The present disclosure is directed to methods and apparatus to control fluid flows from subsea wells. This disclosure teaches subsea methods and apparatuses that provide a redundant and contingency hydraulically sealed path from surface to subsea wells for well fluids, well tubulars, wire line, bits, logging tools, and other well tools during subsea drilling, subsea completing, and other subsea well operations that require well fluid control. More specifically, this invention teaches a multi path to enter subsea wells through fluid flow control systems of subsea wells. Furthermore, the invention teaches multiple marine riser conduits paths that have a common subsea wellhead entry path.
When a well is drilled in a subsea environment the ability to repair, remove, or maintain the industry standard well control device, the Blow Out Preventer, BOP, is challenged due to the fact that it is on the seafloor. As mankind continues to drill wells in ever deeper water depths the BOP system may be miles below the sea surface.
The subsea BOP currently used by the industry is further compromised or challenged by the large riser pipe that can be several feet in diameter, miles long, and have a weight of millions of pounds being mounted on top of the BOP stack and proceeding to the surface. This large riser is used to allow return fluids from drilling the well to flow from the subsea well head to the surface through the BOP. If the riser pipe fails then there is no path to get drill pipe or kill fluids into the subsea well. If the riser pipe fails, and the BOPs fail during a blow out, like it did in the 2010 Gulf of Mexico blowout, then there is no method to get drill pipe into the well and kill the well with heavy fluid to stop the fluid from erupting from the well. Embodiments of this invention are methods and apparatus to avoid failed risers and BOPs by constructing an alternative path to the subsea well that is not encumbered by the previously failed BOP, failed risers, or foreign debris lodged in the BOP
The current industry methods teach towards making the subsea BOP system reliable by stacking in a plurality of closure devices all in the same axis in a BOP stack, and to continually test the BOPs. However, if the BOP fails during a blow out, for example foreign object and debris like a large piece of earth or previously disposed casing or wellhead are pushed up into the BOP the BOP will not close and the foreign debris that is lodged in the BOP can also prevent the entry of fluid or drill pipe from surface to enter in the well to control the blowout. What is needed is an alternative path to the subsea well from surface that is unencumbered by the primary path. What is further needed is a method that presents an alternative path through drilling risers, and subsea BOPs and that allows a parallel subsea BOP stack and riser to be offset from the primary path and the first flow path axis of subsea BOPs and riser to a subsea well.
The current subsea industry is further challenged by the need to drill in ever deeper water depths and ever deeper subterranean depths below the subsea floor. A problem presents itself in deep water depths where the force that the sea depth places on the earth is less than the force that the overburden of the earth would places on subterranean formations. This results in the subterranean rock hydraulic fracture pressure of deep water offshore wells being lower than deep wells drilled from land. The drilling fluid hydrostatic pressure of the deep water wells weighted drilling fluid has a down hole hydrostatic pressure increased by the vertical height of the subsea wells seafloor depth to the surface of the sea. What is needed is a means to have the drilling mud from the sea floor, to the bottom of the well where the drill bit is cutting at a higher density, and the density of the drilling fluid between the outer diameter of the drill pipe and the internal diameter of the riser from the sea floor to the surface to have a lighter density. Embodiments of the invention allow for such a dual gradient drilling fluid means to be achieved by pumping through a second BOP conduit a lighter fluid and mixing it below the BOPs to create a lighter fluid hydrostatic from the seafloor to the surface in the drilling riser. This then allows wells to be drilled safer as the risk of lost circulation due to hydraulic fracturing of the subterranean rocks due to the combination of hydrostatic forces developed by heavy drilling fluids and drilling cuttings in the casing and open hole in addition to the hydrostatic forces of the drilling fluids and cuttings on the outer diameter of the drill pipe and the internal diameter of the drilling riser has been reduced.
Various embodiments of the invention include new well construction methods and procedures and apparatus to assure that subsea wells can be drilled with redundant subsea flow control systems making subsea drilling safer and less likely to cause massive contamination to the oceans and seas of the world.
In one embodiments of the invention there is a new method of well construction that results in a redundant and separate well control path for drill pipe, wire line, and fluid injection to bypass damaged risers and subsea blow out preventers.
Various embodiments of the invention include methods and apparatus that will allow man to more safely produce subsea hydrocarbons using a redundant path riser and subsea BOP method.
In yet another embodiment, a method is taught where a dual gradient drilling fluid system can be achieved where the fluid gradient in the drill pipe outer diameter in the drilling riser is lower than the fluid gradient in the casing and well bore below the sea floor thusly allowing subsea wells to be drilled with less risk of hydraulically fracturing the subterranean rock, losing drilling fluid, subsequently losing the hydrostatic force to control the fluid from the well and resulting in a blowout. This method of lightening the fluid hydrostatic in the riser can also be used in the art of primary cementing a casing in a subsea well thereby also reducing the down hole hydrostatic forces on the subterranean well bore during cement placement and cement cure time. This lightening method is achieved by having at least two separate fluid and drill pipe flow paths from surface to the subsea wellhead each having subsea BOP systems with different risers but a common mixing point below the respective risers BOPs and injecting a lighter fluid down one flow path and taking returns of drilling fluids, cuttings, or cement, and lighter fluid up a riser. In an embodiment of the invention, the multi-path apparatus comprises at least two separate continuous paths to the surface.
In one embodiment of the invention there is a method for the construction of a subsea well comprising connecting the distal end of a subsea multi-path apparatus to the subsea well wherein the subsea multi-path apparatus comprises at least two separate paths each comprising separate proximal ends converging to the common distal end of the subsea well; connecting at least one subsea closure apparatus to a proximal end of the subsea multipath apparatus; connecting a distal end of a riser conduit apparatus to the subsea closure apparatus wherein the riser has the proximal end at or near the surface of the sea: and hydraulically sealing all connections of the subsea wellhead, subsea multipath apparatus, subsea closure apparatus, and riser forming a continuous sealed hydraulic conduit from surface to the subsea wellhead. The subsea closure apparatus may additionally comprise a blow out preventer system. In a specific embodiment of the invention, the subsea multipath apparatus is deployed to the subsea well before the subsea closure apparatus. Additionally, the riser conduit apparatus may comprise a drilling riser apparatus. The method may further comprise the step of deploying a pipe from a rig at the surface through the continuous sealed hydraulic conduit into the subsea well. A second multi-path apparatus may be connected to a proximal end of the subsea multi-path apparatus, forming two attached multi-path apparatus.
Other embodiments of the invention is a method of controlling the fluid flow from a subsea well comprising connecting at least two separate subsea blowout apparatus to different proximal end branches of a subsea multi-path apparatus comprising at least two proximal ends converging to a common distal end; connecting to the respective proximal end of at least one of the at least two separate subsea blowout apparatus to at least one riser conduit wherein the riser conduit has a proximal end at the surface; inserting at least one continuous injection conduit having a proximal end at the surface into at least one of the riser conduit; pumping fluids from the surface of into the subsea well through at the least one continuous conduit having a proximal end at the surface. In a specific embodiment of the invention different fluids are injected down at least two separate injection conduits inserted in at least two separate riser conduits through separate subsea blowout apparatus with the pumping from surface of the fluids. In certain cases, a lighter fluid is pumped down the a separate injection fluid conduit mixed at the discharge distal end of the multi-path apparatus with fluids coming from the well.
The embodiment above may also include attaching a drill bit and down hole assembly to the continuous conduit; deploying the continuous conduit through the subsea blow out preventer and the multi-passage apparatus; setting the drill assembly and weight of continuous conduit down in the well; rotating the drilling assembly and cutting earth; pumping a drilling fluid through the continuous conduit and the drilling assembly; returning the drilling fluid with earth cuttings to the surface through the multi-path assembly, blow out preventer, and riser conduit; mixing and returning the second fluid with the first fluid and earth cuttings up the riser conduit to surface. In a specific embodiment of the invention, the second fluid has a lower fluid density than the first fluid. The second fluid may also have a higher viscosity than the first fluid.
An additional embodiment of the invention is a multipath subsea apparatus comprising a subsea spool containing at least two proximal ends where the at least two proximal ends intersect forming a common exit pathway at or above the distal end of the subsea multipath apparatus. The apparatus may further comprise mechanical connector means on the proximal and distal ends adapted to form hydraulic seals with connected devices and apparatus. Additionally, hydraulic seals may be formed using elastomeric or metal to metal seals. The multipath subsea apparatus may also comprises at least one subsea closure device, such as a gate valve. A specific embodiment of the invention further comprises a blow out preventer that may be located on any one or more of the proximal ends of the apparatus. The apparatus may further comprise a riser conduit connector and release apparatus attached to at least one of the proximal ends of the subsea multipath apparatus.
Another embodiment of the invention is a multiple access subsea system comprising a subsea spool containing at least two proximal ends where the at least two proximal ends intersect forming a common exit pathway at or above the distal end of the subsea multipath apparatus. The system may further comprise mechanical connector means on the proximal and distal ends which form hydraulic seals with connected devices and apparatus. Additionally, hydraulic seals may be formed using elastomeric or metal to metal seals. The system may also comprises at least one subsea closure device, such as a gate valve. A specific embodiment of the invention further comprises a blow out preventer that may be located on any one or more of the proximal ends of the apparatus. The system may further comprise a riser conduit connector and release apparatus attached to at least one of the proximal ends of the subsea multipath apparatus. The system may also form a hydraulic seal from the surface down to the subsea well.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
As used herein, “a” or “an” means one or more. Unless otherwise indicated, the singular contains the plural and the plural contains the singular. Where the disclosure refers to “perforations” it should be understood to mean “one or more perforations”.
As used herein, “surface” refers to locations at or above the surface of body of waters surface. The body of water can be a sea, ocean, lake, or ice body.
As used herein, “proximal” refers to the position closer to the surface of the sea.
As used herein, “distal” refers to a position that is in the opposite direction of the proximal position.
As used herein, “spool” refers to a structural body of a well having connection positions on the distal end and the proximal end and comprising at least one passage through said body.
As used herein, a “Blow Out Preventer” stack or BOP refers to devices used to control the fluid flow from wells. BOP systems encompasses many configurations and arrangements of closure devices including but not limited to annular bags, shear rams, pipe rams, and various hydraulic and electrical devices used to actuate and control the BOP stack.
As used herein, a “back pressure valve” refers to a device that allows fluid to flow in only one direction. This device when placed in a well casing is sometimes known in the oil and gas grouting and cementing business as a float collar or float shore, wherein said back pressure valve is inserted into a piece of casing having, normally fixed with a cured cement grout, having threads on either end of said casing and the inserted into and near the bottom of a well casing string as it is deployed in a well such that fluids can be pumed down the casing but fluids from outside the casing cannot flow into the casing.
As used herein “connected” includes physical, whether direct or indirect, permanently affixed or adjustably mounted connections. Thus, unless specified, “connected” is intended to embrace any operationally functional connection.
Referring to
A BOP may have many combinations of various closure apparatus designed to stop fluid flow from wells such as annular bags, pipe rams, and shear rams and in subsea applications they are deployed with various connectors, actuators, and controllers. Due to the difficulty of the environment of subsea wells and the great risk to the environment the current practices is to deploy a plurality of these closure devices subsea such that they form a stack formed by connecting one upon the other for redundancy. The current industry teaches toward stacking these closure devices in combinations, one on top of the other, in various sequences.
This failure of the BOP 101 shown in
The failure of the riser 102 depicted in
Referring to
Referring
Referring to
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, subsea deployment means, subsea control systems, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skilled in the art will readily appreciate from the disclosure of the present invention, processes, devices, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, devices, manufacture, compositions of matter, means, methods, or steps.
This application is a continuation of U.S. patent application Ser. No. 13/118,064, filed on May 27, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/349,620, filed on May 28, 2010, both of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61349620 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13118064 | May 2011 | US |
Child | 14328153 | US |