The present invention is directed toward a thermal concentrator inputting low grade thermal energy and outputting useful energy. More specifically converting heat from solar power into electricity, mechanical work and the like.
Three major technologies are currently being used for concentrating solar power generation to produce useful work; the parabolic trough, the power tower, and the sterling dish. The costs of generating electricity from these power sources are high. All three require a high working temperature, which creates problems with maintenance and seal failure rates. With these technologies, the solar radiation is concentrated at the time of collection requiring a high working temperature at the point of collection. This higher temperature generally leads to higher thermal losses, which typically forces the use of more expensive and complicated collectors and thermal storage units. This constraint leads to higher costs for construction of these devices.
The present system utilizes a dual loop U, partial square, or other suitably shaped heat actuated liquid piston heat pump, where one vertical leg contains part of a heat engine loop and the other vertical leg contains part of a heat pump loop. Persons of ordinary skill in the art will appreciate that the heat pump described herein is sometimes referred to as a compressor. The top of the vertical legs contain steam. The bottom of each vertical leg and the horizontal portion contains liquid water, on top of which is typically a floating piston usually constructed from a solid material, such as, for example, aluminum or steel.
The system operates at or near resonance. The resonance occurs between the kinetic energy of the mass of the liquid water and pistons, the potential energy due to gravity or hydraulic head, and the potential energy stored in the steam at the top of each vertical leg. Among other advantages, resonance allows the steam to enter the heat engine with little or no throttling.
The heat engine section operates using a thermodynamic cycle and draws the heat energy from a natural or waste heat source, typically from solar energy. Fluid, typically water, in the liquid or steam form, is transferred between the solar collectors and the heat engine as part of the heat engine loop.
The heat pump loop contains the heat pump described above and a steam turbine, which is connected to and drives an electrical generator. Water, in the form of superheated steam, is transferred from the output of the heat pump, to the inlet of the steam turbine, through the steam turbine, and from the steam turbine exhaust back to the inlet of the heat pump.
Steam and liquid water reservoirs are typically used between the solar collectors and the heat engine. Steam reservoirs are also typically used between the heat pump and steam turbine to even the flow of steam from the reciprocating heat actuated liquid piston heat pump.
Both of the loops may operate at or below atmospheric pressure. This feature, in combination with placement of the heat actuated liquid piston heat pump below grade, may allow the use of low cost materials, such as concrete.
While the equipment and method described herein to generate electricity are described in terms of solar power, it could be used with other sources of heat. For example, the system could be used with low grade heat from a geothermal source. It is preferred that the heat is available at a temperature of at least 60 C. higher than the ambient temperature. The method can be used with a temperature differential lower than this, but possibly at a reduced efficiency.
This embodiment utilizes two thermal storage systems (hot and cold) 250, 450, but alternative systems which use multiple thermal storage systems or no thermal storage systems can also be used. This embodiment uses solar as the heat source. Because solar energy is intermittent, the system may work more efficiently if thermal storage is utilized.
If a continuous heat source, such as geothermal or industrial waste heat is utilized, the thermal storage system 250 may be eliminated.
The fluid 15 from hot thermal storage device 250 is transferred to concentrator 700 and the cold fluid 20 from cold thermal storage device 450 is used to transfer heat from the concentrator 700, which cools the concentrator 700. The cold fluid 20 from the concentrator 700 may also be transferred to the cold thermal storage device 450.
The concentrator 700 heats a fluid 714 to a higher temperature than that of the fluid 15 stored in the hot thermal storage device 250. This high temperature fluid 714 is then transferred into an electric converter 600, which in one embodiment is a steam turbine, similar to the type used in a conventional steam power plant. The fluid 714 rejected from fluid to electric converter 600 is returned to the concentrator 700 where both the temperature and pressure of the fluid 714 are increased. The concentrator 700 is driven or actuated by the heat from hot thermal storage device 250. In an exemplary embodiment, the fluid 15 stored in the hot thermal storage device 250, the cold thermal storage device 450 and the fluid 716 used in concentrator 700 and in the electric converter 600 are all water in either liquid or steam form.
In one embodiment of the disclosed system 10, the heat concentration is done near the time of use, rather than at the time of collection. It will be understood by one of ordinary skill in the art that many different variations and configurations of elements shown in
In one example, it will be understood that the system 10 can operate at any time, such as, for example, during periods of high electricity demand rather than continuously during the 24 hour period, in which case fewer solar collectors and heat storage may be required for the same peak output level.
The pumping means 200 shown in
The thermal storage device 250 may be any type of reservoir, such as, for example, a reservoir capable of holding water at approximately 100 C and an atmospheric pressure of 0.1 MPa. The thermal storage device 250 may minimize the heat loss from the reservoir and substantially prevent entry of air into the reservoir. In this embodiment, the thermal storage device 250 is constructed from concrete 251 and an insulator 252 as shown in
The cold thermal storage device 450 can be a similar type of tank as the hot thermal storage device 250. In this example, the cold thermal storage device 450 may store water in the liquid and vapor form at approximately 37 C. and 0.0062 MPa.
As shown in
The upper portions of the vertical legs 709, 713 may be made from a different material than the lower part of the U tube if desired. For example, the top 10 meters may be constructed of steel.
The lower portion of the concentrator 700 is filled with fluid, such as, water, and includes a liquid piston 716. A heat engine floating piston 704 floats on the top of the liquid piston 716 in one vertical leg, forming a heat engine expansion chamber 708 between the heat engine floating piston 704 and the concentrator wall 702. A heat pump floating piston 706 floats on top of the liquid piston 716 in the other vertical leg, forming a heat pump expansion chamber 712 between the heat pump floating piston 706 and concentrator wall 702. The heat engine expansion chamber 708 may be filled with heat engine fluid 710. The heat pump expansion chamber 712 may be filled with a heat pump fluid 714.
The construction of the heat engine floating piston 704 and the heat pump floating piston 706 may be constructed such as to minimize the thermal mass exposed to the heat engine expansion chamber wall 709.
As shown in
The piston top assembly 759 is connected to a piston structure 768, which, in this example, is approximately 10 meters tall. A plurality of piston wall units 770 are fastened to a circumference of the piston structure 768, providing a thermal barrier between the heat engine expansion chamber wall 709 and the part of liquid piston 716 that is inside the heat engine floating piston 704.
An example of the piston wall unit 770 is shown in more detail in
The heat engine floating piston 704 may provide a small gap, such as, for example, approximately 2 mm, between the outer diameter of heat engine floating piston 704 and the inner diameter of concentrator wall 702. This gap may influence the efficiency of the system, as discussed below.
As shown in
A piping system 735 and a pumping device 734 are connected to the bottom of heat exchanger chamber 726. The fluid 710 is pumped from the heat exchanger chamber 726, reheated in the heating device 100, and then returned to the hot thermal storage device 250.
Persons of ordinary skill in the art will appreciate that the aforementioned example apparatus and processes below may be controlled by a processor, a controller, and/or similar computing device(s). Various processes may be executed by machine readable instructions and/or programs. The programs may be embodied in software stored on a tangible medium such as, for example, a flash memory, a CD-ROM, a floppy disk, a hard drive, a digital versatile disk (DVD), or a memory associated with the computer. Persons of ordinary skill in the art will readily appreciate that the entire program and/or parts thereof could alternatively be embodied in firmware or dedicated hardware in a well known manner (e.g., it may be implemented by an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable logic device (FPLD), programmable logic controller (PLC), personal computer (PC), discrete logic, etc.). Also, some or all of the machine readable instructions represented by flowcharts, discussed below, may be implemented manually. Further, persons of ordinary skill in the art will readily appreciate that many other methods of implementing the example machine readable instructions described below may alternatively be used. For example, the order of execution of various function blocks may be changed, and/or some of the blocks described may be changed, substituted, eliminated, or combined.
In operation, one embodiment of the system disclosed in this patent converts solar energy into electricity. Throughout this disclosure, energy and power levels and calculations generally refer to average levels over a 24-hour period. This differs from the typical practice of describing solar energy equipment in terms of peak power.
It will be appreciated that any number of hot thermal storage devices 250 may be utilized, including, for example, a pair of hot thermal storage devices as shown in
The cooling system may operate in an analogous manner and, alternatively, in this example, the system 10 utilizes the heating device 100 at night as the cooling device 300. This eliminates the need for the additional cost of a separate cooling device 300 and provides the additional advantage of preventing freezing of the cooling device 300 when ambient temperature is below 273 K.
A flowchart representative of an example process to implement the system of
An example thermodynamic cycle for the heat engine loop operates in the following manner, which is substantially different than a typical Carnot or Rankine cycle. Referring to
After the liquid piston 716 has moved down to expand the heat engine expansion chamber 708 (block 2810), inlet valve 718 is closed (block 2905), starting Process 2, Isentropic Expansion as shown in
Controlling a temperature drop of both the steam and liquid phases at the same rate may be accomplished using several different methods. In this example, the concentrator wall 702 and the heat engine floating piston 704 are maintained at a temperature above the saturation point, as described in the analysis of thermal losses section, so that the liquid water will have no surface on which to condense and will basically form a fog or liquid suspended in vapor.
When the heat engine floating piston 704 reaches the bottom of the stroke, the heat engine exhaust valve 722 is opened see
As the heat engine floating piston 704 begins its upward stroke, Process 3, Isothermal Compression, starts. At the beginning of Process 3, the heat engine fluid 710 is a mixture of liquid and vapor at approximately 310.degree. K and 0.0062 MPa and the heat engine expansion chamber 708 is at a volume of approximately 1876 m.sup.3. The heat engine expansion chamber 708 begins to decrease in volume, compressing the heat engine fluid 710 and the heat exchanger vapor 728. As the steam begins to compress, the temperature and the pressure rise incrementally and the heat exchanger vapor 728 will begin to condense on the heat exchanger 724. Sufficient heat is transferred out of the system through the heat exchanger 724 so that this process proceeds isothermally. In the ideal cycle, a quantity of water is transferred from the heat exchanger chamber 726 so that the process also proceeds isentropically on a specific entropy basis. The total entropy decreases because heat and mass is transferred out of the system in this process. The liquid piston supplies work to the heat engine during Process 3.
After the proper amount of heat and mass have been transferred during Process 3, the exhaust valve 722 is closed, isolating the heat engine expansion chamber 708 from the heat exchanger chamber 726. In the ideal cycle, condensation and heat transfer in the heat exchanger chamber 726 would stop at this point, but in the actual cycle condensation and heat transfer can be allowed to proceed while the exhaust valve 722 is closed. Closing the exhaust valve 722 causes the start of Process 4, Isentropic Compression. At the beginning of Process 4, the heat engine fluid 710 includes of a mixture of liquid and vapor at a temperature of approximately 310.degree. K and a pressure of approximately 0.0062 MPa and the heat engine expansion chamber 708 has a volume of approximately 1443 m.sup.3. As the heat engine floating piston 704 continues upward, compression of the heat engine expansion chamber 708 is continued. The heat engine expansion chamber 708 contains a mixture of liquid and steam at this point in the cycle. During Process 4, the liquid evaporates and the heat engine fluid 710 becomes a saturated vapor. This is different from a typical compression process in which the mixture of liquid and vapor is compressed with the resultant fluid including saturated liquid. This difference is explained in subsequent paragraphs.
In the actual process, the liquid water of Process 4 may need to be added back into the heat engine expansion chamber 708 from the heat exchanger chamber 726 to reach the proper conditions at the beginning of Process 1. This can be done using the return pump 730 shown in
It is illustrative to compare the ideal heat engine cycle described in the prior sections to a typical ideal Carnot cycle. A Carnot cycle is a cycle that undergoes two isothermal reversible processes and two adiabatic reversible processes. By this definition, the ideal heat pump cycle disclosed herein is a form of a Carnot cycle because it has two isothermal reversible processes and two adiabatic reversible processes as can be easily seen in
A typical Carnot cycle includes an isentropic compression process during which wet steam, which consists of steam and liquid, is compressed to saturated liquid. The heat engine cycle of this embodiment includes a isentropic compression process during which wet steam, which consists of steam and liquid, is compressed until the liquid evaporates to leave only saturated vapor.
The next process in both the Carnot cycle and the present heat engine cycle is a process of adding energy to the cycle. In the Carnot cycle the energy added, typically in the form of heat, isothermally evaporates the liquid until only saturated vapor remains. In the present cycle, only saturated vapor is present at the beginning of the energy addition process. In the present cycle, energy is added by isothermally adding mass, of saturated vapor, to the system.
A typical Carnot cycle also includes an isentropic expansion process that starts with saturated vapor and condenses to form a wet steam combination of vapor and liquid. The heat engine cycle of this embodiment also includes an isentropic expansion process during which saturated vapor is condensed to form a mixture of vapor and liquid.
The Carnot cycle's final process removes heat isothermally from the wet steam to obtain the same ratio of vapor and liquid as at the beginning of the cycle. The final process of the present invention isothermally removes heat and liquid to obtain the same ratio of vapor and liquid as at the beginning of the cycle.
The most distinct and unique difference between the two cycles occurs in the isentropic compression process where the typical Carnot cycle starts with wet steam and ends with saturated liquid, whereas the present cycle starts with wet steam and ends with saturated vapor. The disclosed process is relatively unintuitive because condensation from a vapor to a liquid is commonly associated with a compression process.
In the present cycle, the compression process must result in saturated vapor to maintain constant entropy as required by the isentropic nature of the process. In the present embodiment, only approximately 12.5% of the wet steam mixture is liquid at the beginning of the compression process. At the beginning of the process, the specific entropy of the liquid is approximately 0.53 kJ/kg-K and the specific entropy of the vapor is approximately 8.32 kJ/kg-K. At the end of the compression process, the specific entropy of the liquid is approximately 1.31 kJ/kg-K and the specific entropy of the vapor is approximately 7.36 kJ/kg-K. Quantitatively, an algebraic calculation equating total entropy at the beginning and end of the compression process with a single unknown of the amount of mass that changes between phases provides the all vapor result. Qualitatively, it can be seen that the relatively low percentage of liquid in the system at the beginning of the process drives the process to produce vapor. Because the majority of the system initially consists of high entropy vapor, converting all of the vapor to liquid at approximately 16% of the specific entropy cannot be a constant entropy process. However, if the process produces all vapor at approximately 88% of the initial vapor specific entropy, constant entropy can be maintained by converting the liquid to vapor, with the approximately 13.9 times increase in the liquid to vapor entropy balancing the approximately 12% drop in the specific entropy of the initial vapor mass.
In a typical Carnot cycle that has a high initial percentage of liquid, the process is reversed. In this case, using the same starting and ending entropy values, the specific entropy of the majority of the mass, which is liquid, increases by a factor of approximately 2.5, if the final result is liquid. The mass of vapor that condenses drops in entropy by a factor of approximately 6.4 to balance out the increase in entropy of the liquid. In the typical Carnot case, where the initial state is primarily liquid, the process can not end in vapor and maintain constant entropy because the majority of the mass would be increasing in entropy by a factor of approximately 13.9. The small drop in entropy of the initial vapor cannot offset such a large increase.
Another unique characteristic of the ideal cycle disclosed here is that the average specific entropy of the mass of both liquid and vapor during the heat engine cycle is constant throughout the cycle. The average specific entropy is always equal to the specific entropy of the vapor added to the cycle during the energy addition process. This is possible because low specific entropy liquid is removed from the system during the heat removal process. As heat is removed, high entropy vapor condenses to low entropy liquid, which has the effect of lowering the average specific entropy. However, at the same time, low entropy liquid mass is removed from the system, which raises the average specific entropy of the remaining mass, and offsets the previous effect.
It is not necessary to evaporate all of the liquid water at the end of Process 4. Some liquid water may remain in the heat engine expansion chamber 708 at this point without substantially changing the cycle.
An additional exemplary thermodynamic cycle for the heat engine loop of this embodiment operates in the following manner, which is substantially different than a typical Carnot or Rankine cycle, but is similar to a typical nineteenth century steam engine cycle. Refer to
In view of
After the liquid piston 716 has moved down to expand the heat engine expansion chamber 708 from approximately 0.046 m.sup.3 to approximately 0.717 m.sup.3 (block 2810), the inlet valve 718 is closed (block 2905), starting Process 2, Isentropic Expansion (block 2715), as shown in
Controlling the temperature of both the steam and the liquid phase to drop at the same rate may be accomplished using several different methods. In this example, the concentrator wall 802 and the heat engine floating piston 804 are maintained at a temperature above the saturation point, as described in the analysis of thermal losses section, so the liquid water will have no surface on which to condense and will basically form a fog or liquid suspended in vapor (block 2910). At the end of Process 2, the heat engine fluid 710 is at approximately 340.degree. K and approximately 0.027 MPa and the volume of the heat engine expansion chamber 708 is approximately 1.71 m.sup.3.
When the heat engine floating piston 804 reaches the bottom of the stroke (block 2915), Process 3 begins (shown in
As the heat engine floating piston 804 begins its upward stroke (block 3010) as shown in
After the proper amount of heat and mass have been transferred during Process 4, the exhaust valve 810 is closed (block 3110), isolating the heat engine expansion chamber 708 from the condensation chamber 812. Closing the exhaust valve 810 causes the start of Process 5, Isentropic Compression, as shown in
It can be noted that all four heat engine processes occur on the saturation line. The processes that are isentropic are only isentropic when both the liquid and vapor phases are considered. The entropy of each individual phase is not constant.
Heat Pump Cycle
A Carnot cycle is a cycle that undergoes two isothermal reversible processes and two adiabatic reversible processes, the internal heat pump cycle of heat pump fluid 714 inside of the heat pump expansion chamber 712 consists of a Carnot cycle.
This description of operation is illustrated in
Process 1, as shown in
When the heat pump expansion chamber 712 reaches a volume of approximately 0.38 m.sup.3 (block 3415), the heat pump pressure valve 752 is opened (block 3420) connecting the heat pump expansion chamber 712 to the pressure chamber 550 as shown in
At the top of stroke, the heat pump ambient pressure valve 752 is closed (block 3605) and Process 3 begins, as shown in
This starts Process 4, as shown in
The heat pump fluid 714 flows from the heat pump expansion chamber 712 to the pressure chamber 550 to the fluid to electric converter 600 where it undergoes an isentropic expansion process in the fluid to electric converter 600. It enters fluid to the electric converter 600 at a temperature of approximately 612.degree. K and approximately 0.15 MPa and exits at a temperature of approximately 376.degree. K and approximately 0.0193 MPa, which are the same conditions as those of the pressure chamber 550 and the vacuum chamber 560.
It will be easily understood that all of the thermodynamics conditions described above are simply one set of many that may be selected without changing the nature of the thermodynamic cycles.
Operation of Liquid Piston
The mass of the liquid piston 716 and the floating pistons may play a key role in the operation of the system 10. For example, the total mass affects the resonant frequency of the system and, therefore, may have a major influence on the cycle time of the system 10. Streeter's Fluid Mechanics shows the physical response of a liquid filled U tube in section 12.1, “Oscillation of Liquid in a U tube.” The physics of the present system 10 are closely related to that described by Streeter, but differ because the present example system 10 uses a closed U tube and applies a driving force. The system 10 is essentially in resonance between the kinetic energy of the mass of the liquid piston 716, the heat engine floating piston 704 and the heat pump floating piston 706, the gravitational potential energy of the vertical legs of liquid piston 716, the heat engine floating piston 704 and the heat pump floating piston 706 and the potential energy stored in the heat engine fluid 710 and the heat pump fluid 714. The inlet valve 718 is opened and closed at the proper times to apply and remove the force of the heat engine in phase with the natural frequency of the system 10.
A throttling valve may not be required on the inlet valve 718, which removes any associated losses, because of the nature of the system 10. An energy balance is achieved between energy put into the system 10 in the form of work provided by the heat engine loop and the energy taken out in the form of work done in the heat pump loop as well as losses.
The theoretical efficiency of the heat actuated dual loop heat pump with the thermodynamic conditions of this exemplary embodiment is approximately 15.3% versus a Carnot efficiency of approximately 16.9%. The additional losses are believed to be related to the manner in which the mass that enters and exits the cycle compared to a Carnot cycle, which uses heat flow into and out of the system.
This efficiency calculation is only for the heat actuated dual loop heat pump and does not include heat losses in the heat pump, solar collection losses, or losses in the steam turbine 600. The steam turbine 600 may run at an efficiency of approximately 83%. The high efficiency of the steam turbine 600 is common because the closed heat pump to steam turbine cycle does not involve any rejection of heat.
Analysis of Thermal Losses During Heat Engine and Heat Pump Cycle
Condensation of the heat engine fluid 710 onto the heat engine expansion chamber wall 709 of the heat engine expansion chamber 708 may cause a decrease in the efficiency of the heat engine 790. Condensation of the heat pump fluid 714 onto the heat pump expansion chamber wall 713 of the heat pump expansion chamber 712 may cause a decrease in the efficiency of the heat pump 792. Boiling of the liquid piston 716 from the heat pump expansion chamber wall 713 of the heat pump expansion chamber 712 into the heat pump fluid 714 may reduce the quality of the heat pump fluid 714. Boiling of the liquid piston 716 into the heat engine expansion chamber 708 during the compression stage typically has a lower impact, because the heat engine fluid 710 is saturated, and boiling occurs during this process as a normal part of the cycle.
There may also be heat transfer losses through the heat engine expansion chamber wall 709 and the heat pump expansion chamber wall 713. However, as long as condensation or boiling doesn't occur, these losses are typically not significant. Boiling typically does not occur above the top of the liquid piston at the upper end of stroke, because there is no liquid present to boil. Condensation above this point can be prevented by maintaining the temperature of the heat engine expansion chamber wall 709 and the heat pump expansion chamber wall 713 at or above the saturation temperature for the highest pressure point in the cycle. This is also applicable to the top face of the heat engine floating piston 704 and the heat pump floating piston 706. By using an adequate amount of insulation behind the wall and below the top of the piston, heat transfer losses may be lowered. In an exemplary embodiment, described herein, the wall would be maintained at a temperature of at least approximately 373.degree. K.
Losses where the liquid piston intermittently contacts the heat engine expansion chamber wall 709 and the heat pump expansion chamber wall 713 during the oscillating stroke are additional potential losses in the heat actuated dual loop liquid piston heat pump system. There are several methods to reduce the losses, including pumping liquid into and out of the system 10 and various methods involving insulation and low thermal mass. One method is described in more detail in the following paragraphs.
The losses in the system 10 may be lowered by eliminating or reducing condensation and boiling from the heat engine expansion chamber wall 709 and the heat pump expansion chamber wall 713 during the cycle. The discussion will initially refer to the heat engine expansion chamber wall 709, with differences that apply only to the heat pump expansion chamber wall 713 being discussed later. At any point in the cycle, vapor in the heat engine expansion chamber 708 may not condense onto a surface if the temperature of the surface is above the saturation temperature. At any point in the cycle, the liquid in the liquid piston 716 will not boil if the temperature of the liquid and the adjacent section of heat engine expansion chamber wall 709 are below the saturation temperature. Therefore, this method may reduce losses by maintaining the heat engine expansion chamber wall 709 of the heat engine expansion chamber 708 at an approximate temperature gradient as shown in
The thermal mass of the wall of the heat engine expansion chamber 708 will normally be much higher than the thermal mass of the combination of that part of the liquid piston 716 which is located between the heat engine expansion chamber 708 and the heat engine floating piston 704 and the outer wall of heat engine floating piston 704. It may be advantageous to reduce the mass of the liquid piston 716 and the heat engine floating piston 704 in the described area. This can be accomplished in any suitable manner, including, for example, by manufacturing the heat engine expansion chamber 708 and the heat engine floating piston 704 to dimensions and tolerances which provide a small gap between the heat engine expansion chamber 708 and the heat engine floating piston 704 and provide a thin wall on the heat engine floating piston 704. A gap of around 2 mm is used for this example. The wall of the heat engine floating piston 704 can be manufactured as shown in
When the liquid piston 716 is at the top stroke, the liquid at the top of the liquid piston 716 between the heat engine floating piston 704 and the heat engine expansion chamber wall 709 may be at a slightly lower temperature than the adjacent section of the heat engine expansion chamber wall 709. Heat will flow from the heat engine expansion chamber wall 709 into the adjacent element of the liquid piston 716. As the liquid piston 716 begins to drop, this same element will now be adjacent to a lower and colder section of the heat engine expansion chamber wall 709. Heat will flow from the element of liquid piston 716 into the adjacent element of the heat engine expansion chamber wall 709. Due to the differences in thermal mass, this typically will cool the element of the liquid piston 716 and slightly raise the temperature of the element of the heat engine expansion chamber wall 709. This process may continue as the liquid piston 716 continues to drop, until the same element of the liquid piston 716 is completely cooled by the time that it reaches the bottom of the stroke.
The process is reversed on the upward stroke of the liquid piston 716. As the element of the liquid piston 716 begins to rise, it will be adjacent to a warmer element of the heat engine expansion chamber wall 709. Heat will typically flow from the adjacent element of the heat engine expansion chamber wall 709 into the element of the liquid piston 716, raising the temperature of the liquid piston 716. This will continue as the liquid piston 716 rises, with the result that the element of the liquid piston 716 will be nearly at the maximum temperature of the heat engine expansion chamber wall 709 when it reaches the top stroke.
This process may substantially increase the efficiency of the system. If heat was added to the element of the liquid piston 716 at the top of stroke and rejected at the bottom of stroke, approximately an additional 5% heat would need to be added to the system during each stroke, even with a gap between the heat engine floating piston 704 and the heat engine expansion chamber wall 709 that was one tenth the of the size described herein.
With the process described herein, only a very small amount of heat is added to the system during each stroke because almost all of the heat required to heat the portion of liquid piston 716 in the gap between the heat engine floating piston 704 and the heat engine expansion chamber wall 709 is recycled between the element of liquid piston 716 and the heat engine expansion chamber wall 709 during the cycle.
A similar process occurs for the outer wall of the heat engine floating piston 704, with the outer wall transferring heat back and forth through the liquid piston 716 to the heat engine expansion chamber wall 709 during each cycle.
In order to accomplish work with the heat engine, the saturation temperature and pressure is typically lower for a given volume during the compression stroke when compared to the expansion stroke. If the height of the top of the liquid piston 716 in the gap between the heat engine floating piston 704 and the heat engine expansion chamber wall 709 relative to the top surface of the heat engine expansion chamber wall 709 is constant throughout the entire cycle, boiling will occur in the compression stroke or condensation will occur in the expansion stroke on the heat engine expansion chamber wall 709. This has the effect of lowering the efficiency of the system.
As a result, the system 10 may be, alternatively, operated at a higher efficiency if the height of the top of liquid piston 716 is varied relative to the height of the heat engine floating piston 704 during the cycle. One method of accomplishing this is shown in
The height of the liquid between the heat engine floating piston 704 and the heat engine expansion chamber wall 709 can be sensed using a variety of sensors, for example, a pressure transducer. The height of the liquid can then be controlled by providing the necessary gap (g) between the partial sealing device 738 and the heat engine floating piston 704 at each point in the cycle. This allows the top of the liquid to be at the correct point on the heat engine expansion chamber wall 709 to maintain the temperature of the top of the liquid at the saturation temperature for both the expansion and the compression stroke.
The situation is similar, but reversed, on the heat pump side of the system. Again, a thermal gradient is maintained on the heat pump expansion chamber wall 713, corresponding to the saturation temperature for a corresponding volume of the heat pump expansion chamber 712. In this case, the top of liquid piston 716 relative to the top of heat pump floating piston 706 is maintained at a higher level during the compression stroke and a lower level during the expansion stroke.
In addition, the heat pump 792 uses superheated steam rather than saturated steam, so the temperature of the heat pump fluid 714 is above the saturation temperature. However, as long as unwanted condensation and evaporation are avoided, the heat transfer coefficients are low enough that the heat losses are minimal.
It will be appreciated by persons of ordinary skill in the art that there are various methods to minimize heat losses of the apparatus disclosed herein, while still utilizing the concept of a heat actuated dual loop liquid piston heat pump.
It should be noted that the desired temperature gradient on the heat pump expansion chamber wall 713 may be different than that on the heat engine expansion chamber wall 709.
An alternate embodiment of the concentrator 700 utilizing different operating parameters for the heat engine and heat pump loops is described below. In this example, the heat pump loop operates above atmospheric pressure during part of the cycle.
The concentrator 700 in this embodiment includes a heat actuated liquid piston heat pump. As shown in
The lower portion of the internal cavity is filled with water in the liquid form, which includes the liquid piston 716. In this embodiment, the liquid piston 716 has a volume of approximately 9 cubic meters and a mass of approximately 9,000 kg. The heat engine floating piston 804 floats on the top of the liquid piston 716 in one vertical leg, forming the heat engine expansion chamber 708 between the heat engine floating piston 804 and the concentrator wall 802. The heat pump floating piston 706 floats on top of the liquid piston 716 in the other vertical leg, forming the heat pump expansion chamber 712 between the heat pump floating piston 706 and the concentrator wall 802. The heat engine expansion chamber 708 is filled with the heat engine fluid 710. The heat pump expansion chamber 712 is filled with the heat pump fluid 714.
The heat engine floating piston 804 and the heat pump floating piston 706 are constructed to reduce the thermal mass exposed to the heat engine expansion chamber wall 709.
As shown in
An exhaust valve 810 may connect the heat engine expansion chamber 708 to a condensation chamber 812. The exhaust valve 810 can be controlled to turn on and off at the appropriate points in the cycle. A spray system 824 may be located in the condensation chamber 812. When the exhaust valve 810 is opened, liquid from liquid piston 716 is sprayed into the condensation chamber 812 to cause condensation of the heat engine fluid 710. Heat is removed from the liquid piston 716 either by using a conventional heat exchanger or by circulating fluid through the liquid piston 716 and cooling the fluid, for example, at night using cooling device 300.
The present system 10 discloses a unique combination of a dual loop heat actuated liquid piston heat pump, where the heat can be supplied by a natural source such as solar energy, and where the hot vapor, typically steam, output from the heat pump loop is fed into a steam turbine-generator combination and the lower pressure vapor from the turbine exhaust is fed back into the heat pump.
The present system 10 also discloses a unique natural heat source heat actuated liquid piston heat pump where both the heat engine and the heat pump operate at near atmospheric pressures or below, allowing the apparatus to be constructed below grade or underground using low cost materials, such as concrete which have a high compressive strength, but much lower tensile strength.
The present system also discloses a unique thermodynamic cycle for the heat actuated liquid piston heat pump. The unique cycle, which pertains to the heat engine end of the apparatus, uses a combination of steam and liquid water, and cools both the steam and liquid water during the expansion phase of the cycle.
The thermal and pressure concentration is done at the time of use, not at the time of collection. As a result, the hot thermal storage is at atmospheric pressure or below and the temperature of the thermal storage is much lower than conventional solar concentration systems. This also allows the thermal storage chambers to be constructed using low cost, high compressive strength materials such as concrete. It also allows the use of water as the thermal storage medium.
In one embodiment, the only liquid in the system is water, which is non-hazardous and non-polluting. The solid materials used are also non-hazardous and non-polluting.
Because the concentration is done at the time of use rather than the time of collection, the solar energy can be collected using low cost, low temperature flat plate collectors. These collectors can be manufactured from a combination of low cost plastics, concrete, and standard insulation, all of which can be easily manufactured in large volumes at relatively low cost.
The computer system 3800 of the instant example includes a processor 3810. For example, the processor 3810 can be implemented by one or more Intel.®. microprocessors from the Pentium.®. family, the Itanium.®. family, the XScale.®. family, or the Centrino.®. family. Of course, other processors from other families are also appropriate.
The processor 3810 is in communication with a main memory including a volatile memory 3812 and a non-volatile memory 3814 via a bus 3816. The volatile memory 3812 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random Access Memory (RDRAM) and/or any other type of random access memory device. The non-volatile memory 3814 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 3812, 3814 is typically controlled by a memory controller (not shown) in a conventional manner.
The computer system 3800 also includes a conventional interface circuit 3818. The interface circuit 3818 may be implemented by any type of well known interface standard, such as an Ethernet interface, a universal serial bus (USB), and/or a third generation input/output (3GIO) interface.
One or more input devices 3820 are connected to the interface circuit 3818. The input device(s) 3820 permit a user to enter data and commands into the processor 3810. The input device(s) can be implemented by, for example, a keyboard, a mouse, a touch screen, a track-pad, a trackball, isopoint and/or a voice recognition system.
One or more output devices 3822 are also connected to the interface circuit 3818. The output devices 3822 can be implemented, for example, by display devices (e.g., a liquid crystal display, a cathode ray tube display (CRT), a printer and/or speakers). The interface circuit 3818, thus, typically includes a graphics driver card.
The interface circuit 3818 also includes a communication device such as a modem or network interface card to facilitate exchange of data with external computers via a network 3824 (e.g., an Ethernet connection, a digital subscriber line (DSL), a telephone line, coaxial cable, a cellular telephone system, etc.).
The computer system 3800 also includes one or more mass storage devices 3826 for storing software and data. Examples of such mass storage devices 3826 include floppy disk drives, hard drive disks, compact disk drives and digital versatile disk (DVD) drives.
As an alternative to implementing the methods and/or apparatus described herein in a system such as the device of
Although certain example methods, apparatus, and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
This application is a non-provisional application claiming priority from U.S. Provisional Application Ser. No. 60/664,480, filed Mar. 23, 2005, entitled “Utility Scale Method and Apparatus to Convert Low Temperature Thermal Energy to Electricity” and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
231007 | Catlin | Aug 1880 | A |
336224 | Fevort | Feb 1886 | A |
439110 | Chaffey | Oct 1890 | A |
599831 | Cohen | Mar 1898 | A |
636643 | Donnelly | Nov 1899 | A |
694885 | O'Connell | Mar 1902 | A |
719127 | Myers | Jan 1903 | A |
722968 | Gastal | Mar 1903 | A |
766017 | Carlier | Jul 1904 | A |
836624 | Berg | Nov 1906 | A |
848775 | Selakosky | Apr 1907 | A |
960729 | Sweeny | Jun 1910 | A |
1011226 | Miller | Dec 1911 | A |
1044583 | Selakosky | Nov 1912 | A |
1101000 | Willsie | Jun 1914 | A |
1130870 | Willsie | Mar 1915 | A |
1228444 | Humphrey | Jun 1917 | A |
1231971 | Trump | Jul 1917 | A |
1254693 | Humphrey | Jan 1918 | A |
1257004 | Humphrey | Feb 1918 | A |
1257607 | Humphrey | Feb 1918 | A |
1271712 | Humphrey et al. | Jul 1918 | A |
1406556 | Haven | Feb 1922 | A |
1678612 | Walker | Jul 1928 | A |
1766998 | Jacocks | Jun 1930 | A |
1785651 | Romagnoli | Dec 1930 | A |
1902961 | La Bour | Mar 1933 | A |
2384247 | Gay | Sep 1945 | A |
2547111 | Cawley et al. | Apr 1951 | A |
2549620 | Mitchell | Apr 1951 | A |
2862653 | Shapiro | Dec 1958 | A |
3602612 | Osdor | Aug 1971 | A |
3699779 | Schlichtig | Oct 1972 | A |
3788092 | Miller | Jan 1974 | A |
3823573 | Cassady | Jul 1974 | A |
3988901 | Shelton et al. | Nov 1976 | A |
3995429 | Peters | Dec 1976 | A |
4009587 | Robinson, Jr. et al. | Mar 1977 | A |
4030303 | Kraus et al. | Jun 1977 | A |
4084408 | von Platen | Apr 1978 | A |
4087974 | Vaughan | May 1978 | A |
4093868 | Manning | Jun 1978 | A |
4120160 | Davis | Oct 1978 | A |
4148195 | Gerstmann et al. | Apr 1979 | A |
4170116 | Williams | Oct 1979 | A |
4195481 | Gregory | Apr 1980 | A |
4209982 | Pitts | Jul 1980 | A |
4211207 | Molivadas | Jul 1980 | A |
4240260 | Gustafson | Dec 1980 | A |
4292809 | Björklund | Oct 1981 | A |
4347703 | Lukasavage | Sep 1982 | A |
4355517 | Ceperley | Oct 1982 | A |
4358929 | Molivadas | Nov 1982 | A |
4394814 | Wardman et al. | Jul 1983 | A |
4409961 | O'Hare | Oct 1983 | A |
4418547 | Clark, Jr. | Dec 1983 | A |
4438730 | Link et al. | Mar 1984 | A |
4446700 | Bronicki et al. | May 1984 | A |
4455826 | Knoos | Jun 1984 | A |
4462343 | Eckert | Jul 1984 | A |
4474025 | Alefeld | Oct 1984 | A |
4479354 | Cosby | Oct 1984 | A |
4493292 | Showalter | Jan 1985 | A |
4501122 | Cutler | Feb 1985 | A |
4514979 | Mohr | May 1985 | A |
4537036 | Clark, III | Aug 1985 | A |
4537037 | Clark, Jr. | Aug 1985 | A |
4565161 | Choquette | Jan 1986 | A |
4566860 | Cowan | Jan 1986 | A |
4612782 | Urch | Sep 1986 | A |
4617801 | Clark, Jr. | Oct 1986 | A |
4638642 | Tokuno | Jan 1987 | A |
4666376 | Solomon | May 1987 | A |
4693090 | Blackman | Sep 1987 | A |
4745749 | Benson | May 1988 | A |
4779427 | Rowley et al. | Oct 1988 | A |
4816121 | Keefer | Mar 1989 | A |
5073090 | Cassidy | Dec 1991 | A |
5129236 | Solomon | Jul 1992 | A |
5214921 | Cooley | Jun 1993 | A |
5275014 | Solomon | Jan 1994 | A |
5313874 | Lackstrom | May 1994 | A |
5412950 | Hu | May 1995 | A |
5775107 | Sparkman | Jul 1998 | A |
5924287 | Best | Jul 1999 | A |
5934076 | Coney | Aug 1999 | A |
5953917 | Murphy et al. | Sep 1999 | A |
6028375 | Kishi | Feb 2000 | A |
6374614 | Prueitt | Apr 2002 | B2 |
6412281 | Cover | Jul 2002 | B2 |
6474058 | Warren | Nov 2002 | B1 |
6484501 | Mieth et al. | Nov 2002 | B1 |
6739139 | Solomon | May 2004 | B1 |
6931852 | Yatsuzuka et al. | Aug 2005 | B2 |
7019412 | Ruggieri et al. | Mar 2006 | B2 |
7073331 | Oda et al. | Jul 2006 | B2 |
7185491 | Oda | Mar 2007 | B2 |
7246492 | Hendrix | Jul 2007 | B2 |
20020170292 | Awad | Nov 2002 | A1 |
20040168437 | Haq | Sep 2004 | A1 |
20050198959 | Schubert | Sep 2005 | A1 |
20050257525 | Komaki et al. | Nov 2005 | A1 |
20060048510 | White et al. | Mar 2006 | A1 |
20060112691 | Ou | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
PCTGB2006000412 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060213502 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60664480 | Mar 2005 | US |