1. Field of the Invention
This application pertains generally to keyboards for electronic devices and more specifically to keyboards for handheld electronic devices.
2. Description of Related Art
As electronic devices shrink, their keyboards are being designed to be correspondingly smaller in size. Smaller keyboards have keys physically closer to one another and have associated problems with tactile feel and key bounce. Conventional keyboards often use unitary keys and an associated actuator located under the keys. Smaller keyboards sometimes use other types of molded keys. If a small keyboard has molded keys spaced close together, the keys are often coupled to each other in some manner. Thus, pressing on one molded key pulls on its neighbors, adversely affecting the user's tactile feedback.
Moreover, use of smaller keys often leads to the use of smaller snap domes under the keys. These smaller domes have a lower snap ratio and therefore adversely affect the user's tactile experience.
What is needed is a keyboard that minimizes key bounce and improves the feel of the keyboard for the user. The actions of the keys should be decoupled from each other as much as possible. In addition, it is desirable that the keyboard be small but that the user still be able to type quickly and locate keys by touch.
The above needs are met by a keyboard for an electronic device that incorporates a flexible carrier for the keys. The flexible carrier has cutouts or slots that aid in decoupling the actions of one key from its neighbors. Moreover, in addition to or instead of cutouts or slots, the flexible carrier optionally has cutouts around its outer perimeter to eliminate a “rib” around the periphery of the keyboard.
In some embodiments, the keys are molded as part of the flexible carrier. In other embodiments, the keys are attached to or inserted in the flexible carrier during manufacture.
Various embodiments of the invention employ various key shapes to aid the user's tactile experience while typing.
a shows an embodiment in which a flexible carrier is divided into two pieces.
b shows an example of two keys decoupled from each other and in an un-pressed state.
c shows an example of two keys decoupled from each other, where one is in a pressed state and one is in an un-pressed state
a shows an embodiment in which a flexible carrier has a plurality of slots.
b shows details of a slot of
a shows an embodiment in which a flexible carrier has a plurality of cruciform-shaped openings.
b shows details of a cruciform-shaped opening of
a shows an embodiment in which a flexible carrier has a plurality of round openings.
b shows details of a round opening of
a show an embodiment in which a flexible carrier has cutouts around its outer perimeter.
b shows details of the perimeter cutouts of
a shows an example of a flexible carrier with a separate overlapping keycap thereon.
b shows a detail of a snap dome of
c shows an example of a flexible carrier with a separate non-overlapping keycap thereon.
d shows an example of a flexible carrier with a unitary key.
e shows an example of a flexible carrier with an actuator key inserted therethrough.
The figures depict embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
a shows an embodiment of the present invention in which a flexible carrier 100 has serpentine openings between its keys that divides the flexible carrier into two pieces 102, 104. In the described embodiments, the flexible carrier is a silicone rubber carrier, although other appropriate materials can be used. In general, the carrier preferably is formed of a material that is at least somewhat tactilely absorbing. Placing one or more openings in flexible carrier 100 increases freedom of movement of the keys associated with the carrier.
As an example of how openings in the flexible carrier serve to decouple key movement,
In
In
In
In
a shows an embodiment in which a flexible carrier 300 has a plurality of openings or slots. These slots are similar to the openings of
In
b shows details of a slot 302 of
a shows an embodiment in which a flexible carrier 400 has a plurality of cruciform-shaped openings 402. In other embodiments, only some of the cruciform openings shown in the figure are present. Even a reduced number of openings provides an advantage of decoupling key movement. The cruciform shape allows flexing of the carrier while retaining a large amount of carrier material, giving rise to a more rugged platform for the keys. Note that a bottom row of cruciform shapes have only a partial cruciform shape.
In
b shows details of a cruciform-shaped opening 402 of
a shows an embodiment in which a flexible carrier 500 has a plurality of approximately round openings 502. In other embodiments, only some of the openings shown in the figure are present. Even a reduced number of openings provides an advantage of decoupling key movement. The round shape allows flexing of the carrier while retaining a large amount of carrier material, giving rise to a more rugged platform for the keys.
While approximately round openings are shown in the figure, other embodiments use oval openings, or other openings having a closed curve, such as hexagons, squares, free-form openings, and so on. Any openings that remove some or all excess carrier material from the flexible carrier are within the scope of the present invention. In some embodiments, at least two openings have different shapes. For example, the flexible carder can be divided into wide rows and have round openings within the rows. As another example, the openings may be a combination of shapes, such as a combination of round and cruciform-shaped.
In
b shows details of a round opening 502 of
a show an embodiment in which a flexible carrier 600 has cutouts around its outer perimeter. These perimeter cutouts, also called edge detailing, improve the usability of the perimeter keys since it eliminates the “rib” that would otherwise surround the outer perimeter of the carrier. When present, a rib binds the keys somewhat and inhibits flexing of the carrier at its perimeter. Note that, in this embodiment, the keys themselves are not symmetrical. Thus, the perimeter cutouts tend also not to be symmetrical, although they could be symmetrical or non-symmetrical without departing from the spirit of the invention. As shown in the various embodiments above, a carrier having perimeter cutouts can also have additional openings therein.
b shows details of the perimeter cutouts 602 of
It will be understood that the principle of forming openings in a flexible carrier can also be applied for key shapes other than those discussed above. For example, certain communicators and personal digital assistants such as the palmOne Treo 600 use a five-way rocker switch 1003 (show, for example, in
a-13e show some examples of keys that can be used in connection with a flexible carrier in the present invention.
a shows an example of a flexible carrier 1302 with a separate overlapping keycap thereon. In one embodiment, the flexible carrier is formed of silicone rubber. In another embodiment, the flexible carrier is formed of polycarbonate, but the flexible carrier can be formed of any appropriate flexible material that enables key presses to be distinguished. Flexible carrier 1302 has a series of raised keys formed thereon. Use of a single carrier makes the feel of the keys less mushy since it provides a semi-rigid surface to support the keys when they are being pressed.
At least one of the keys is covered with a molded key top 1304. Here, the molded key top 1304 does not extend downward to contact the horizontal surface of the flexible carrier 1302, although it may do so in other embodiments. In one embodiment, the key top is formed of a thermoplastic amorphous resin. Other embodiments use crystalline thermoplastic resin or a thermoset resin. While key top 1304 is shown with 90 degree edges and a flat top surface, it will be understood that the key top shown is shown for the purpose of example, and other embodiment may use keys with other corner shapes, such as rounded or beveled, and may use concave or convex tops, examples of which are shown in
A portion of the flexible carrier 1306 contacts a snap dome 1308. When the key top is pressed, the flexible carrier flexes sufficiently to allow a portion 1306 of the flexible carrier to depress snap dome 1308. Snap dome 1308 connects with an appropriate location 1324 on printed circuit board 1310 to register a key press.
b shows a detail of a snap dome of
c shows an example of a flexible carrier 1332 with a separate non-overlapping keycap 1334 thereon. In this example, the key top 1334 does not extend over the sides of the key portion of the flexible carrier.
d shows an example of a flexible carrier 1342 with a unitary key. No separate key top material is added to a raised key area 1343.
e shows an example of a flexible carrier 1352 with an actuator key 1354 inserted therethrough. In this example, the flexible carrier is insertion molded during manufacture and separately formed actuators or keys are inserted therein. In the example, the actuator has a lip 1356 extending downward. Other embodiments do not include this lip.
The above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. The scope of the invention is to be limited only by the following claims. From the above discussion, many variations will be apparent to one skilled in the relevant art that would yet be encompassed by the spirit and scope of the invention.
This application is a Continuation of U.S. patent application Ser. No. 10/772,110 filed on Feb. 3, 2004, entitled “Method and Apparatus to Improve Tactile Feel for Keyboards and Button Assemblies,” which claims priority to U.S. Provisional Patent Application Ser. No. 60/455,178 filed on Mar. 16, 2003, entitled “Handheld PDA, Telephone, and Camera,” and also to U.S. Provisional Patent Application 60/479,392 filed on Jun. 17, 2003, entitled “Communicator.” Each of the above-referenced priority applications is hereby incorporated by reference in its respective entirety.
Number | Date | Country | |
---|---|---|---|
60455178 | Mar 2003 | US | |
60479392 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12101768 | Apr 2008 | US |
Child | 12814215 | US | |
Parent | 11561865 | Nov 2006 | US |
Child | 12101768 | US | |
Parent | 10772110 | Feb 2004 | US |
Child | 11561865 | US |