1. Field of the Invention
The invention relates generally to systems and methods for shutting in and isolating a production reservoir in association with the operation of pulling a failed artificial-lift pump from a well.
2. Description of the Related Art
During the later stages of production of hydrocarbons from a wellbore, downhole artificial lift pumps are often used to help assist hydrocarbons from the well. Unfortunately, these pumps occasionally suffer breakdowns or malfunction and tend to have a lifespan of only 2–3 years, in any case. When a pump become non-operational, the pump is pulled from the wellbore and either repaired or replaced with a new pump during a workover of the well. In order to remove the pump from the wellbore, it is necessary to close off, or isolate, the well below the pump against fluid flow. If the well remains live while the pump is being removed, pressurized fluid could be forced to the surface very quickly, resulting in a dangerous situation at the wellhead and potentially reducing the ability of the well to produce further.
One technique for isolating a well is to “kill” the well by introducing fluids, such as seawater, at the surface of the well to increase the hydrostatic pressure within the well to a point where it is higher than the formation pressure. The problem with this technique is that it is usually undesirable to introduce fluids into the formation below, as such may reduce the quality and quantity of production fluid that may be obtained from the well later.
A second method for isolating the well is to provide a shut-off valve below the pump that is being removed and then to close the shut-off valve as the pump is removed from the well. A conventional shut-off valve arrangement is a sliding sleeve valve having lateral fluid openings with an internal sleeve that is axially moveable between positions that open and close against fluid communication. A sliding sleeve cut-off valve of this type is described in, for example, U.S. Pat. No. 5,156,220 issued to Forehand et al. and U.S. Pat. No. 5,316,084 issued to Murray et al. Each of these patents are owned by the assignee of the present invention and are hereby incorporated by reference. A shut-off valve assembly of this type is also available commercially from the Baker Oil Tools division of Baker Hughes Incorporated as the Model “CMQ-22” Sliding Sleeve.
Typically, the valve element of the sliding sleeve valve is closed solely by the action of removing the pump. The pump has a stinger extending downwardly therefrom with a shifting collet on the lower end. The shifting collet is formed to engage the sleeve element of the sliding sleeve valve. When the pump is pulled from the wellbore, a tubing hanger pressure seal at the surface of the well is breached. The shifting collet is then pulled upwardly and moves the sleeve member of the sliding sleeve valve upwardly as well. When the repaired pump or replacement pump is to be disposed into the well, the stinger with shifting collet is secured to the lower end of the repaired/replaced pump. As the pump is run into the wellbore, the shifting collet once more engages the sleeve element of the sliding sleeve valve and, this time, moves the sleeve element axially downwardly within the valve to open the lateral fluid ports to fluid communication.
This procedure for opening and closing the shut-off valve, while simple, presents practical problems. Because the well is live, there is typically a significant pressure differential across the shut-off valve. The inventors have recognized that, if the valve is not positively closed at the time the pump is removed, pressure may escape from the well below the pump. With the procedure where the sleeve element is closed by pulling the pump from the well, the valve is not fully closed until the pump is raised some distance within the wellbore, thereby permitting such an escape of pressure.
The present invention addresses the problems of the prior art.
The invention provides an improved system and method for actuating the shut-off valve wherein the shut-off valve element can be positively closed before the pump is removed from the well. In described embodiments, an actuator component is operably associated with the shut-off valve to provide for selective isolation of the well by positive closing of the valve prior to removal of the pump and opening of the valve after replacement of a pump within the wellbore. In one preferred embodiment, the hydraulic actuator component has a balanced hydraulic design wherein the valve closure element may be moved toward an open or closed position by flow of hydraulic fluid through first and second hydraulic lines. Following closure of the shut-off valve to close off the well, the pump may be removed by simply pulling it from the well. When a repaired pump or replacement pump is placed into the well, the actuator assembly is stabbed into a packer element to seat it. The hydraulic actuator assembly is then operated to open the shut-off valve, thereby reestablishing well operation. Alternatively, the actuator component is an electrically operated actuator.
A number of alternative exemplary embodiments of the invention are described for integration of the actuator component into the production string. In alternative embodiments, differing stinger assemblies are used to engage the actuator with the sleeve valve. Additionally, the actuator assembly may be configured to be reversibly landed upon a sleeve valve assembly.
The systems and methods of the present invention may be used to retrofit present systems and to supplement existing shut-off valves and packer assemblies to provide for improved operation.
The advantages and further aspects of the invention will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference characters designate like or similar elements throughout the several figures of the drawing and wherein:
a, 4b, and 4c are detail drawings depicting the reversible interengagement of collet fingers with the profile of the sleeve valve element;
At its upper end, the production assembly 20 includes an artificial lift pump, such as electrical submersible pump 28 that is of a type known in the art for pumping hydrocarbons to the surface of a well. Because the structure and operation of electrical submersible pumps is well known, they will not be described in detail here. It is noted, however, that the pump 28 includes a motor section 30 and an inlet section 32 having lateral fluid flow ports 34 therein. At its lower end, the pump 28 is secured to a ported sub 36 that also contains a plurality of lateral fluid flow ports 38 therein. A power conduit 31 extends from the surface of the well 10 to provide electrical power to the motor section 30. The lower end of the ported sub 36 is affixed to a hydraulic actuation assembly 40, the structure and function of which will be described in detail shortly. Alternatively, the actuation assembly may be electrically driven, for example, by tapping off of the power conduit 31.
The hydraulic actuation assembly 40 is secured at its lower end to a packer assembly 42. It is noted that there is a separable snap-latch connection 43 between the lower end of the hydraulic actuation assembly 40 and the packer assembly 42. The snap-latch connection 43 is of a type known in the art to allow for a snap-in connection to a threaded end piece and reversible release by application of a sufficient tensional load, such as, for example 8,000 to 12,000 lbs. tension. Typically, such connections are provided by a collected end with exterior wickers that are shaped and sized to reversibly reside within the threads of a box-type end joint. An example of a suitable snap-latch connection for this application is that used in the Model E™ Snap-Latch Seal Assembly available commercially from the Baker Oil Tools division of Baker Hughes Incorporated.
The packer assembly 42 is shown having a packing element 44, which is set against the casing 16 to secure the production assembly 20 in place within the wellbore 10. The packer assembly 42 may comprise any of a number of packer assemblies known in the art for anchoring a tool within a wellbore and providing a fluid seal. One suitable packer assembly for this application is the SC-2™ Packer that is available commercially from the assignee of the present invention, Baker Hughes, Incorporated. The setting operation of such devices is well known by those of skill in the art and, therefore, will not be discussed in any detail herein.
A sliding sleeve shut-off valve assembly 46 is secured to the lower end of the packer assembly 42. A bull plug 48 is secured to the lower end of the shut-off valve assembly 46. The shut-off valve assembly 46 has an outer tubular housing 50 that defines a sleeve valve chamber 52 within. A generally tubular internal sleeve valve element 54 is located within the chamber 52 and is axially translatable within the housing 50. The upper end of the sleeve valve element 54 includes an annular profile 56. The outer housing 50 of the valve assembly 46 includes a plurality of lateral fluid openings 58. Additionally, the sleeve valve element 54 includes a number of fluid apertures 60. In this embodiment, the fluid apertures 60 are located below the profile 56 on the sleeve valve element 54. The sleeve valve element 54 is in an open position in
The hydraulic actuation assembly 40 mentioned previously includes a tubular outer housing 62 having an upper axial end 64 that is threadedly secured to the ported sub 36 above and an opposite lower axial end that includes the separable snap-latch connection 43 mentioned earlier. The outer housing 62 of the actuation assembly 40 defines a generally cylindrical interior volume 66 therewithin. First and second hydraulic control lines 68, 70 extend from the surface of the wellbore 10 and are secured to nozzles or fixtures (not shown) upon the outer housing 62 of the hydraulic actuation assembly 40. The control lines 68, 70 are fluid conduits, of a type known in the art, that carry pressurized hydraulic fluid from the surface of the wellbore 10 to selectively transmit the pressurized fluid into the interior volume 66 of housing 62. Control of the flow of pressurized fluid is provided at the surface of the wellbore 10. Alternatively, the hydraulic supply system (not shown) may be located at an intermediate downhole location and control lines 68,70 connected thereto. The hydraulic supply system may be connected to and powered by a controller (not shown) at the surface.
A reciprocable stinger member 72 is retained within the hydraulic chamber 66 and is used to operate the shut-off valve 46. The stinger member 72 includes an upper piston portion 74 and an affixed lower working portion 76 that extends downwardly from the piston portion 74. The upper piston portion 74 divides the hydraulic chamber 66 into first and second fluid chambers 78, 80. The first hydraulic control line 68 communicates fluid into or out of the first fluid chamber 78 while the second hydraulic control line 70 communicates fluid into or out of the second fluid chamber 80. Each of the fluid chambers 78, 80 is made fluid-tight by the use of o-rings and other fluid sealing members that are known in the art. The piston portion 74 is moved axially within the hydraulic chamber 66 by the addition and removal of fluid from the respective fluid chambers 78, 80. Flowing pressurized fluid through the first control line 68 and into the first hydraulic chamber 78 and allowing fluid to flow from the second hydraulic chamber 80 outwardly through the second control line 70 will cause the piston portion 74 to move upwardly within the outer housing 62. Conversely, flowing pressurized fluid through the second control line 70 and into second hydraulic chamber 80 and flowing fluid from the first hydraulic chamber 78 through the first control line 68 will move the piston portion 74 downwardly within the housing 62. Alternatively, the piston may be operated in one direction by flowing pressurized hydraulic fluid into one of the hydraulic chambers and have a spring return mechanism (not shown) for returning the piston to its original position when the pressurized fluid is vented from the pressurized hydraulic chamber. The spring mechanism may be a mechanical spring and/or a pressurized gas spring of a kind known in the art.
The working portion 76 of the stinger member 72 includes a tubular sleeve 82 and a set of collet fingers 84 that extend axially therefrom. The distal end of each collet finger 84 has a radially outwardly protruding engagement portion 86 that is shaped and sized to engage the profile 56 of the sleeve valve element 54. A central axial flowbore 88 is defined along the length of the stinger member 72. The collet fingers 84 are capable of flexing radially inwardly, in a manner that is well known, to accomplish engagement between the engagement portions 86 and the profile 56. Conversely, a sufficiently high axial load, will be sufficient to cause the engagement portions 86 to be released from engagement with the profile 56. When the hydraulic actuator assembly 40 is seated upon the packer assembly 42, as shown in
Although the engagement portions 86 of the collet fingers 84 and profile 56 of the sleeve valve element 54 are shown schematically in
As configured in
When it becomes necessary to repair or replace the pump 28, the shut-off valve 46 is first moved to a closed position, as illustrated in
When it is time to replace the repaired/new pump 28 into the wellbore 10, the hydraulic actuation assembly 40 is secured to the lower end of the new/repaired pump 28 and both are made up to the tubing string 22. The tubing string 22 is then lowered into the wellbore 10 until the snap-latch 43 secures the hydraulic actuator 40 to the packer assembly 42 and the collet fingers 84 snap in to engage the profile 56 of the sleeve valve element 54. When this is done, the production assembly 20 is once again in the configuration depicted in
The production assembly 20 is then opened up to permit production of hydrocarbon fluids from the formation 44. Pressurized hydraulic fluid is pumped through the second control line 70 and into the second hydraulic chamber 80. The piston portion 74 is moved downwardly within the housing 62 of the hydraulic actuator 40 and, consequently, the sleeve valve element 54 is moved downwardly to once again align the fluid apertures 60 with the fluid openings 58 so that hydrocarbons may enter the shut-off valve 46 and be pumped to the surface upon subsequent operation of the pump 28.
Referring now to
When the production assembly 20′ is in a producing configuration, as shown in
Referring now to
A hydraulic actuation assembly, having either the configuration of assembly 40 or 40′ described earlier, is reversibly secured upon the upper end of the shut-off valve 46, 46′ in order to operate the shut-off valve 46, 46′. It is noted that the stinger member of the hydraulic actuation assembly 40, 40′ will be considerably shortened in this embodiment, as compared to the previously described embodiments since the stinger need not pass through an intervening packer. Additionally, the design of the actuation assembly (either that or 40 or 40′) is dependent upon the location of the profile 56, 56′ upon the sleeve valve element 54, 54′ within the shut-off valve 46, 46′.
It can be seen that, in each instance described above, the present invention provides a production assembly that has a lower production portion with a shut-off valve, such as a sleeve valve, that is selectively moveable between open and closed positions. In addition, the production assembly has an upper production portion that can be selectively landed upon and removed from the lower production portion. The upper production portion includes a fluid pump and a stinger assembly for engagement of the shut-off valve and movement of the valve between open and closed positions. Also, the upper production portion includes a hydraulic actuator for movement of the stinger assembly.
The foregoing description is directed to particular embodiments of the present invention for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope and the spirit of the invention.
The present application claims the priority of U.S. Provisional patent application Ser. No. 60/499,903 filed Sep. 3, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3375874 | Cherry et al. | Apr 1968 | A |
3750700 | Ecuer | Aug 1973 | A |
4407363 | Akkerman | Oct 1983 | A |
5074361 | Brisco et al. | Dec 1991 | A |
5156220 | Forehand et al. | Oct 1992 | A |
5309993 | Coon et al. | May 1994 | A |
5316084 | Murray et al. | May 1994 | A |
5479989 | Shy et al. | Jan 1996 | A |
6598675 | Bussear et al. | Jul 2003 | B2 |
Number | Date | Country |
---|---|---|
2223252 | Apr 1990 | GB |
Number | Date | Country | |
---|---|---|---|
20050095156 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60499903 | Sep 2003 | US |