1. Field of the Invention
The present invention relates to a method and an apparatus for transmission between a plurality of units of user equipment and a base station in a wireless communication system; more particularly, the present invention relates to a method and an apparatus for allocating acknowledgement resources in communication systems.
2. Description of the Related Art
Telecommunication enables transmission of data over a distance for the purpose of communication between a transmitter and a receiver. The data is usually carried by radio waves and is transmitted using a limited transmission resource. That is, radio waves are transmitted over a period of time using a limited frequency range.
In a contemporary communication system, the information to be transmitted are first encoded and then modulated to generate multiple modulation symbols. The symbols are subsequently mapped into transmission resource. Usually, the transmission resource available for data transmission is segmented into a plurality of equal duration time and frequency slots, so called resource elements. A single resource element or multiple resource elements may be allocated for transmitting the data. When data is transmitted, a control signal may accompany the data to carry information regarding the allocation of the resource elements for the current data transmission. Therefore, when a receiver receives the data and the control signal, the receiver may derive the information regarding resource allocation used for data transmission from the control signal and decodes the received data using the derived information.
During an uplink transmission in the Third (3rd) Generation Partnership Project Long Term Evolution (3GPP LTE) systems, a unit of user equipment (UE) transmits a data packet to a base station (BS) after receiving an uplink scheduling grant (i.e., uplink grant) from the BS. In response to the received data packet from the UE, the BS transmits a downlink acknowledgement message (i.e., downlink ACK) to the UE. During a downlink transmission, a BS transmits a data packet to a UE after transmitting a downlink scheduling grant (i.e., downlink grant) to the UE. In response to the received data packet from the BS, the UE transmits an uplink acknowledgement message (i.e., uplink ACK) to the UE.
Contemporarily, information regarding the allocation of ACK channel resources is transmitted via either explicit signaling or linking to data channel resources. Explicit signaling of ACK channel resource may result in large overhead. Linking ACK channel resources to data channel resources may result in large amount of ACK channel resource requirement, regardless of the actual system load.
It is therefore an object of the present invention to provide an improved method and apparatus for communication.
It is another object of the present invention to provide a method and apparatus for efficiently allocating communication resources for acknowledgement messages.
According to one aspect of the present invention, a method for transmission is provided. A mapping scheme between a plurality of control channel elements and a plurality of acknowledgement channel resources is established. When a control channel element selected from the plurality of control channel elements is used to transmit a scheduling grant, a second node transmits a data packet to a first node according to the scheduling grant. Then, one of an acknowledgement message and a negative acknowledgement message is transmitted from the first node to the second node using an acknowledgement channel resource selected from the plurality of acknowledgement channel resources in accordance with the mapping scheme.
The mapping scheme may include at least one mapping relationship selected from a group of mapping relationships including: one acknowledgement channel resource corresponding to one control channel element; one acknowledgement channel resource corresponding to more than one control channel element; more than one acknowledgement channel resource corresponding to one control channel element; and more than one acknowledgement channel resource corresponding to more than one control channel element.
The first node may be a base station, and the second node may be a unit of user equipment. In this case, the scheduling grant is an uplink scheduling grant transmitted from the base station to the unit of user equipment, and the acknowledgement channel resources are downlink acknowledgement channel resources.
The mapping scheme may change for different unit of user equipment.
Alternatively, the first node may be a unit of user equipment, and the second node may be a base station. In this case, the scheduling grant is a downlink scheduling grant transmitted from the base station to the unit of user equipment, and the acknowledgement channel resources are uplink acknowledgement channel resources.
The mapping scheme may change over time.
The mapping scheme may change in dependence upon one of information regarding Hybrid automatic repeat-request transmission, and information regarding Multiple-Input Multiple-Output configuration comprised of rank information and whether a grant is a Multiple-Input Multiple-Output grant, or a multiple codeword grant, or a single codeword grant.
Accordingly to another aspect of the present invention, a method for communication is provided. A plurality of first mapping schemes are established between a plurality of control channel elements and a plurality of downlink acknowledgement channel resources for a plurlaity of units of user equipment. A plurality of second mapping schemes are established between the plurality of control channel elements and a plurality of uplink acknowledgement channel resources for the plurlaity of units of user equipment. When any one of the pluraltiy of units of user equipment receives an uplink scheduling grant from a base station via a control channel element and the unit of user equipment transmits a data packet to the base station, the base station transmits one of a downlink acknowledgement message and a downlink negative acknowledgement message by using at least one downlink acknowledgement channel resource that is associated with the control channel element in accordance with the first mapping scheme that corresponds to the unit of user equipment. When any one of the plurality of units of user equipment receives a downlink scheduling grant from a base station via a control channel element and the base station transmits a data packet to the user equipement, the unit of user equipment transmits one of an uplink acknowledgement message and an uplink negative acknowledgement message by using at least one uplink acknowledgement channel resource that is associated with the control channel element in accordance with the second mapping scheme that corresponds to the unit of user equipment.
In accordance with the first mapping schemes, more than one control channel element may correspond to one downlink acknowledgement channel resource. In accordance with the second mapping schemes, more than one control channel element may correspond to one uplink acknowledgement channel resource.
At least one of the first mapping schemes may be different from the other first mapping schemes. At least one of the second mapping schemes may be different from the other second mapping schemes.
The first mapping scheme of at least a first user equipment may be different from the first mapping scheme of at least a second user equipment.
The second mapping scheme of at least a first user equipment may be different from the second mapping scheme of at least a second user equipment.
The first mapping schemes in at least a first transmission interval may be different from the first mapping schemes in at least a second transmission interval.
The second mapping schemes in at least a first transmission interval may be different from the second mapping schemes in at least a second transmission interval.
According to still another aspect of the present invention, a method for communication is provided. A plurality of mapping schemes are established between a plurality of control channel elements and a plurality of downlink acknowledgement channel resources for corresponding ones of a plurality of units of user equipment. When any one of the plurality of units of user equipment receives an uplink scheduling grant from a base station via a control channel element selected from the plurality of control channel elements and the unit of user equipment transmits a data packet to the base station, the base station transmits one of a downlink acknowledgement message and a downlink negative acknowledgement message by using at least one downlink acknowledgement channel resource that is associated with the control channel element in accordance with a mapping scheme corresponding to the unit of user equipment.
At least one of the mapping schemes may be different from the other mapping schemes.
When there are N downlink acknowledgement channel resources and M units of user equipment, the index CCE(i,j) for the control channel element that corresponds to an i-th downlink acknowledgement channel resource for a j-th unit of user equipment may be established as: CCE(i,j)=(i+j) mod N, for j=0, 1, . . . M-1.
Alternatively, the index CCE(i,j) for the control channel element that corresponds to an i-th downlink acknowledgement channel resource for a j-th unit of user equipment being established as: CCE(i,j)=(i+f(j)) mod N, for j=0, 1, . . . M-1, where f(j) is a certain function of j, such as a Hash function.
When anyone of the units of user equipment receives a downlink negative acknowledgement message from the base station, the unit of user equipment may retransmit a data packet.
At least one mapping scheme may change over time.
According to a further aspect of the present invention, a base station is provided in a wireless communication system. A plurality of first mapping schemes are established between a plurality of control channel elements and a plurality of downlink acknowledgement channel resources for a plurlaity of units of user equipment are established, and a plurality of second mapping schemes are established between the plurality of control channel elements and a plurality of uplink acknowledgement channel resources for the plurlaity of units of user equipment. When any one of the pluraltiy of units of user equipment receives an uplink scheduling grant from the base station via a control channel element and the unit of user equipment transmits a data packet to the base station, the base station transmits one of a downlink acknowledgement message and a downlink negative acknowledgement message by using at least one downlink acknowledgement channel resource that is associated with the control channel element in accordance with the first mapping scheme that corresponds to the unit of user equipment.
A more complete appreciation of the invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:
In a OFDM system, each OFDM symbol consists of multiple sub-carriers. Each sub-carrier within an OFDM symbol carriers a modulation symbol.
A time domain illustration of the transmitted and received OFDM symbols is shown in
Single carrier frequency division multiple access (SC-FDMA), which utilizes single carrier modulation and frequency domain equalization is a technique that has similar performance and complexity as those of an OFDMA system. One advantage of SC-FDMA is that the SC-FDMA signal has lower peak-to-average power ratio (PAPR) because of its inherent single carrier structure. Low PAPR normally results in high efficiency of power amplifier, which is particularly important for mobile stations in uplink transmission. SC-FDMA is selected as the uplink multiple acess scheme in 3GPP long term evolution (LTE). An example of the transceiver chain for SC-FDMA is shown in
In packet-based wireless data communication systems, control signals transmitted through control channels, i.e., control channel transmission, generally accompany data signals transmitted through data channels, i.e., data transmission. Control channel information, including control channel format indicator (CCFI), acknowledgement signal (ACK), packet data control channel (PDCCH) signal, carries transmission format information for the data signal, such as user ID, resource assignment information, Payload size, modulation, Hybrid Automatic Repeat-reQuest (HARQ) information, MIMO related information.
Hybrid Automatic Repeat reQuestion (HARQ) is widely used in communication systems to combat decoding failure and improve reliability. Each data packet is coded using certain forward error correction (FEC) scheme. Each subpacket may only contains a portion of the coded bits. If the transmission for subpacket k fails, as indicated by a NAK in a feedback acknowledgement channel, a retransmission subpacket, subpacket k+1, is transmitted to help the receiver decode the packet. The retransmission subpackets may contain different coded bits than the previous subpackets. The receiver may softly combine or jointly decode all the received subpackets to improve the chance of decoding. Normally, a maximum number of transmissions is configured in consideration of both reliability, packet delay, and implementation complexity.
Due to its simplicity, N-channel synchronous HARQ are often used in wireless communication systems. For example, synchronous HARQ has been accepted as the HARQ scheme for LTE uplink in 3GPP.
Multiple antenna communication systems, which is often referred to as multiple input multiple output (MIMO), are widely used in wireless communication to improve system performance. In a MIMO system, the transmitter has multiple antennas capable of transmitting independent signals and the receiver is equipped with multiple receive antennas. MIMO systems degenerates to single input multiple output (SIMO) if there is only one transmission antenna or if there is only one stream of data transmitted. MIMO systems degenerates to multiple input signle output (MISO) if there is only one receive antenna. MIMO systems degenerates to single input single output (SISO) if there is only one transmission antenna and one receive antenna. MIMO technology can significant increase throughput and range of the system without any increase in bandwidth or overall transmit power. In general, MIMO technology increases the spectral efficiency of a wireless communication system by exploiting the additional dimension of freedom in the space domain due to multiple antennas. There are many categories of MIMO technologies. For example, spatial multiplexing schemes increase the transmission rate by allowing multiple data streaming transmitted over multiple antennas. Transmit diversity methods such as space-time coding take advantage of spatial diversity due to multiple transmit antennas. Receiver diversity methods utilizes the spatial diversity due to multiple receive antennas. Beamforming technologies improve received signal gain and reducing interference to other users. Spatial division multiple access (SDMA) allows signal streams from or to multiple users to be transmitted over the same time-frequency resources. The receivers can separate the multiple data streams by the spatial signature of these data streams. Note these MIMO transmission techniques are not mutually exclusive. In fact, many MIMO schemes are often used in an advanced wireless systems.
When the channel is favorable, e.g., the mobile speed is low, it is possible to use closed-loop MIMO scheme to improve system performance. In a closed-loop MIMO systems, the receivers feedback the channel condition and/or preferred Tx MIMO processing schemes. The transmitter utlizes this feedback information, together with other considerations such as scheduling priority, data and resource availability, to jointly optimize the transmission scheme. A popular closed loop MIMO scheme is called MIMO preceding. With preceding, the transmit data streams are pre-multiplied by a matrix before being passed on to the multiple transmit antennas. As shown in
Another perspective of a MIMO system is whether the multiple data streams for transmission are encoded separately or encoded together. If all the layers for transmission are encoded together, we call it a single codeword (SCW) MIMO system. And we call it a multiple codeword (MCW) MIMO system otherwise. In the LTE downlink system, when single user MIMO (SU-MIMO) is used, up to 2 codewords can be transmitted to a single UE. In the case that 2 codewords are transmitted to a UE, the UE needs to acknowledge the two codewords separately. Another MIMO technique is called spatial division multiple access (SDMA), which is also referred to as multi-user MIMO (MU-MIMO) sometimes. In SDMA, multiple data streams are encoded separately and transmitted to different intended receivers on the same time-frequency resources. By using different spatial signature, e.g., antennas, virtual antennas, or precoding vectors, the receivers will be able to distinguish the multiple data streams. Moreover, by scheduling a proper group of receivers and choosing the proper spatial signature for each data stream based on channel state information, the signal of interest can be enhanced while the other signals can be enhanced for multiple receivers at the same time. Therefore the system capacity can be improved. Both single user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) are adopted in the downlink of LTE. MU-MIMO is also adopted in the uplink of LTE while SU-MIMO for LTE uplink is still under discussion.
In LTE systems, some resources, namely control channel elements, are reserved for downlink control channel transmission. Control channel candidate set can be constructed based on the control channel elements reserved for downlink control channels. Each downlink control channel can be transmitted on one of the control channel candidate set. An example of control channel elements and control channel candidate set is shown in
Aspects, features, and advantages of the invention are readily apparent from the following detailed description, simply by illustrating a number of particular embodiments and implementations, including the best mode contemplated for carrying out the invention. The invention is also capable of other and different embodiments, and its several details can be modified in various obvious respects, all without departing from the spirit and scope of the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive. The invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings. In the following illustrations, we use downlink acknowledgement (ACK) channel in 3GPP LTE system as an example. However, the techniques illustrated here can certainly be applied to uplink acknowledgement channel in LTE systems, and in other channels and other systems whenever applicable.
During an uplink transmission, a unit of user equipment (UE) transmits a data packet to a base station (BS) after receiving an uplink scheduling grant (i.e., uplink grant) from the BS. In response to the received data packet from the UE, the BS transmits a downlink acknowledgement message (i.e., downlink ACK) to the UE. Similarly, during a downlink transmission, a BS transmits a data packet to a UE after transmitting a downlink scheduling grant (i.e., downlink grant) to the UE. In response to the received data packet from the BS, the UE transmits an uplink acknowledgement message (i.e., uplink ACK) to the UE.
In a first embodiment according to the principles of the invention, we propose to establish a functional relationship, or mapping, between control channel elements and downlink Acknowledgement (ACK) channels or downlink ACK channel resources. This mapping is schematically illustrated in
In a second embodiment according to the principles of the invention, we propose to establish a mapping between control channel elements and downlink ACK resources, while at the same time establish a mapping between the control channel elements and uplink ACK resources, as shown in
Certainly, the mapping between the control channel elements and the downlink ACK channel resources may vary; so does the mapping between the control channel elements and the uplink ACK channel resources. In addition, these two mappings need not to be directly related to each other.
When some control channel elements are mapped to both of a downlink ACK channel and an uplink ACK channels, as shown in
If we use separate control channel elements for downlink grant and uplink grant, we only need to allocate a control channel element to either an uplink ACK channel or a downlink ACK channel, as shown in
Certainly, the aforementioned embodiments of mapping between control channel elements and ACK channel resources can be mixed, i.e., can be used simultaneously. One example is shown in
In certain HARQ operations, such as synchronous HARQ, no grant or assignment is required for retransmission. For illustration purpose, assume an uplink transmission uses synchronous HARQ. As shown in
In one embodiment of the invention, we propose to establish, for at least one UE, a mapping scheme between control channel elements and ACK channel resources that is different from the mapping schemes used by other UEs in accordance with a fifth embodiment according to the principles of the present invention. For example, assume there are N ACK resources and M UEs. Assume the indices of the UEs are 0, 1, . . . , M-1. The mapping from ACK resource i to control channel element CCE(i, j) for UE j may be defined such that the index of the ACK resource that is allocated to control channel element CCE(i, j) for UE j is established by:
CCE(i, j)=(i+j) mod N, for j=0, 1, . . . , M-1 (1)
To give a more specific example, assume there are four control channel elements and five ACK resources as shown in
CCE(i, j)=(i+f(j)) mod N, for j=0, 1, . . . , M-1, (2)
where f(j) can be any function of j, e.g., a Hash function.
Alternatively, we can establish in at least one time unit a mapping scheme between control channel elements and ACK channel resources that is different from the mapping schemes used in other time units in accordance with a sixth embodiment according to the principles of the present invention. For example, as shown in
Certainly, various time-specific mappings can be defined to avoid ACK resource collision or blocking of the control channel elements. In a seventh embodiment according to the principles of the present invention, the mapping may be defined for each HARQ transmission. As shown in
Note that with the aforementioned embodiments, the blocking of control channel elements may still take place under certain conditions. In general, when the usage of a control channel element to transmit a grant message would result in ACK channel collision, the usage of the control channel element at that time should be prohibited. In other words, the control channel element should be blocked. In that case, the blocked control channel elements can be used to deliver other messages. For example, if one control channel element is blocked for sending uplink grants, it may be used to send downlink grant. This is particularly useful when one link (e.g., downlink) uses asynchronous HARQ while the other link (e.g., uplink) uses synchronous HARQ. In general, each transmission of an asynchronous HARQ process requires a grant. So there will always be an ACK resource for a transmission as long as there is a control channel element available for a grant of that transmission. On the other hand, a synchronous HARQ session requires only one grant for the whole HARQ session but needs ACK resources for all transmissions. In the case that mapping is established between control channel elements with both downlink ACK resources and uplink ACK resources, if downlink data transmission uses asynchronous HARQ and uplink data transmission uses synchronous HARQ, rules can be made such that priority in choosing control channel elements can be given to uplink grants to mitigate the problem of blocking control channel elements. Because downlink asynchronous HARQ sessions do not block control channel elements, the leftover control channel elements can be used to transmit downlink grants.
In a ninth embodiment according to the principles of the invention, mapping can be established between the control channel elements and the ACK resource for persistent transmissions assigned by the persistent assignment transmitted on those control channel elements. Similarly to synchronous HARQ, persistent assignment will also have similar problem of blocking control channel elements. So the aforementioned embodiments apply. That is, the problem of blocking is resulted from the fact that there is no scheduling grant for transmissions or retransmissions. So the ACK channel assigned to the receiver to respond to these transmissions is determined based on the control channel element used to transmit the scheduling grant of the first transmission. Persistent assignment fits this profile. In the case of persistent assignment, a base station transmits a persistent assignment to a unit of user equipment which grants to the unit of user equipment the usage of a resource for a period of time. In contrast, a non-persistent assignment (scheduling grant) is transmitted to a unit of user equipment which grants to the unit of user equipment the usage of a resource for one or few transmissions. A resource typically refers to the frequency bandwidth and to the time slots for data channel transmission (i.e., uplink data channel in this case). If the ACK channel is determined by the control channel element used to transmit the initial scheduling grant of a persistent assignment, the ACK channel will always be used to respond to the persistent transmissions that are the transmissions on the persistently assigned resources. In that case, the control channel element used to transmit the initial scheduling grant is blocked unless a mapping scheme is established between the ACK resource and control channel elements in accordance with the principles of the present invention. In other words, the control channel element used to transmit the initial scheduling grant of a persistent assignment cannot be used to transmit another scheduling grant or persistent assignment. Otherwise, ACK collision may take place.
This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from a provisional application earlier filed in the U.S. Patent & Trademark Office on 23 Mar. 2007 and there duly assigned Ser. No. 60/919,620.
Number | Date | Country | |
---|---|---|---|
60919620 | Mar 2007 | US |