Heat treatment of integrally bladed rotors (IBR) or bladed disks (blisk) is required to obtain appropriate material properties and to relieve residual stresses due to fusion welding processes such as, for example, electron beam welding, laser welding, or arc welding, as well as solid state bonding processes such as linear friction welding.
Heat treatment is typically performed by exposing the entire IBR or a portion of the IBR (e.g. the weld region) to a predetermined thermal cycle. The technique of heat treating the entire IBR is commonly known in the art of IBR manufacture.
During blade repair operations, it may be necessary to locally heat treat the repaired areas of the integrally bladed rotors that have been exposed to elevated temperatures resulting from repair operations. In the finished machine condition, conventional heat treatment is not always possible due to concerns with part distortion. Additional risk factors for conventional heat treatment, of a repaired finished machined integrally bladed rotor are, (a) it may create unnecessary risk due to the potential for surface contamination throughout the entire part and (b) some areas of the IBR should not be exposed to additional temperature exposure that results in material property debit. Because of these concerns, local heat treatment has been considered to be a preferred option.
IBRs are typically made of either titanium alloys such as Ti-6-4, Ti-6-2-4-2, Ti-6-2-4-6 alloys or nickel based alloys such as Alloy 718 alloy or IN-100. The IBR is a critical rotating component within an engine, and the engineering, materials, manufacturing, and quality requirements are extremely rigorous.
There are two major technical challenges associated with the local heat treatment of an IBR, in addition to the business challenge that the manufacturing process be affordable. First, the selected portion of the IBR receiving heat treatment must meet a prescribed thermal cycle and the remaining IBR component must not be exposed to temperatures that exceed a specific peak temperature to ensure that the material properties meet engineering requirements. Second, the selected portion of the IBR receiving localized heat treatment must be protected from oxidation due to exposure to high temperature.
The present invention comprises a process and system for using a directional (focused) infrared (IR) heater to heat treat specific areas on the blades of IBR devices using a holding fixture for mounting the IBR, an environmental chamber for performing the heat treatment, a heater support unit that positions the heater on the IBR blades, and a control unit for precisely indexing the support unit on to successive blades until all the repaired blades are heat treated.
This heat treatment is done using a heater that is capable of placement of infrared heat sources on the individual integral blades in an inert environment which in one form uses parabolic minors to focus heat only onto the desired area.
The process of this invention provides for localized heat treatments for integrally bladed rotors (IBR) as shown in
Loaded mounting fixture 211 is placed on tracks 213 and is moved into environmental chamber 215. Tracks 213 can be configured in other manners as long as it is capable of moving mounting fixture 211 into and out of chamber 215 as needed.
Door 221 is closed and chamber 215 is evacuated via vent 223. Both door 221 and back wall 225 of chamber 215 have windows 227 so the operation can be observed as heater 10 is lowered on to successive blades 23 of
The process and system of this invention provides a means for critical hardware such as IBR units to receive the desired thermal cycle at the specific location where it is needed. An indexing component of the process and system treats every blade without opening the chamber. The heat treatment takes place in a protective environment to avoid formation of undesirable constituents such as alpha case. The process and system of this invention is suitable for OEM manufacture and for repair of existing IBR systems.
Heater 10 is described in the co-pending application identified in paragraph [0001] above. In addition other heaters having other designs may be used. It is necessary that the heater be able to be placed on and removed from each IBR blade as the blades are sequentially indexed. The heater must be able to heat treat the desired region of each blade without allowing undesired heat to affect the remaining portion of the blade. Following is a description of
Device 10 is positioned proximate an integrally bladed rotor (IBR) airfoil 11 for heating a portion of the IBR airfoil 11 and thereby eliminate overall part exposure to heat. Device 10 includes a pair of infrared (IR) lamp housings 13 and 15, each with an IR lamp generating IR rays that are reflected off parabolic mirrors 17 and 19, respectively, to contact IBR 11 and heat treat that blade without exposing any other part of IBR airfoil 11 to unwanted heat.
Device 10 also includes tubes or passages 33, shown more clearly in
Also shown in
It is known that heat treatment in the presence of oxygen can cause titanium alloys to become embrittled if the temperature exceeds 1,000° F. (538° C.). In addition to embrittlement, the material properties of titanium alloys changes if it is exposed to a temperature exceeding 800° F. (427° C.), but as will be understood the actual temperature depends on the specific alloy. Oxygen contamination at referenced temperatures can be avoided by proper protection such as the use of inert shielding gas such as argon and helium. The present invention ensures that the portion(s) of the product being treated will receive desired thermal treatment but generally remain below 1,000° F. (538° C.) and even below 800° F. (427° C.).
The present invention was used to heat treat and stress relieve a plurality of IBR blades without adversely heating other critical areas of the IBR. In addition, replacement blades have been attached to an IBR by focusing the heat only at the desired location, e.g., where the replacement blade is attached to the IBR. The device of this invention is suitable for OEM manufacture and for repair of existing IBR systems.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This invention is a continuation in part of an application titled Local Heat Treatment of IBR Blade Using Infrared Heating, filed Jul. 18, 2011 and having Ser. No. 13/184,733, the disclosure of which in incorporated by reference in its entirety.
This invention was made with government support under F33657-03-D-0016 0010 awarded by the United States Air Force. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3654471 | Nilsson | Apr 1972 | A |
6242717 | Sanderson | Jun 2001 | B1 |
7595464 | Konishi | Sep 2009 | B2 |
7775690 | Wakalopulos | Aug 2010 | B2 |
20060022154 | Schmitkons et al. | Feb 2006 | A1 |
20070047932 | Caldwell et al. | Mar 2007 | A1 |
20090020523 | DeMichael et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
10055877 | May 2002 | DE |
2007229792 | Sep 2007 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 13184733 | Jul 2011 | US |
Child | 13361283 | US |