors due to maneuver of the receiver, there are different approaches. In Kuzmin, S. Z, Design basics for systems of radio location information digital processing, Moscow, “Radio and communications”, 1986, page 170, in particular, a correlation matrix of extrapolation errors is calculated in a different way, and uses expression (7.2.1) instead of (7.2*):





Ψnpredn·(Ψn-10)·ΦnT+Gn·Ψη·GnT  (7.2.1)

    • where Ψη is a scalar quantity characterizing a priori knowledge about maneuver intensity as defined by Ψη{umlaut over (Θ)}2;







G
n

=








0.5
·

τ
n
2







τ
n












is the maneuver extrapolation matrix.


Here, Ψη—is a scalar quantity that characterizes a priori known information regarding intensity of the maneuver. Maneuver, here, refers to a possible difference from a real equation that governs the parameter being filtered and the accepted movement model. For example, if a linear movement model is used, and the filtered parameter can change in a random manner, then maneuver intensity can be thought of as a dispersion (variance) of a possible acceleration value. In the example described in this application, a filter is described that assumes a linear change in the angle, in other words, in the filtering process, a smoothed value of the angle and its rate of change is determined (i.e., the first derivative). In this case, the maneuver intensity is defined by Ψη=custom-character—a dispersion (variance). The symbol {umlaut over (Θ)} refers to the second derivative of the angle.


Therefore, a possible disturbance is taken into account by expanding the bandwidth. On the other hand, expanding the bandwidth results in greater fluctuation (noise) errors, and correct selection of σ{umlaut over (θ)}2 can achieve an acceptable ratio between noise and dynamic errors at maneuvers.


To detect a maneuver, the following inequality should be checked at each clock cycle:





Θn|·VnΠ·σV  (16.1)

    • or in another form,





Θn|>Π·σΘ  (16.2)


If (16) is fulfilled, expression (7.2.1) should be used at the current clock cycle of filtering, otherwise—expression (7.2*). If Π in (16) is selected within a range Π=3 . . . 7, then acceptable results can be achieved for a broad enough range of different applications.


In FIGS. 1, 2 and 3, which explain the proposed method, arrows show the order of steps to reach the desired result. The content of information at each shown step is determined at describing actions. The description given above cannot be regarded as the only embodiment of the invention and is aimed to explain the proposed approach to obtaining velocity vector heading estimates for a movable navigation receiver. Embodiments comprising a sequence of actions carried out in a different order will be considered equivalent modifications of the proposed method, for example, the sequence of generating primary estimates of velocity vector's absolute value and generating primary estimates of velocity vector orientation angles can be arbitrary. The given example of filtering with the help of the linear model applied to varying velocity vector angle rates can be further applied to other movement models.



FIG. 4 shows information relationships needed to perform the steps above. The content of these steps is represented in titles of function blocks. The shown division into functional blocks is not the only possible. An experienced in the art can unite blocks in a way more convenient for implementation, keeping the information relationships and functions.


Having thus described a preferred embodiment, it should be apparent to those skilled in the art that certain advantages of the described method and apparatus have been achieved. It should also be appreciated that various modifications, adaptations and alternative embodiments thereof may be made within the scope and spirit of the present invention. The invention is further defined by the following claims.


REFERENCES



  • 1. U.S. Pat. No. 6,664,923, issued Dec. 16, 2003; Inventors: Ford et al., “Position and velocity Kalman filter for use with global navigation satellite system receivers”.

  • 2. U.S. Pat. No. 7,706,976, issued Apr. 27, 2010; Inventors: Peake; John William, “Position based velocity estimator”.

  • 3. U.S. Pat. No. 7,193,559, issued Mar. 20, 2007; Inventors: Ford, et al., “Inertial GPS navigation system with modified Kalman filter”.


Claims
  • 1. A method of determining a heading of a GNSS receiver comprising, at each clock cycle: (A) using a processor, generating a primary estimate of speed using current estimates of velocity vector projections;(B) generating an extrapolated speed using previous estimates of the speed;(C) generating a primary estimate of a direction using the current estimates of the velocity vector projections;(D) generating a variance of the primary estimate of the direction as follows:(i) if the primary estimate of the speed from step (A) is smaller than a preset minimum value, the variance of the primary estimate of the direction equals a preset maximum value, otherwise (ii) the variance of the primary estimate of the direction is a ratio of a preset variance of the speed to a square of the primary estimate of the speed from step (A);(E) if the extrapolated estimate of the speed from step (B) is greater than the preset minimum value, then performing step (G), otherwise, performing step (F);(F) setting a next smoothed estimate of the direction equal to its previous value; and(G) generating a smoothed estimate of the direction based on non-linear recurrent filtering of the primary estimate of the direction from step (C), wherein filter parameters, at every clock cycle, are based on the variance of the primary estimate of the direction from step (D).
  • 2. The method of claim 1, wherein the steps (E), (F) and (G) are modified to determine the direction using a preliminarily smoothed estimate of the velocity vector projections, as follows: at step (E), if both (a) the extrapolated estimate of the speed generated at step (B) more than a preset minimum value of a velocity of the GNSS receiver and (b) a timer determines if a duration of an assumed stop is longer than a preset minimum duration, then step (G) is performed, otherwise, step (F) is performed,at step (F), incrementing the timer;at step (G), setting the timer to zero.
  • 3. The method of claim 1, wherein the non-linear recurrent filtering at step (G) uses a modified Kalman filter for providing a filtering of a cyclic value and further comprising, at each clock cycle: (1) setting a range for the smoothed estimate of the direction to a range of the primary estimate for the direction, if the smoothed angle estimate is outside either [0 . . . 2π] or [−π . . . +π];(2) setting a range for the extrapolated angle estimate to the range of the primary estimate for the direction, if the extrapolated estimate is outside either [0 . . . 2π] or [−π . . . +π]; and(3) setting an error signal as a shortest angular distance between the primary estimate of the direction and the extrapolated estimate of the direction.
  • 4. The method of claim 3, wherein, the modified Kalman filter simultaneously processes the primary estimate of the direction and a primary estimate of angle rate obtained using carrier phase measurements of the GNSS receiver in at least two frequency bands, and whose variance is determined based on accuracy of the GNSS receiver's carrier phase measurements.
  • 5. The method of claim 3, wherein, in the modified Kalman filter, a correction matrix is added to a calculated value of an extrapolation error correlation matrix; wherein values of the correction matrix are calculated based on a preset intensity of a probable maneuver of the direction; andwherein the correction matrix is added only at clock cycles when an absolute value of the error signal is greater than a square root of the variance of the primary estimate of the direction of step (D) by at least a factor of 3 to 7.
  • 6. The method of claim 1, wherein, at step (B), the extrapolated speed is determined based on the primary estimate of the speed of step (A) at two previous clock cycles.
  • 7. The method of claim 1, wherein, at step (B), the extrapolated speed is determined based on an estimate of a rate of change of the speed, which is generated by smoothing the primary estimate of the speed of step (A).
  • 8. A GNSS receiver apparatus comprising a processor configured to perform the following operations: (A) generating a primary estimate of a speed using current estimates of velocity vector projections;(B) generating an extrapolated absolute value of the velocity vector using previous estimates of the absolute value of the velocity vector obtained at step (A);(C) generating a primary estimate of a direction using current estimates of velocity vector projections;(D) generating a variance of the primary estimate of the direction as follows:(i) if the primary estimate of the speed at step (A) is smaller than a preset minimum value, a variance of the primary estimate of the direction equals a preset maximum value, otherwise(ii) a variance of the primary estimate of the direction is a ratio of a preset variance of the speed to a square of primary estimate of speed from step (A);(E) if the extrapolated estimate of the speed at step (B) is greater than a preset minimum value, then performing step (G), otherwise, performing step (F);(F) setting a next smoothed estimate of the direction equal to its previous value; and(G) generating a smoothed estimate of the direction based on non-linear recurrent filtering of the primary estimate of the direction obtained at step (C), wherein filter parameters, at every clock cycle, are based on the variance from step (D).
  • 9. The apparatus of claim 8, further comprising using a modified Kalman filter as the non-linear recurrent filtering for filtering of a cyclic value, the apparatus further performing, at each clock cycle: (1) setting a range for the smoothed angle estimate to a range of the primary estimate for the direction, if the smoothed angle estimate is outside either [0 . . . 2π] or [−π . . . +π];(2) setting a range for the extrapolated angle estimate to the range of the primary estimate for the direction, if the extrapolated estimate is outside either [0 . . . 2π] or [−π . . . +π]; and(3) setting an error signal as a shortest angular distance between the primary estimate of the direction and the extrapolated estimate of the direction.
  • 10. The apparatus of claim 9, wherein, the modified Kalman filter simultaneously processes the primary estimate of the direction and primary estimates of angle rate obtained using carrier phase measurements of the GNSS receiver in at least two frequency bands, and whose variance is determined based on accuracy of the GNSS receiver's carrier phase measurements.
  • 11. The apparatus of claim 9, wherein, in the modified Kalman filter, a correction matrix is added to a calculated value of an extrapolation error correlation matrix; wherein values of the correction matrix are calculated based on a preset intensity of a probable change of the direction; andwherein the correction matrix is added only at such clock cycles when an absolute value of the error signal is greater than a square root of the variance of the primary estimate of the direction of step (D) by at least a factor of 3 to 7.
  • 12. The apparatus of claim 8, wherein, at step (B), the extrapolated speed is determined based on an estimate of a rate of change of the speed, which is generated by smoothing the primary estimate of the speed of step (A).
  • 13. A method of determining a heading of a GNSS receiver comprising, at each clock cycle n: (A) using a processor, generating primary estimates of a velocity vector's absolute value (|Vn|) using current estimates of velocity vector projections VE and VN, as follows: |Vn|=√{square root over (VE2+VN2)};(B) generating an extrapolated speed |Vpred| using Vn from step (A) from a second previous, or earlier, clock cycle;(C) generating a primary estimate of a direction
  • 14. The method of claim 13, wherein the steps (E), (F) and (G) determine Θ using a preliminarily smoothed VE={tilde over (V)}E and VN={tilde over (V)}N: wherein, in step (E), if both Vpred>Vmin and ts>T then step (G) is performed, otherwise, step (F) is performed,where ts is a timer of a duration of a presumed stop, T is a preset minimum time value;wherein step (F) further comprises incrementing the timer ts=ts+1; andat step (G), ts=0.
  • 15. The method of claim 13, wherein the Kalman filter at step (G) provides a filtering of a cyclic value and comprises: (1) setting a range for {tilde over (Θ)}n to a range of Θn, by using a transformation F2[ . . . ] wherein
  • 16. The method of claim 13, wherein, the filter simultaneously processes Θn and primary estimates of angle rate {dot over (Θ)}nφ obtained using carrier phase measurements ΦnL1, ΦnL2 of the GNSS receiver in at least two frequency bands L1, L2, and whose variance estimate σ{dot over (Θ)}φ2 is determined based on accuracy of the GNSS receiver's carrier phase measurements, and wherein filter matrices Yn, Rn, are in the form of
  • 17. The method of claim 13, wherein, in the modified Kalman filter, a correction matrix {Gn·Ψη·GnT} is added to the calculated value of extrapolation error correlation matrix Ψnpred, wherein values of the corrections are calculated based on a preset intensity of the probable change of the direction Ψη=σ{umlaut over (Θ)}2,wherein the correction matrix {Gn·Ψη·GnT} is added only at such clock cycles of filtering operation when |ΔΘn| is greater than a standard deviation σΘn by at least a factor of 3 to 7,
  • 18. The method of claim 13, wherein, in step (B), Vnpred=2·Vn-1−Vn-2, where Vn-1, Vn-2 are taken from step (A) on previous and pre-previous clock cycles, respectively.
  • 19. The method of claim 13, wherein, in step (B), Vnpred={tilde over (V)}n-1+{dot over ({tilde over (V)}n-1·τ, where {tilde over (V)}n-1, {dot over ({tilde over (V)}n-1 are smoothed estimates of the speed and its first derivative, respectively, from a previous clock cycle.
  • 20. A method of determining a heading of a GNSS receiver comprising, at each clock cycle: (A) using a processor, generating a primary estimate of speed using current estimates of velocity vector projections;(B) generating an extrapolated speed using previous estimates of the speed;(C) generating a primary estimate of a direction using the current estimates of the velocity vector projections;(D) generating a variance of the primary estimate of the direction using a current variance of the speed and the extrapolated speed from step (B);(E) if the extrapolated estimate of the speed from step (B) is greater than the preset minimum value, then performing step (G), otherwise, performing step (F);(F) setting a next smoothed estimate of the direction equal to its previous value; and(G) generating a smoothed estimate of the direction based on non-linear recurrent filtering of the primary estimate of the direction from step (C), wherein filter parameters, at every clock cycle, are based on the variance of the primary estimate of the direction.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/383,807, filed on Jan. 12, 2012, which is a US National Phase of PCT/RU2011/000463, filed on Jun. 28, 2011.

Continuations (1)
Number Date Country
Parent 13383807 Dec 2012 US
Child 14325446 US