Videophones are tremendously important to the hearing impaired community because they enable the use of non-verbal communication techniques like signing. In particular, sign language is “spoken” with the hands, and is very different from English in how information, thoughts, and ideas are expressed. Deaf and hearing-impaired parties using videophones are thus able to effectively express themselves with emotions and other subtleties using sign language which they cannot do through the use of assistive traditional telephony equipment such as teletype terminals.
Unfortunately, a problem can occur when a call comes in and a deaf or hearing impaired user is not near the videophone to see a visual ringing indicator. As a result, it would be beneficial if some additional ways of being alerted to the incoming phone call were available.
A method and apparatus are provided to alert a user of the occurrence of an event such as an incoming telephone call, e-mail, emergency alarm, scheduled appointment reminder, and the like, through the generation of an alert trigger or control signal. An electronic device having networking capabilities, such as an IP (Internet Protocol)-based videophone, is arranged to transmit the alert trigger or control signal to another networked device like a home monitoring or home automation device. In an illustrative example, a videophone detects an incoming call and sends an alert trigger or control signal to a home lighting controller. The alert trigger or control signal instructs the home lighting controller to turn lights on and off in the home in a “ringing” pattern to indicate the incoming call.
In other illustrative examples, the electronic device discovers networked devices on a home network that have alert rendering capability or are controllable. Upon the detection of the occurrence of an event, the electronic device uses a messaging or communication protocol to invoke responsive actions by the networked devices. For example, the networked devices generate audio announcements, play music, render video, etc. responsively to the alert trigger or control signal to thereby signal that the event has occurred.
The alerts are also personalizable according to user input so that each alert is unique. The alerts are thus optionally tailored to the characteristics of individual users in the home. For example, when an e-mail comes in at a personal computer (“PC”) for a hearing-impaired resident in the home, the lights are flashed by the home lighting controller. When an e-mail comes in for a visually-impaired resident, a networked device, such as an IP radio plays an announcement or music.
The electronic device is also arrangeable as a “proxy” device for non-networked devices such as regular telephones (e.g., telephones coupled to the public switched telephone network or “PSTN”) or mobile phones. For example, a videophone detects the ringing of a PSTN telephone or mobile phone and then sends an alert trigger to a PC which then renders an alert message on an attached monitor.
The method and arrangement described herein advantageously enables alerts to be extended throughout the home using networked devices to signal events such as a telephone ringing. The personalization feature affords greater flexibility in the types of alerts that are rendered, to whom, in which location, and the information imparted by the alerts. In addition, the present method and arrangement provides an important achievement in assistive technology that is usable by sense-impaired persons.
Turning now to
Home network 112 is typically implemented with an Ethernet-type network using IP addressing. Home network 112 is often arranged to include wireless capability using one or more wireless access points, such as access point 117, that communicate with one or more mobile devices, such as mobile device 122. Such wireless communications is achievable in accordance with IEEE 802.11x (Institute of Electrical and Electronics Engineers where “x” is used to designate any of the variety of protocols including 802.11(a), 802.11(b), 802.11(g) and 802.11(n)). Other various wireless communication protocols are also utilizable including BlueTooth, ZigBee, and infrared (“IR”) arrangements, for example. Various networking types, protocols and arrangements are alternatively used to implement home network 112 depending upon the requirements of a specific application of event alerting. The arrangements include, for example, coaxial cable networking, MoCA (Multimedia over Coax Alliance) networking, HomePlug networking, HPNA (Home Phoneline Networking Alliance) networking, powerline networking, optical networking, or telephone networking.
Mobile device 122 is representative of portable wireless devices including mobile phones, handheld game players, personal digital assistants (“PDAs”), pocket PCs, smartphones, media or music players (such as MP3 players using MPEG Audio Layer III under the International Standards Organization Moving Pictures Expert Group) and other similarly configured devices.
A variety of illustrative networked devices are also shown in
A few examples of services enabled by home automation technology include: a home entertainment system playing a person's favorite music and responding to their voice commands; lighting and heating/ventilation/air conditioning (“HVAC”) automatically adjusting depending on time of day and whether anyone is currently at home; kitchen appliances such as the oven and coffee maker activating in advance of a person waking up in the morning or returning home; and a home PC automatically sending e-mail to the office, or the telephone system calling a mobile phone number should a home emergency (such as a water leak or power failure) occur.
Lighting controller 125 is arranged, in this illustrative example, to control home lighting (e.g., room and/or exterior lighting) in one or more locations in the home. Lighting controller 125 includes programming logic and is typically programmable by a user through a directly connected user interface (not shown) or via a PC such as PC 133, over a network connection. The user is commonly provided with options to turn selected lights on and off at various times in various locations.
Home automation controller 129 is arranged to include similar features and functionalities as lighting controller, but in an expanded fashion to include control over more devices in the home beyond lighting. For example, home automation controller 129 is often used to enable programmable user control over HVAC systems, appliances, home security systems, lighting, home entertainment systems and other devices in the home. In this illustrative example, home automation controller 129 includes a memory 130 that is commonly utilized, for example, to store user preferences/profiles, applications, and other data. Note that in most home automation environments, lighting controller 125 and home automation controller 129 are alternatively utilized. That is, most homes will use one or the other, but normally not both.
PC 133 is arranged to include functionalities for rendering alerts as described herein. Typically, PC 133 is provided with a software application that listens for alert triggers or control signals from videophone 105. When an alert trigger or control signal is received, the application invokes a method to responsively render an alert or perform a programmed action. For example, PC 133 is arrangeable to play a sound or announcement, flash a static or video message on its screen, or generate some other desired alert or invoke a desired responsive action.
In a similar manner as with PC 133, a mobile device 122 is provided with functionality that is utilizable to render an alert or perform an action responsively to an alert trigger or control signal received from videophone 105. For example, a user playing a game on a handheld game player is provided with an animation that plays on the player's screen when the user receives an instant message (“IM”) from a friend on the user's PC or mobile phone. Another animation is played when a friend logs on to an IM service. Other alerts are renderable, for example, when messages are received via the short message service (“SMS”) or multimedia messaging service (“MMS”).
Network gateway 138 provides a connection from external networks to devices on home network 112 such as online content and resources on wide area networks like the Internet.
Set-top terminal 141 is commonly utilized to receive multimedia content including television programming, movies, music, and other content, typically on a subscription basis. Other media content is often available using the set-top terminal 141 on a single event basis through video-on-demand and pay-per-view services. Set-top terminal 141 is normally coupled to a high bandwidth multimedia network such as a cable television or satellite network (not shown).
A proxy device 144 is coupled to home network 112. Proxy device 144 is further coupled to non-networked devices which, in this illustrative example, include a mobile phone 146 and a PSTN telephone 150. The proxy device 144 provides mobile phone 146 and PSTN telephone 150 with the capability to trigger alerts at remote devices by proxy through the connection to home network 112. Proxy device 144 is thus arranged to detect an event, such as the ringing of the mobile phone 146 or PSTN telephone 150, and then generate an alert trigger or control signal that is transmitted over home network 112 to be rendered by one of the networked devices. For example, when mobile phone 146 rings, proxy device 144 sends an alert trigger to lighting controller 125 which flashes the lights in the room to signal the ringing to a hearing-impaired user.
The detection feature implemented in proxy device 144 is alternatively implemented using a sensor such as a microphone or via a hardwire connection to the non-networked devices' external data port or ringer, for example. It is also noted that such proxy functionalities and features of proxy device 144 are beneficially incorporated, in some applications of event alerting, into other devices. For example, videophone 105 may be thus equipped so it can be used to create an alert trigger or control signal to networked devices on home network 112 by proxy for either mobile phone 146 or PSTN telephone 150.
It is contemplated that alert trigger 205 is a relatively short message as it merely needs to inform the receiving networked device that an event of interest has occurred. The action invoked at the receiving networked device, or the rendering of the alert, is determined by programming that is contained within the receiving networked device. Thus, for example, a particular pattern of light flashing is determined by a lighting controller (e.g., lighting controller 125 in
Electronic device 202 includes an event interface 218 that is arranged to detect the occurrence of an event. Although an incoming call 213 is shown in the illustrative example of
Such detection is accomplished, for example, by receiving a detection signal from an appropriate sensor. For example, a home automation controller (e.g., home automation controller 129 in
The event interface 218 is operatively coupled to an alert trigger generator 223 which generates the alert trigger 205 responsively to the detected event. Alert trigger generator 223 transmits the alert trigger 205 over a network interface 230 to a remote networked device. Network interface 230 is commonly arranged as a TCP/IP (Transmission Control Protocol/Internet Protocol) interface to enable a wide variety of communication protocols to be utilized and message types to be sent and received over the network.
The alert trigger generator 223 is further coupled to a user interface 245, as shown in
For example, the user-generated personalization parameters 252 are alternatively arranged to select which remote networked device renders the alert, or what kind of event triggers a particular alert. For example, a hearing-impaired user may wish to have the alert trigger 205 sent by the electronic device 202 to a lighting controller to flash lights on and off upon the receipt of an incoming phone call.
In another example, the user-generated personalization parameters 252 tell the alert trigger generator 223 to send the alert trigger 205 to a PC (such as PC 133 in
Control signal 305 is generated by a control signal generator 323 responsively to the event detected at the event interface 318. Control signal generator 323 transmits the control signal 305 over a network interface 330 to a remote networked device. Network interface 330 is arranged with similar features and functionalities as the network interface 230 shown in
The control signal generator 323 is further coupled to a user interface 345. User interface 345 is arranged to enable a user to set personalization parameters 352 that are applied to the generation of the control signal 305. Personalization parameters 352 enable the user to select and/or adjust various parameters, programming, and instructions contained in control signal 305.
By contrast to the alert signal 205 which is typically a short message, control signal 305 is generally arranged as a relatively longer message that is sent from the electronic device 302 over a network (e.g., home network 112 in
In addition to acting as an indication that an event of interest has occurred, control signal 305 is selectably arranged, via personalization parameters 352, to include additional content including commands and controls that are utilizable to effectuate remote control and monitoring of one or more networked devices on the network. Thus control signal 305, in most applications of event alerting, is used to send programming instructions to the networked device, or provide more comprehensive instructions as to the implementation of a desired invoked response to the detected event. For example, when a call is received at electronic device 302, the control signal 305 is transmitted to a lighting controller (such as lighting controller 125 in
In another example, the user-generated personalization parameters tell the control signal generator 323 to send a control signal 305 that varies according to the type of event that has occurred. Here, a first control signal is sent that programs a lighting controller to flash the lights on and off in a slow pattern, for example, when a telephone rings. A second control signal programs a lighting controller to flash the lights in a more rapid pattern if a second call comes in while a user is using the phone (i.e., a call waiting alert). And, a third control signal programs the lighting controller to use another distinctive on/off pattern to indicate that a call went unanswered but a message was left by the calling party. Similar variations of signaling can be used to uniquely identify other discrete events.
In an alternative embodiment, smart home capabilities are leveraged to further tailor the alerts and make them more effective in some circumstances. Here, all patterns of use for all the networked devices on the home network are analyzed to make predictions as to where an individual user might be located in the home. For example, during evening hours, a telephone event alert can be first sent to rooms in the home where lights are currently in use. If after several light flash cycles, the telephone is not answered, the alert can be broadcast and rendered by all devices on the network. Similarly, usage of a television or PC may be monitored. Alerts may be sent to those devices on a priority basis when the monitoring indicates that they are being used before being broadcast to other devices residing on the home network.
At block 410 in
At block 420, the electronic device discovers networked devices on the network that have the capability to receive and implement control signals (e.g., control signal 305 in
Responsively to the occurrence of the event at block 410, as shown in block 427, an alert trigger is sent over the network to one or more devices with alert rendering capabilities. The alert trigger is optionally personalized using personalization parameters, as described in the text accompanying
At block 432, responsively to the occurrence of the event at block 410, a control signal is sent over the network to one or more devices with control signal processing capabilities. The control signal is optionally personalized using personalization parameters, as described in the text accompanying
At block 511, a networked device receives an alert trigger (e.g., alert trigger 205 in
At block 522, a networked device receives a control signal (e.g., control signal 305 in
Each of the processes shown in the figures and described above may be implemented in a general, multi-purpose or single purpose processor. Such a processor will execute instructions, either at the assembly, compiled, or machine-level, to perform that process. Those instructions can be written by one of ordinary skill in the art following the description contained herein and stored or transmitted on a computer readable medium. The instructions may also be created using source code or any other known computer-aided design tool. A computer readable medium may be any medium capable of carrying those instructions and include a CD-ROM, DVD, magnetic or other optical disc, tape, silicon memory (e.g., removable, non-removable, volatile or non-volatile), packetized or non-packetized wireline or wireless transmission signals.