Method and apparatus to perform electrode combination selection

Information

  • Patent Grant
  • 9533160
  • Patent Number
    9,533,160
  • Date Filed
    Monday, June 24, 2013
    11 years ago
  • Date Issued
    Tuesday, January 3, 2017
    7 years ago
Abstract
Electrical stimulation may be delivered to a patient's heart using a plurality of cardiac electrodes. Each electrode combination may be evaluated based on one or more first parameters and one or more second parameters. In many cases, the one or more first parameters are supportive of cardiac function consistent with a prescribed therapy and the one or more second parameters are not supportive of cardiac function consistent with the prescribed therapy. The electrode combination selected to deliver a cardiac pacing therapy may be more associated with the one or more first parameters supportive of cardiac function consistent with the prescribed therapy and less associated with the one or more second parameters inconsistent with cardiac function.
Description
FIELD OF THE INVENTION

The present invention relates generally to cardiac devices and methods, and, more particularly, to selection of one or more electrode combinations from a plurality of electrodes.


BACKGROUND OF THE INVENTION

When functioning normally, the heart produces rhythmic contractions and is capable of pumping blood throughout the body. The heart has specialized conduction pathways in both the atria and the ventricles that enable excitation impulses (i.e. depolarizations) initiated from the sino-atrial (SA) node to be rapidly conducted throughout the myocardium. These specialized conduction pathways conduct the depolarizations from the SA node to the atrial myocardium, to the atrio-ventricular node, and to the ventricular myocardium to produce a coordinated contraction of both atria and both ventricles.


The conduction pathways synchronize the contractions of the muscle fibers of each chamber as well as the contraction of each atrium or ventricle with the opposite atrium or ventricle. Without the synchronization afforded by the normally functioning specialized conduction pathways, the heart's pumping efficiency is greatly diminished. Patients who exhibit pathology of these conduction pathways can suffer compromised cardiac output.


Cardiac rhythm management (CRM) devices have been developed that provide pacing stimulation to one or more heart chambers in an attempt to improve the rhythm and coordination of atrial and/or ventricular contractions. CRM devices typically include circuitry to sense signals from the heart and a pulse generator for providing electrical stimulation to the heart. Leads extending into the patient's heart chamber and/or into veins of the heart are coupled to electrodes that sense the heart's electrical signals and deliver stimulation to the heart in accordance with various therapies for treating cardiac arrhythmias and dyssynchrony.


Pacemakers are CRM devices that deliver a series of low energy pace pulses timed to assist the heart in producing a contractile rhythm that maintains cardiac pumping efficiency. Pace pulses may be intermittent or continuous, depending on the needs of the patient. There exist a number of categories of pacemaker devices, with various modes for sensing and pacing one or more heart chambers.


A pace pulse must exceed a minimum energy value, or capture threshold, to “capture” the heart tissue, generating an evoked response that generates a propagating depolarization wave that results in a contraction of the heart chamber. It is desirable for a pace pulse to have sufficient energy to stimulate capture of the heart chamber without expending energy significantly in excess of the capture threshold. Pacing in excess of a capture threshold can cause excessive energy consumption, require premature battery replacement, and can unintentionally stimulate nerves or muscles. However, if a pace pulse energy is too low, the pace pulses may not reliably produce a contractile response in the heart chamber and may result in ineffective pacing that does not improve cardiac function or cardiac output.


Electrical cardiac therapies include other complexities. For example, low impedance between an anode and cathode pair can require excessive energy delivery, causing high energy consumption and prematurely depleting the battery resources. In another example, excessively high impedance between an anode and cathode pair indicates a problem with the stimulation circuit (i.e. lead damage), resulting in a lack of therapy.


Delivering electrical cardiac therapy may involve selection of an electrode combination to which the electrical cardiac therapy is delivered. Devices for cardiac pacing and sensing may utilize a number of electrodes electrically coupled to the heart at one or more pacing sites, the electrodes configured to sense and/or pace a heart chamber. Each different combination of electrodes between which energy can be delivered constitutes a vector. Pacing via multiple intra-chamber electrode pairs may be beneficial, for example, to stimulate the heart tissue in a coordinated sequence that improves contractile function of the heart chamber.


The present invention provides methods and systems for selecting an electrode combination and provides various advantages over the prior art.


SUMMARY OF THE INVENTION

The present invention involves approaches for selecting one or more electrode combinations. Various method embodiments can include implanting a plurality of cardiac electrodes supported by one or more leads in a patient, attaching the one or more leads to a patient external analyzer circuit, delivering electrical stimulation to the patient's heart using the plurality of cardiac electrodes and the analyzer circuit, evaluating, for each electrode combination of a plurality of electrode combinations of the plurality of cardiac electrodes, one or more first parameters and one or more second parameters produced by the electrical stimulation delivered using the electrode combination, the first parameters supportive of cardiac function consistent with a prescribed therapy and the second parameters not supportive of cardiac function consistent with the prescribed therapy, selecting one or more electrode combinations of the plurality of cardiac electrodes based on the evaluation, the one or more electrode combinations selected as being associated with the one or more first parameters being supportive of cardiac function consistent with a prescribed therapy and less associated with the one or more second parameters not supportive of cardiac function consistent with the prescribed therapy relative to other electrode combinations of the plurality of cardiac electrodes, programming an implantable pacing circuit to deliver a cardiac pacing therapy that preferentially uses the selected one or more electrode combinations relative to other electrode combinations of the plurality of cardiac electrodes, detaching the one or more leads from the analyzer circuit, attaching the one or more leads to the implantable pacing circuit, and implanting the implantable pacing circuit.


In some method embodiments, evaluating the first parameters comprises evaluating a capture threshold for each of the plurality of electrode combinations, evaluating the second parameters comprises evaluating extra-cardiac stimulation, and selecting the one or more electrode combinations comprises selecting the electrode combination of the plurality of electrode combinations that has the lowest capture threshold and does not cause extra-cardiac stimulation based on the evaluation.


Some embodiments include a cardiac rhythm management system that comprises a patient external analyzer device, a patient implantable cardiac stimulation device, a plurality of cardiac electrodes provided on one or more patient implantable leads, the one or more leads configured to be coupled to the patient external analyzer circuit and the patient implantable cardiac stimulation device, evaluation circuitry housed within the patient external analyzer device, the evaluation circuitry configured to execute stored program instructions to cause the patient external analyzer device to evaluate, for each electrode combination of a plurality of electrode combinations of the plurality of cardiac electrodes, one or more first parameters and one or more second parameters produced by electrical stimulation delivered using at least some of the plurality of electrodes, the first parameters supportive of cardiac function consistent with a prescribed therapy and the second parameters not supportive of cardiac function consistent with the prescribed therapy, an electrode combination processor housed within the patient external analyzer device, the electrode combination processor configured to execute stored program instructions to cause the patient external analyzer device to select one or more electrode combinations of the plurality of cardiac electrodes based on the evaluation, the one or more electrode combinations selected as being associated with the one or more first parameters being supportive of cardiac function consistent with a prescribed therapy and less associated with the one or more second parameters not supportive of cardiac function consistent with the prescribed therapy relative to other electrode combinations of the plurality of cardiac electrodes, and programmer circuitry configured to execute stored program instructions to cause the programmer circuitry to program the patient implantable cardiac stimulation device to deliver therapy preferentially using the selected electrode combinations relative to other electrode combinations of the plurality of cardiac electrodes.


Some embodiments include a system for selecting an electrode combination, the system comprising a patient external analyzer device, a patient implantable cardiac stimulation device, a plurality of cardiac electrodes provided on one or more leads, the one or more leads configured to be coupled to the patient external analyzer device and the patient implantable cardiac stimulation device, means for evaluating, for each electrode combination of a plurality of electrode combinations for the plurality of implanted cardiac electrodes, one or more first parameters and one or more second parameters produced by electrical stimulation delivered using the electrode combinations, the first parameters supportive of cardiac function consistent with a prescribed therapy and the second parameters not supportive of cardiac function consistent with the prescribed therapy, means for selecting one or more electrode combinations of the plurality of cardiac electrodes based on the evaluation, the one or more electrode combinations selected as being associated with the one or more first parameters being supportive of cardiac function consistent with the prescribed therapy and less associated with the one or more second parameters not supportive of cardiac function consistent with the prescribed therapy for the one or more electrode combinations relative to other electrode combinations of the plurality of cardiac electrodes, and means for programming the implantable pacing circuit to deliver electrical therapy preferentially using the one or more selected electrode combinations relative to other electrode combinations of the plurality of electrode combinations based on the selection of the one or more electrode combinations.


The above summary of the present invention is not intended to describe each embodiment or every implementation of the present invention. Advantages and attainments, together with a more complete understanding of the invention, will become apparent and appreciated by referring to the following detailed description and claims taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flowchart illustrating a method of selecting an electrode combination in accordance with various embodiments of the invention;



FIG. 2a is a block diagram of a system incorporating electrode combination selection circuitry in accordance with various embodiments of the invention;



FIG. 2b is a block diagram of a system incorporating electrode combination selection circuitry in accordance with various embodiments of the invention;



FIG. 3 is a diagram illustrating a patient-external device that provides a user interface allowing a human analyst to interact with information and program an implantable medical device in accordance with various embodiments of the invention;



FIG. 4a is a flowchart illustrating a method of selecting one or more electrode combinations based on capture threshold and phrenic nerve activation parameters and automatically updating the electrode combination selection in accordance with various embodiments of the invention;



FIG. 4b is a flowchart illustrating a method of selecting one or more electrode combinations based on capture threshold and phrenic nerve activation parameters and automatically updating the electrode combination selection in accordance with various embodiments of the invention;



FIG. 5 is a flowchart illustrating a method of selecting one or more electrode combinations, and further exemplifying how information can be handled and managed, in accordance with various embodiments of the invention;



FIG. 6 is a therapy device incorporating circuitry capable of implementing electrode combination selection techniques in accordance with various embodiments of the invention;



FIG. 7 shows an enlarged view of various pacing configurations that may be used in connection with electrode combination selection in accordance with various embodiments of the invention;



FIG. 8 is a flowchart illustrating a method of estimating parameters in accordance with various embodiments of the invention;



FIG. 9 is a graph illustrating various aspects of a strength-duration plot for a parameter that supports cardiac function and a strength-duration plot for a parameter that does not support cardiac function that may be used to select an electrode combination for a therapeutic electrical stimulation in accordance with various embodiments of the invention;



FIG. 10 is a flowchart illustrating a method of evaluating a plurality of electrode combinations, and further exemplifying how capture thresholds for a plurality of electrode combinations can be determined, in accordance with various embodiments of the invention;



FIG. 11 is a flowchart illustrating a method of automatically updating a therapy electrode combination after an initial selection in accordance with various embodiments of the invention; and



FIG. 12 is a flowchart illustrating a method of selecting an electrode combination, and further exemplifying ranking electrode combinations and changing the electrode combination being used for therapy delivery using the ranking, in accordance with various embodiments of the invention.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail below. It is to be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION OF-VARIOUS EMBODIMENTS

In the following description of the illustrated embodiments, references are made to the accompanying drawings forming a part hereof, and in which are shown by way of illustration, various embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized, and structural and functional changes may be made without departing from the scope of the present invention.


The discussion and illustrations provided herein are presented in an exemplary format, wherein selected embodiments are described and illustrated to present the various aspects of the present invention. Systems, devices, or methods according to the present invention may include one or more of the features, structures, methods, or combinations thereof described herein. For example, a device or system may be implemented to include one or more of the advantageous features and/or processes described below. A device or system according to the present invention may be implemented to include multiple features and/or aspects illustrated and/or discussed in separate examples and/or illustrations. It is intended that such a device or system need not include all of the features described herein, but may be implemented to include selected features that provide for useful structures, systems, and/or functionality.


In multi-electrode pacing systems, multiple pacing electrodes may be disposed in a single heart chamber, in multiple heart chambers, and/or elsewhere in a patient's body. Electrodes used for delivery of pacing pulses may include one or more cathode electrodes and one or more anode electrodes. Pacing pulses are delivered via the cathode/anode electrode combinations, where the term “electrode combination” denotes that at least one cathode electrode and at least one anode electrode are used. An electrode combination may involve more than two electrodes, such as when multiple electrodes that are electrically connected are used as the anode and/or multiple electrodes that are electrically connected are used as the cathode. Typically, pacing energy is delivered to the heart tissue via the cathode electrode(s) at one or more pacing sites, with a return path provided via the anode electrode(s). If capture occurs, the energy injected at the cathode electrode site creates a propagating wavefront of depolarization which may combine with other depolarization wavefronts to trigger a contraction of the cardiac muscle. The cathode and anode electrode combination that delivers the pacing energy defines the pacing vector used for pacing. The position of the cathode relative to cardiac tissue can be used to define an electrode combination and/or a pacing site.


Pacing pulses may be applied through multiple electrodes (i.e., pacing vectors defined by various electrode combinations) in a single cardiac chamber in a timed sequence during the cardiac cycle to improve contractility and enhance the pumping action of the heart chamber. It is desirable for each pacing pulse delivered via the multiple electrode combinations to capture the cardiac tissue proximate the cathode electrode. The pacing energy required to capture the heart is dependent on the electrode combination used for pacing, and different electrode combinations can have different energy requirements for capture. Particularly in the left ventricle, the minimum energy required for capture, denoted the capture threshold, may be highly dependent on the particular electrode combination used.


Pacing characteristics of therapy delivery using each electrode combination of a plurality of possible electrode combinations are dependent on many factors, including the distance between the electrodes, proximity to target tissue, type of tissue contacting and between the electrodes, impedance between the electrodes, resistance between the electrodes, and electrode type, among other factors. Such factors can influence the capture threshold for the electrode combination, among other parameters. Pacing characteristics can vary with physiologic changes, electrode migration, physical activity level, body fluid chemistry, hydration, and disease state, among others. Therefore, the pacing characteristics for each electrode combination are unique, and some electrode combinations may work better than others for delivering a particular therapy that improves cardiac function consistent with a prescribed therapy.


In this way, electrode combination selection should take into consideration at least the efficacy of one or more electrode combinations of a plurality of electrodes in supporting cardiac function in accordance with a prescribed therapy. The efficacy of one or more electrode combinations of a plurality of electrodes in supporting cardiac function in accordance with a prescribed therapy can be evaluated by consideration of one or more parameters produced by electrical stimulation, such as capture threshold.


Electrical stimulation delivered to one body structure to produce a desired therapeutic activation may undesirably cause activation of another body structure. For example, electrical cardiac pacing therapy can inadvertently stimulate bodily tissue, including nerves and muscles. Stimulation of extra-cardiac tissue, including phrenic nerves, the diaphragm, and skeletal muscles, can cause patient discomfort and interfere with bodily function.


A patient's evoked response from an electrical cardiac therapy can be unpredictable between electrode combinations. For example, an electrical cardiac therapy delivered using one electrode combination may produce an undesirable activation while an identical electrical cardiac therapy delivered using another electrode combination may not produce the undesirable activation. As such, selecting an appropriate electrode combination, such as one electrode combination of a plurality of electrode combinations made possible by a multi-electrode lead that effects the desired cardiac response with the least amount of energy consumption and that does not unintentionally stimulate tissue, can be many-factored and complicated.


Manually testing each parameter of interest for each possible cathode-anode electrode combination can be a time consuming process for doctors, clinicians, and programmers. Furthermore, it can be difficult to sort through numerous different parameters for multiple pacing electrode combinations and understand the various tissue activation responses of electrical therapy delivered using various electrode combinations. Systems and methods of the present invention can simplify these and other process.


Devices of the present invention may facilitate selection of one or more electrode combinations using various parameters of interest. A device may be preset for parameters of interest and/or a physician may select beneficial parameters of interest and/or non-beneficial parameters of interest. The parameters that are of interest can vary between patients, depending on the patient's pathology. Beneficial parameters are parameters which are associated with supported cardiac function in accordance with a prescribed therapy and/or are the intended result of a prescribed therapy. Non-beneficial parameters are parameters which are not associated with supported cardiac function in accordance with a prescribed therapy and/or are not the intended result of a prescribed therapy.


The flowchart of FIG. 1 illustrates a process for selecting one or more electrode combinations and delivering a therapy using the one or more selected electrode combinations. Although this method selects an electrode combination and delivers a therapy using the electrode combination, not all embodiments of the current invention perform all of the steps 110-150.


Parameters that support cardiac function are evaluated 110 for a plurality of electrode combinations.


A parameter that supports cardiac function is any parameter that is indicative of a physiological effect consistent with one or more therapies prescribed for the patient. For example, successful capture of a heart chamber can be indicative of cardiac contractions that are capable of pumping blood, where ventricular pacing was a prescribed therapy for the patient. Parameters that support cardiac function consistent with a prescribed therapy can be beneficial parameters, as they can be indicative of intended therapy effects (e.g., capture).


In some embodiments of the current invention, evaluating a parameter that supports cardiac function includes detecting whether electrical therapy delivered through each electrode combination of a plurality of electrode combinations improves the patient's cardiac function, consistent with a prescribed therapy, relative to cardiac function without the electrical therapy delivered using the respective electrode combination.


Parameters that do not support cardiac function are evaluated 120 for at least some of the plurality of electrode combinations. A parameter that does not support cardiac function is any parameter that produces a physiological effect inconsistent with the patient's prescribed therapy.


In some embodiments of the present invention, parameters that do not support cardiac function include parameters that are indicative of undesirable stimulation, the undesirable stimulation not consistent with a therapy prescribed for the patient. For example, delivering an electrical cardiac therapy using a particular electrode combination may unintentionally stimulate skeletal muscles, causing discomfort to the patient, not improving cardiac function consistent with a prescribed therapy, and possibly interfering with improving cardiac function and/or delivery of the prescribed therapy. Parameters that do not support cardiac function consistent with a prescribed therapy can be non-beneficial parameters, as they can be indicative of unintended effects of the therapy.


The electrode combinations can be ordered 130. The order can be based on the evaluations 120 and 130 of the parameters that support cardiac function and the parameters that do not support cardiac function. Ordering may be establishing or recognizing relationships between various electrode combinations based on parameters.


Ordering can be performed manually or automatically. For example, a clinician can consider the parameters that support cardiac function and the parameters that do not support cardiac function and order the electrode combinations based on the parameters. Ordering can also be performed algorithmically by a processor executing instructions stored in memory, the processor ordering the electrode combinations based on parameter information stored in memory. For example, a data processor may algorithmically order a plurality of electrode combinations based on parameter information stored in memory, giving priority in the order to electrode combinations that can best implement the prescribed therapy while minimizing the occurrence of undesirable events inconsistent with the prescribed therapy.


One or more electrode combinations can be selected 140 based on the order of the electrode combinations. Selection of one or more electrode combinations may be done manually by a clinician reviewing the electrode combination order and inputting a selection into the device. Selection may also be done automatically, such as by a processor executing instructions stored in memory, the processor algorithmically selecting the electrode combination based on electrode combination order information stored in memory.


After electrode combination selection, therapy can be delivered 150 using the one or more selected electrode combinations. The various steps of FIG. 1, as well as the other steps disclosed herein, can be performed automatically, such that no direct human assistance is needed to initiate or perform the various discrete steps.



FIG. 2a is a block diagram of a CRM device 200 that may incorporate circuitry for selecting an electrode combination in accordance with embodiments of the present invention. The CRM device 200 includes pacing therapy circuitry 230 that delivers pacing pulses to a heart. The CRM device 200 may optionally include defibrillation/cardioversion circuitry 235 configured to deliver high energy defibrillation or cardioversion stimulation to the heart for terminating dangerous tachyarrhythmias.


The pacing pulses are delivered via multiple cardiac electrodes 205 (electrode combinations) disposed at multiple locations within and/or about a heart, wherein a location can correspond to a pacing site. Certain combinations of the electrodes 205 may be designated as alternate electrode combinations while other combinations of electrodes 205 are designated as initial electrode combinations. Two or more electrodes may be disposed within a single heart chamber. The electrodes 205 are coupled to switch matrix 225 circuitry used to selectively couple electrodes 205 of various pacing configurations to electrode combination processor 201 and/or other components of the CRM device 200. The electrode combination processor 201 is configured to receive information gathered via the cardiac electrodes 205 and beneficial/non-beneficial parameter sensors 210. The electrode combination processor 201 can perform various functions, including evaluating electrode combination parameters that support cardiac function, evaluating electrode combination parameters that do not support cardiac function, determining an order for the electrode combinations, and selecting one or more electrode combinations based on the order, as well as other processes.


The control processor 240 can use patient status information received from patient status sensors 215 to schedule or initiate any of the functions disclosed herein, including selecting an electrode combination. Patient status sensors 215 may include an activity monitor, a posture monitor, a respiration monitor, an oxygen level monitor, and an accelerometer, among others.


A CRM device 200 typically includes a battery power supply (not shown) and communications circuitry 250 for communicating with an external device programmer 260 or other patient-external device. Information, such as data, parameter measurements, parameter evaluations, parameter estimates, electrode combination orders, electrode combination selections, and/or program instructions, and the like, can be transferred between the device programmer 260 and patient management server 270, CRM device 200 and the device programmer 260, and/or between the CRM device 200 and the patient management server 270 and/or other external system. The electrode combination processor 201 may be a component of the device programmer 260, patient management server 270, or other patient external system.


The CRM device 200 also includes a memory 245 for storing program instructions and/or data, accessed by and through the control processor 240. In various configurations, the memory 245 may be used to store information related to activation thresholds, parameters, orders, measured values, program instructions, and the like.


Parameters can be measured by Beneficial/Non-Beneficial Parameter Sensors 210. Parameter Sensors 210 can include the various sensors discussed herein or known in the art, including accelerometers, acoustic sensors, electrical signal sensors, pressure sensors, and the like.



FIG. 2b illustrates external circuitry used in an implantation procedure in accordance with various embodiments of the invention. FIG. 2b shows a patient 290 with multiple leads 605-608 partially inserted subcutaneously through incision 280. Leads 605-607 extend into the heart 291, while lead 608 does not contact the heart 291 but occupies an area where one or more non-cardiac tissue contacting electrodes (e.g., can electrode, electrode array, subcutaneous non-intrathoracic electrode, and/or submuscular electrode) could be implanted. Lead 605 can be a left ventricular lead, lead 607 can be a right ventricular lead, and lead 606 can be a right atrial lead. The leads 605-607 can be positioned in the manner of FIGS. 6 and 7 (and can be the same leads shown during an implantation procedure before the implantable housing 601 is implanted as depicted in FIG. 6). The leads 605-607 can contain electrodes, such as the electrodes references and described herein. For example, the leads 605-607 can have the electrodes illustrated in FIGS. 6 and 7, and lead 608 can have one or more electrodes corresponding to the can 681 and/or indifferent 682 electrodes of the embodiment of FIG. 6.


The leads 605-607 can be implanted over the long-term. In some embodiments, leads 605-607 may just have been implanted before other aspects of the present invention are carried out (e.g., evaluation and selection of electrode combinations). In some embodiments, one of more of leads 605-607 may have been implanted in a separate surgical procedure long before implementation of aspects of the present invention (e.g., a default pacing configuration was used for pacing using convention methods before aspects of the present invention were carried out).


The leads 605-608 in FIG. 2b are coupled to a non-implantable evaluation unit 249. Evaluation unit 249 can contain circuitry configured to carry out operations described herein, including pacing configuration selection. For example, evaluation unit 249 includes a processor 255 coupled with a combination processor 254, memory 256, input 257, display 258, and communications circuitry 259. The evaluation unit 249 can further include defibrillation/cardioversion circuitry 253, pacing circuitry 252, and switch matrix 251. The switch matrix 251 is electrically coupled with the electrodes of the leads 605-608, such that the combination processor 254, pacing circuitry 252, and defibrillation/cardioversion circuitry 253 can be selectively electrically coupled/decoupled to various electrodes of the leads 605-608 to facilitate delivery of electrical stimulation and collection of signals (e.g., an ECG signal indicative of cardiac response to electrical stimulation).


As discussed herein, energy delivery to the heart 291 can fail to therapeutically treat the heart in a medically prescribed manner and/or stimulate tissue in a manner not consistent with the prescribed therapy. The evaluation unit 249 can be used to characterize various electrode combinations and select one or more preferred pacing/defibrillation configurations before implantable circuitry is programmed with the selection, connected to one or more of the leads 650-607, and implanted. Such characterization can occur by the evaluation unit 249 delivering electrical stimulation using the leads 605-608, the leads 605-608 being the same that would be used to deliver electrical therapy from a patient implantable medical device, and then evaluating the sensed physiological response (e.g., cardiac capture with phrenic stimulation).


Evaluation unit 249 can use the pacing circuitry 252 to deliver electrical energy between various electrodes of the leads 605-608 (each delivery using a combination of electrodes). Such energy can be in the form of pacing pulses which can capture and therapeutically pace the heart 291. Electrical energy 253 can be similarly delivered to the heart 291 using the defibrillation/cardioversion circuitry 253.


Combination processor 254 can receive electrical cardiac signals (e.g., ECG signals showing cardiac activity) and/or other signals (e.g., respiration sounds) indicative of the patient's 290 physiological response to electrical stimulation delivered using the pacing circuitry 252 and/or defibrillation/cardioversion circuitry 253. The physiological response signals can be used by the combination processor 254 to investigate beneficial and non-beneficial parameters as referenced herein and order and rank various electrode combinations.


Input 257 may be used to input instructions, parameter information, limits, selections, and the like. The input 257 may take the form of keys, buttons, mouse, track-ball, and the like. Display 258 can also be used to facilitate clinician interaction with the evaluation unit 249. Display 258 can take the form of a dial, LCD, or cathode-ray tube, among others. In some embodiments, the input 257 maybe integrated with the display 258, such as by use of a touch sensitive display.


In some embodiments a doctor can initiate an algorithm that selects an optimal pacing configuration using the input 258. The doctor may input various criteria using the input 257, the criteria being used to prioritize various parameters and order electrode combinations, for example. In some cases, a doctor could indicate that phrenic stimulation avoidance is to be prioritized, such that only those electrode combinations that do not cause phrenic stimulation based on an evaluation will be selected and/or ranked for subsequent use in stimulation therapy delivery. A doctor could indicate a maximum and/or minimum pulse duration range, such that electrode combinations that cannot capture cardiac tissue using pulse parameters within that range will not be selected and/or ranked.


In this way, the evaluation unit 249 can enhance use of a patient implantable medical device. Because the evaluation unit 249 can be attached to the same leads as the patient implantable medical device, the evaluation unit 249 can run various tests that are reflective of actual operating conditions of a patient implantable medical device. Moreover, using the evaluation unit 249 to perform various tests and perform other functions discussed herein provides several distinct advantages.


For example, if a patient implantable medical device is used to perform pacing configuration tests, then the patient implantable medical device must devote resources to perform these tests. These resources include battery life and memory space. An evaluation unit 249 as described herein or similar device employing aspects of the present invention (e.g., a pacing system analyzer) have much less concern with minimizing power consumption and memory content as compared to an implantable medical device. Moreover, having the evaluation unit 249 configured to perform pacing configuration tests, instead of the patient implantable medical device, simplifies the circuitry and design of the patient implantable medical device, which can then be more focused on arrhythmia detection and therapy delivery (e.g., an evaluation unit 249 can employ an acoustic sensor useful for detecting phrenic stimulation, which would consume extra energy, space, and memory if on a patient implantable medical device).


Other benefits include enhanced functionality and flexibility. For example, patient implantable medical devices are not commonly provided with interfaces, but the evaluation unit 249 has an integrated input 257 and display 258.


An evaluation unit 249 can be programmed with information regarding a plurality of different types of patient implantable medical devices (e.g., pacemakers). This allows the evaluation unit 249 to customize a pacing configuration for a particular type of patient implantable medical device. For example, if the model number of a particular type of available pacemaker is input into the evaluation unit 249, the evaluation unit 249 can then recognize the pacing parameters that the particular type of available pacemaker is capable of outputting (e.g., maximum and minimum pulse amplitude, duration, and the maximum number of electrodes that can be used to form a vector) and customize a pacing configuration (e.g., selection and/or ranking of electrode combinations) for the particular type of available pacemaker to use. In this way, the evaluation unit 249 may select one pacing configuration for a first type of pacemaker and a different pacing configuration for a second type of pacemaker which would use the same set of electrodes if implanted (e.g., the first pacemaker may be capable of delivering longer pulses as compared to the second, and longer pulses may be preferred for the particular physiology of the patient to optimize pacing, such that a different pacing configuration is preferred depending on which pacemaker is available).


Likewise, an evaluation unit 249 programmed with parameters for multiple patient implantable medical devices may be used to select a particular type of implantable medical device for connection with leads and implantation based on an analysis of the electrode combinations of the leads and the capabilities of available implantable medical devices. In this way, the evaluation unit 249 may select a first type of pacemaker to be implanted over a second type of pacemaker because an analysis of the leads as referenced herein reveals an optimal pacing configuration (e.g., particular pulse parameters that, when delivered though a particular electrode combination, capture the heart with relatively low energy consumption while not causing undesirable stimulation) that can only be met by one or a few different pacing devices. Therefore, evaluation unit 249 can automatically make selections of devices and corresponding preferred electrode combinations in the time critical period when a patient is undergoing implantation to provide an optimal pacing configuration. Because the evaluation unit 249 performs the tests using the electrodes that will be used for therapy, the evaluation unit 249 can make selections based on more accurate information relative to selections made before leads are implanted.


An evaluation unit 249 can further benefit therapy by evaluating a patient's physiological response to electrical stimulation using parameters and/or sensors that are not provided on a particular implantable medical device. For example, an evaluation unit 249 can be equipped with a catheter 261, one end of the catheter 261 being inserted through the incision 280. Multiple sensors can be provided on the catheter 261, such as an acoustic sensor, an EMG sensor, a blood oxygen saturation sensor, and/or accelerometer, among others referenced herein. These sensors can be used with the methods referenced herein for selection of a pacing configuration. For example, an acoustic sensor can sense respiration sounds and thereby detect activation of the diaphragm, an EMG sensor can detect muscle activity signatures indicative of extra-cardiac stimulation, and a blood oxygen saturation sensor can be used to assess the success of a pacing therapy delivered using a particular electrode combination in improving cardiac function (e.g., higher blood oxygen saturation indicative of improved hemodynamic function). Each of these parameters can be used to assess parameters of a particular pacing configuration. Provision of the sensors by the evaluation unit 249 (and not, for example, by a patient implantable medical device) can conserve implantable device resources (battery life, memory space, physical space, and well as simplify device design and circuitry) and can allow the sensors to evaluate parameters from areas that might not be convenient for a patient implantable medical device to measure.


Furthermore, in some embodiments the evaluation unit 249 can evaluate various electrode combinations and determine that an electrode is malfunctioning or improperly positioned. For example, relatively high impedance measurements taken between two electrodes (e.g., compared to previous measurements or population data) can determine that an electrode is improperly positioned, which can compromise the ability to use an electrode combination that would otherwise be ideal for delivering therapy. Because the evaluation unit 249 can determine electrode malfunction or mispositioning before a pacemaker is implanted and incision 280 is still open, one or more leads can be replaced or repositioned and reevaluated to provide a better arrangement. Methods and devices for facilitating identification of electrode malfunction can be found in U.S. Patent Publication No. 20070293903, filed on Jun. 16, 2006, which is herein incorporated in its entirety.


Communications circuitry 259 can facilitate the transmission of selections, orders, and rankings pertaining to electrode combinations, among other things, to an external programmer (e.g. 300) and/or directly to a patient implantable medical device that can deliver a therapy using the selections, orders, and/or rankings.


The circuitry represented in FIGS. 2a and 2b can be used to perform the various methodologies and techniques discussed herein. Memory can be a computer readable medium encoded with a computer program, software, firmware, computer executable instructions, instructions capable of being executed by a computer, etc. to be executed by circuitry, such as control processor. For example, memory can be a computer readable medium storing a computer program, execution of the computer program by control processor causing delivery of pacing pulses directed by the pacing therapy circuitry, reception of one or more signals from sensors and/or signal processor to identify, and establish relationships between, beneficial and non-beneficial parameters (e.g., capture and phrenic stimulation thresholds) in accordance with embodiments of the invention according to the various methods and techniques made known or referenced by the present disclosure. In similar ways, the other methods and techniques discussed herein can be performed using the circuitry represented in FIGS. 2a and/or 2b.



FIG. 3 illustrates a patient external device 300 that provides a user interface configured to allow a human analyst, such as a physician, or patient, to interact with an implanted medical device. The patient external device 300 is described as a CRM programmer, although the methods of the invention are operable on other types of devices as well, such as portable telephonic devices, computers or patient information servers used in conjunction with a remote system, for example. The programmer 300 includes a programming head 310 which is placed over a patient's body near the implant site of an implanted device to establish a telemetry link between a CRM and the programmer 300. The telemetry link allows the data collected by the implantable device to be downloaded to the programmer 300. The downloaded data is stored in the programmer memory 365.


The programmer 300 includes a graphics display screen 320, e.g., LCD display screen, that is capable of displaying graphics, alphanumeric symbols, and/or other information. For example, the programmer 300 may graphically display one or more of the parameters downloaded from the CRM on the screen 320. The display screen 320 may include touch-sensitive capability so that the user can input information or commands by touching the display screen 320 with a stylus 330 or the user's finger. Alternatively, or additionally, the user may input information or commands via a keyboard 340 or mouse 350.


The programmer 300 includes a data processor 360 including software and/or hardware for performing the methods disclosed here, using program instructions stored in the memory 365 of the programmer 300. In one implementation, sensed data is received from a CRM via communications circuitry 366 of the programmer 300 and stored in memory 365. The data processor 360 evaluates the sensed data, which can include information related to beneficial and non-beneficial parameters. The data processor 360 can also perform other method steps discussed herein, including comparing parameters and ordering the electrode combinations, among others. Parameter information, electrode combination information, and an electrode combination order, as well as other information, may be presented to a user via a display screen 320. The parameters used for ordering the electrode combinations may be identified by the user or may be identified by the data processor 360, for example.


In some embodiments of the current invention, ordering the electrode combinations may be determined by a user and entered via the keyboard 320, the mouse 350, or stylus 330 for touch sensitive display applications. In some embodiments of the current invention, the data processor 360 executes program instructions stored in memory to order a plurality of electrode combinations based on sensed beneficial and non-beneficial parameters. The electrode combination order determined by the data processor 360 is then displayed on the display screen, where a human analyst then reviews the order and selects one or more electrode combinations for delivering an electrical cardiac therapy.


The flowchart of FIG. 4a illustrates a process 400 for selecting one or more electrode combinations based on capture threshold and phrenic nerve activation parameters and automatically updating the electrode combination selection. The process 400 includes measuring or estimating 410 a capture threshold and phrenic nerve activation threshold for each electrode combination during an implantation procedure using a set of at least partially implanted electrodes. The capture threshold for a particular electrode combination may be determined by a capture threshold test. For example, the capture threshold test may step down the pacing energy for successive pacing cycles until loss of capture is detected.


The process 400 of FIG. 4a includes measuring or estimating 410 a phrenic nerve activation threshold for each electrode combination. The phrenic nerve innervates the diaphragm, so stimulation of the phrenic nerve can cause a patient to experience a hiccup. Electrical stimulation that causes a hiccup can be uncomfortable for the patient, and can interfere with breathing. Additionally, phrenic nerve stimulation and/or diaphragmatic stimulation that is inconsistent with the patient's therapy and/or does not support cardiac function is undesirable and can interfere with the intended therapy.


Phrenic nerve activation and/or a phrenic nerve activation threshold may be measured for an electrode combination by delivering electrical energy across the electrode combination and sensing for phrenic nerve activation. The energy delivered could also be used to simultaneously perform other tests, such as searching for a capture threshold. If no phrenic nerve activation is sensed using the level of electrical energy delivered, the energy level can be iteratively increased for subsequent trials of delivering electrical energy and monitoring for phrenic nerve activation until phrenic nerve activation is sensed. The electrical energy level at which phrenic nerve activation is detected can be the phrenic nerve activation threshold. Alternatively, the level of electrical energy may be decreased or otherwise adjusted until phrenic nerve activation is not detected.


Methods for evaluating phrenic nerve activation are disclosed in U.S. Pat. No. 6,772,008, Provisional Patent Application No. 61/065,743 filed Feb. 14, 2008, and Patent Publication No. 20060241711, each of which are herein incorporated by reference in their respective entireties.


The process 400 of FIG. 4a further includes comparing 420 the capture threshold and phrenic nerve activation threshold of one electrode combination to at least one other electrode combination. Comparing can be performed in various ways, including by a human, such as a doctor or programmer, or automatically by a processor executing instructions stored in memory. In some embodiments of the present invention, some aspects of comparing 420 can be done by a human while some aspects of comparing 420 can be done electronically.


Comparing 420 can include comparing the capture thresholds of the electrode combinations to one another. Such a comparison can identify which electrode combinations are associated with the lowest capture thresholds. Comparing 420 can also include comparing the occurrence, amounts, and/or thresholds of phrenic nerve activation of the electrode combinations to one another. Such a comparison can identify which electrode combinations are associated with the highest and/or lowest occurrence, amount and/or threshold of phrenic nerve stimulation. Other parameters discussed herein can also be similarly compared in this and other embodiments of the present invention.


Comparing 420 can be multidimensional, such that multiple metrics are compared for multiple electrode combinations. For example, comparing 420 may consider capture threshold and phrenic nerve activation for multiple electrode combinations to indicate which electrode combination has the lowest relative capture threshold and the least relative phrenic nerve activation.


In various embodiments, comparing parameters can include graphically displaying data in the form of tables and/or plots for physician review. In some embodiments, the physician can make a selection of an electrode combination or rank combinations upon reviewing the data. In some embodiments, a physician can rule out one or more electrode combinations from subsequent automatic selection by a processor based on the review of the data.


The process 400 of FIG. 4a further includes selecting 430 an electrode combination based on the comparison of step 420. Selecting 430 may be done entirely by a human, entirely by a system algorithmically, or partially by a human and partially by the system.


Selecting 430 can be done according to criteria. For example, the results of the comparison can be reviewed and the electrode combination(s) matching a predetermined criterion can be selected. The criteria may be predefined by a human. Different sets of criteria may be created by a human, stored in memory, and then selected by a doctor or programmer for use, such as use in selecting 430 an electrode combination based on the comparison.


By way of example, selecting 430 can include selecting according to the criteria that the selected electrode combination be the combination with the lowest capture threshold that was not associated with phrenic nerve activation. Other criteria that can be used additionally or alternatively include responsiveness to CRT, low energy consumption, extra-cardiac activation, dP/dt, among others indicative of beneficial parameters consistent with a prescribed therapy or non-beneficial parameters inconsistent with the prescribed therapy. The electrode combination fitting such criteria can be identified for selection based on the comparison 430.


The process 400 of FIG. 4a further includes delivering 440 therapy using the selected electrode combination. Delivering 440 therapy can include any therapy delivery methods disclosed herein or known in the art.


The process 400 of FIG. 4a further includes determining whether an electrode combination update is indicated 450. An electrode combination update may be indicated in various ways, including detecting a condition necessitating an electrode combination update (such as loss of capture, change in posture, change in disease state, detection of non-therapeutic activation, and/or short or long term change in patient activity state, for example). An electrode combination update may be initiated according to a predetermined schedule, or an indication given by a human or system.


In the particular embodiment of FIG. 4a, if it is determined that an electrode combination update is indicated 450, then the system automatically updates 460 the electrode combination selection 460. In various embodiments of the current invention, automatically updating 460 electrode combination selection can include some or all of the various methods of the process 400 or can be based on other methods. According to various embodiments of the present invention, therapy can then be delivered 440 using the updated electrode combination. The updated electrode combination can be different from the electrode combination previously used to deliver therapy, or the updated electrode combination can be the same electrode combination, despite the update.


Although the embodiment of FIG. 4a exemplified aspects of the present invention using capture threshold as a parameter that supports cardiac function consistent with a prescribed therapy, numerous other parameters can alternatively, or additionally, be used to indicate cardiac function.


For example, a parameter that supports cardiac function can include a degree of responsiveness to cardiac resynchronization therapy (CRT). As one of ordinary skill in the art would understand, when attempting CRT, it is preferable to select an electrode combination with a higher degree of responsiveness to CRT relative to other electrode combinations. Responsiveness to CRT, including methods to detect responsiveness, is disclosed in U.S. patent application Ser. No. 11/654,938, filed Jan. 18, 2007, which is hereby incorporated by reference in its entirety.


Parameters that support cardiac function consistent with a prescribed therapy may be related to contractility, blood pressure, dP/dt, stroke volume, cardiac output, contraction duration, hemodynamics, ventricular synchronization, activation sequence, depolarization and/or repolarization wave characteristics, intervals, responsiveness to cardiac resynchronization, electrode combination activation timing, stimulation strength/duration relationship, and battery consumption.


Various parameters that may be used for electrode combination selection are discussed in U.S. patent application Ser. No. 11/338,935, filed Jan. 25, 2006, and United States Publication No. 20080004667, both of which are hereby incorporated herein by reference in each respective entirety. Each of these incorporated references include parameters that support cardiac function and parameters that do not support cardiac function, the parameters usable in the methods disclosed herein for selecting an electrode combination.


Although the embodiment of FIG. 4a exemplified aspects of the present invention using phrenic nerve activation as a parameter that does not support cardiac function consistent with a prescribed therapy, numerous other parameters can alternatively, or additionally, be used. Parameters that do not support cardiac stimulation consistent with a prescribed therapy can include, but are not limited to, extra-cardiac stimulation, non-cardiac muscle stimulation (ex. skeletal muscle stimulation), unintended nerve stimulation, anodal cardiac stimulation, and excessively high or low impedance.


For example, a parameter that does not support cardiac function consistent with a prescribed therapy can include skeletal muscle activation, undesirable modes of cardiac activation, and/or undesirable nerve activation. Commonly owned U.S. Pat. No. 6,772,008, which is incorporated herein by reference, describes methods and systems that may be used in relation to detecting undesirable tissue activation. Skeletal muscle activation may be detected, for example, through the use of an accelerometer and/or other circuitry that senses accelerations indicating muscle movements that coincide with the output of the stimulation pulse.


Other methods of measuring tissue activation may involve, for example, the use of an electromyogram sensor (EMG), microphone, and/or other sensors. In one implementation, activation of the laryngeal muscles may be automatically detected using a microphone to detect the patient's coughing response to undesirable activation of the laryngeal muscles or nerves due to electrical stimulation.


Undesirable nerve or muscle activation may be detected by sensing a parameter that is directly or indirectly responsive to the activation. Undesirable nerve activation, such as activation of the vagus or phrenic nerves, for example, may be directly sensed using electroneurogram (ENG) electrodes and circuitry to measure and/or record nerve spikes and/or action potentials in a nerve. An ENG sensor may comprise a neural cuff and/or other type or neural electrodes located on or near the nerve of interest. For example, systems and methods for direct measurement of nerve activation signals are discussed in U.S. Pat. Nos. 4,573,481 and 5,658,318 which are incorporated herein by reference in their respective entireties. The ENG may comprise a helical neural electrode that wraps around the nerve and is electrically connected to circuitry configured to measure the nerve activity. The neural electrodes and circuitry operate to detect an electrical activation (action potential) of the nerve following application of the electrical stimulation pulse.


Tissue activation not consistent with a prescribed therapy can also include anodal stimulation of cardiac tissue. For example, pacing may cause the cardiac tissue to be stimulated at the site of the anode electrode instead of the cathode electrode pacing site as expected. Cardiac signals sensed following the pacing pulse are analyzed to determine if a pacing pulse captured the cardiac tissue. Capture via anodal activation may result in erroneous detection of capture, loss of capture, unintended cardiac activation, and/or unpredictable wave propagation. Some electrode combinations maybe more susceptible to anodal stimulation than other electrode combinations. As such, the occurrence of anodal stimulation is a non-beneficial parameter that does not support cardiac function and/or is not consistent with the patient's therapy.


An exemplary list of beneficial and/or non-beneficial parameters that may be sensed via the parameter sensors includes impedance, contraction duration, ventricular synchronization, activation sequence, depolarization and/or repolarization wave characteristics, intervals, responsiveness to cardiac resynchronization, electrode combination activation timing, extra-cardiac stimulation, non-cardiac muscle stimulation (ex. skeletal muscle stimulation), nerve stimulation, anodal cardiac stimulation, contractility, blood pressure, dP/dt, stroke volume, cardiac output, contraction duration, hemodynamics, ventricular synchronization, activation sequence, depolarization and/or repolarization wave characteristics, intervals, responsiveness to cardiac resynchronization, electrode combination activation timing, stimulation strength/duration relationship, among others. One or more of these sensed parameters can be used in conjunction with the methods discussed herein to select an electrode combination.



FIG. 4b illustrates a method 401, the method 401 comprising implanting 471a plurality of cardiac electrodes supported by one or more leads in a patient. The leads are then attached 472 to a patient external analyzer circuit. The patient external analyzer circuit could be a type of pacing system analyzer (e.g., evaluation unit 249). Once attached, electrical stimulation is delivered 473 using the plurality of cardiac electrodes and the analyzer circuit.


The method 401 can further include evaluating 474, for each electrode combination of a plurality of electrode combinations of the plurality of implanted cardiac electrodes, one or more first parameters and one or more second parameters produced by the electrical stimulation delivered using the electrode combination, the first parameters supportive of cardiac function consistent with a prescribed therapy and the second parameters not supportive of cardiac function consistent with the prescribed therapy. The evaluation can include a comparison between respective electrode combinations of parameters (e.g., first parameters) and non-beneficial parameters (e.g., second parameters) associated with each combination.


One or more electrode combinations of the plurality of cardiac electrodes can be selected 475. The selection 475 can be based on the evaluation 474. For example, the one or more electrode combinations selected could be selected as being associated with the one or more first parameters and less associated with the one or more second parameters for the one or more electrode combinations relative to other electrode combinations of the plurality of cardiac electrodes. Evaluation 474 and selection 475 can be performed in accordance in the various embodiments referenced herein.


An implantable pacing circuit can be programmed 476 to deliver a cardiac pacing therapy that preferentially uses the selected one or more electrode combinations relative to other electrode combinations of the plurality of cardiac electrodes. The steps of evaluating 474, selecting 475, and programming 476 can be performed automatically by circuitry, such as the patient external analyzer circuit.


Before, during, and/or after programming 476, the one or more leads can be detached 477 from the analyzer circuit and then attached 478 to the implantable pacing circuit. The implantable pacing circuit can be implanted 479. After implantation 479, cardiac pacing therapy can be delivered 480 using the implantable pacing circuit preferentially using the selected one or more electrode combinations relative to other electrode combinations of the plurality of cardiac electrodes in which ever manner the implantable pacing circuit is programmed.


In some embodiments, evaluating 474 the first parameters comprises evaluating a capture threshold for each of the plurality of electrode combinations, evaluating 474 the second parameters comprises evaluating extra-cardiac stimulation, and selecting 475 the one or more electrode combinations comprises selecting at least one electrode combination of the plurality of electrode combinations with the lowest capture threshold that does not cause extra-cardiac stimulation.


The method 401 may include determining an electrode combination ranking, the ranking having higher ranked one or more electrode combinations that are associated with the one or more first parameters being supportive of cardiac function consistent with a prescribed therapy and are less associated with the one or more second parameters not supportive of cardiac function consistent with the prescribed therapy for the one or more electrode combinations relative to lower ranked electrode combinations of the plurality of cardiac electrodes. Higher ranked electrode combinations can be used first and/or more relative to other electrode combinations by a therapy delivery device having the capability of automatically switching pacing configurations.


The method 401 may include receiving input instructions, wherein selecting the one or more electrode combinations of the plurality of cardiac electrodes is further based on the input instructions. The input instructions may be input by a doctor or other health professional, for example. The ability to input such instructions can enhance the flexibility of a pacing system, as discussed herein.


The input instructions may pertain to various different commands and/or parameters. For example, the input instructions may indicate the one or more first parameters and the one or more second parameters from a plurality of different parameters upon which the selection 475 of the one or more electrode combinations is based. The input instructions may indicate one or more of a maximum pulse amplitude at which the implantable pacing circuit is programmed 476 to deliver, a minimum pulse amplitude at which the implantable pacing circuit is 476 programmed to deliver, a maximum pulse width at which the implantable pacing circuit is programmed 476 to deliver, a minimum pulse amplitude at which the implantable pacing circuit is 476 programmed to deliver, and which electrode combinations of the plurality of electrodes will be used to deliver 480 electrical stimulation and be evaluated. The input instructions may indicate one of more electrode combinations for which the first parameter is to be directly measured based on the delivery 476 of the electrical stimulation and one or more electrode combinations for which the first parameter is to be estimated and not directly measured.


In some embodiments, there are at least two stages for a physician to interact with an evaluation unit and input instructions. For example, one stage for input is before the delivery 473 of the electrical stimulation. Such input might concern parameters for testing, such as how many electrode combinations will be tested, what therapy are the electrode combinations being evaluated/selected for (e.g., bi-ventricular pacing), how the selection algorithm is to be run (e.g., with extra weight given for certain parameters for which a patient is particularly susceptible, such as phrenic stimulation in a patient with emphysema), what parameters are to be evaluated, and/or how many electrode combinations are to be selected, among other options disclosed herein.


Another stage for input is after the selection 475 algorithm has been run. In this stage the physician may review the selection, order, and/or ranking of electrode combinations, and provide an approval or rejection. If approved, the selection/order/ranking can be used to program 476 the implantable pacing circuit. If rejected, testing (e.g., steps 473-475) can be redone with different input parameters regarding how the steps are performed (e.g., a change made to any of the inputs discussed in the paragraph above). This stage many also provide an opportunity for a physician to modify the selection/order/ranking (e.g., selecting a different electrode or combination or rearranging the order) with which the implantable pacing circuit is to be programmed 476.


In some embodiments, a physician is given the option of whether a system of the present invention will automatically accept a selection/order/ranking of electrode combinations and program an implantable medical device with the selection/order/ranking or give the physician the opportunity to review, approve, and/or modify the selection/order/ranking before programming 476. Auto-acceptance before programming can minimize the critical time during which a patient is undergoing an operation procedure, while requiring physician approval provides enhanced flexibility.


In some embodiments, if the delivery 473 using, and evaluation 474 of, an electrode combination using a particular electrode provide poor results (e.g., very high capture threshold and/or a low extra-cardiac stimulation threshold), then subsequent testing may automatically refrain from using one or both of the electrodes of that combination for further testing (e.g., steps 473-474). In some embodiments, one of the electrodes of a poorly performing first combination may be tested (e.g., steps 473-474) with a different electrode in a second combination, and if the second combination has improved performance relative to the first than it may be assumed that the other electrode of the first combination (unused in the second combination) is non-ideal and subsequent testing will not use that electrode. But if the second combination also has poor performance, then the electrode used in the first combination but not the second may be tested in a third combination. This manner of testing can minimize the time needed to select 475 an appropriate electrode combination during surgery and can minimize the number of tests that could be damaging (e.g., when the capture threshold is particularly high, causing the capture threshold test to deliver several high energy stimuli and/or causing damaging extra-cardiac stimulation).


The method 401 may include comparing respective first and second parameters associated with the electrode combinations between the electrode combinations, determining a ranking for at least some of the electrode combinations of the plurality of electrode combinations, the ranking based on the evaluations 474 of the first parameters and the second parameters, and switching delivery 480 of the cardiac pacing therapy from a first prioritized electrode combination of the ranking to a lower prioritized electrode combination of the ranking in response to a detected change in condition. The detected change in condition could be a change in impedance between the first prioritized electrode combination, for example, among the other changes discussed herein.


The method 401 may include identifying a location for implantation of a housing for the implantable pacing circuit, the housing having a housing electrode, and placing a catheter having an electrode at the location, wherein delivering 473 electrical stimulation using the plurality of cardiac electrodes and the analyzer circuit further comprises delivering electrical stimulation between one or more of the plurality of cardiac electrodes and the catheter electrode, evaluating 474 further comprises evaluating first and second parameters for each electrode combination using one or more of the plurality of cardiac electrodes and the catheter electrode, and selecting 475 further comprises selecting one or more electrode combinations of the plurality of cardiac electrodes and the housing electrode based on the evaluation.


The flowchart of FIG. 5 illustrates how information can be handled and managed according to a process 500 for selecting one or more electrode combinations. The process 500 includes an implanted device receiving 510 user information for electrode combination evaluation. The information used for electrode combination evaluation may be determined by a human.


The process 500 of FIG. 5 further includes measuring or estimating 520 electrode combination parameters identified as beneficial or non-beneficial parameters of interest. Measuring or estimating can be performed according to any method disclosed herein or known in the art.


By way of example, the received information may be the parameters of beneficial responsiveness to cardiac resynchronization and non-beneficial arrhythmia induction, among others. The responsiveness to cardiac resynchronization parameter and the arrhythmia induction parameter may then be measured or estimated 520 for a plurality of electrode combinations.


The process 500 of FIG. 5 further includes transmitting 530 electrode combination parameter information from the pacemaker to a programmer.


The process 500 of FIG. 5 further includes displaying 540 the electrode combination information on the programmer. The programmer can include a LCD screen or other means disclosed herein or known in the art for displaying information. Some or all of the electrode combination information may be displayed. The electrode combination information can be displayed as organized according to a rank, one or more groups, one or more categories, or other information organization scheme.


For example, the plurality of electrode combinations could be ranked, the electrode combination associated with the highest relative responsiveness to cardiac resynchronization therapy and the lowest relative occurrence of arrhythmia induction being ranked above electrode combinations with lower relative responsiveness to cardiac resynchronization therapy and higher occurrence of arrhythmia induction. In this way, the electrode combinations can be ranked so as to highlight those electrode combinations associated with the highest relative levels of beneficial parameters and the lowest relative levels of non-beneficial parameters, according to a prescribed therapy.


The programmer and/or the implantable device may include a processor and execute instructions stored in memory to algorithmically recommend one or more electrode combinations based on the transmitted electrode combination information. The particular recommended electrode combination or electrode combinations can be displayed by the programmer along with other electrode combinations and associated electrode combination parameter information, or the recommended electrode combination or electrode combinations may be displayed by the programmer with electrode combinations that were not recommended. The programmer may display one or more recommend electrode combinations and non-recommended electrode combinations, and visually highlight the one or more recommended electrode combinations. The programmer may display one or more recommended electrode combinations amongst other electrode combinations, but order the one or more recommended electrode combinations to indicate which electrode combination or combinations are recommended.


In addition to recommending an electrode combination and displaying the recommended electrode combination, the programmer may also give reasons why the particular electrode combination or combinations were recommended.


Although the particular process 500 of FIG. 5 states that the programmer displays the electrode combination information, other implementations are possible. For example, the electrode combination information may be displayed on a screen or printed from a device remote from the programmer.


Inputting 550 the electrode combination selection may be facilitated by a device displaying the electrode combination information, such as by a user selecting or confirming a displayed recommended electrode combination. Inputting 550 may be done by any methods disclosed herein or known in the art. In some embodiments of the invention, several electrode combination selections can be input by the user to the programmer.


The process 500 of FIG. 5 further includes the programmer 560 uploading an electrode combination selection to a pacemaker. The pacemaker of step 560 could be the implanted device of step 510. Uploading can be facilitated by the same means used to facilitate the implanted device receiving the user criteria, and/or transmitting the electrode combination parameter information.


The therapy device 600 illustrated in FIG. 6 employs circuitry capable of implementing the electrode combination selection techniques described herein. The therapy device 600 includes CRM circuitry enclosed within an implantable housing 601. The CRM circuitry is electrically coupled to an intracardiac lead system 610. Although an intracardiac lead system 610 is illustrated in FIG. 6, various other types of lead/electrode systems may additionally or alternatively be deployed. For example, the lead/electrode system may comprise and epicardial lead/electrode system including electrodes outside the heart and/or cardiac vasculature, such as a heart sock, an epicardial patch, and/or a subcutaneous system having electrodes implanted below the skin surface but outside the ribcage.


Portions of the intracardiac lead system 610 are inserted into the patient's heart. The lead system 610 includes cardiac pace/sense electrodes 651-656 positioned in, on, or about one or more heart chambers for sensing electrical signals from the patient's heart and/or delivering pacing pulses to the heart. The intracardiac sense/pace electrodes 651-656, such as those illustrated in FIG. 6, may be used to sense and/or pace one or more chambers of the heart, including the left ventricle, the right ventricle, the left atrium and/or the right atrium. The CRM circuitry controls the delivery of electrical stimulation pulses delivered via the electrodes 651-656. The electrical stimulation pulses may be used to ensure that the heart beats at a hemodynamically sufficient rate, may be used to improve the synchrony of the heart beats, may be used to increase the strength of the heart beats, and/or may be used for other therapeutic purposes to support cardiac function consistent with a prescribed therapy.


The lead system 610 includes defibrillation electrodes 641, 642 for delivering defibrillation/cardioversion pulses to the heart.


The left ventricular lead 605 incorporates multiple electrodes 654a-654d and 655 positioned at various locations within the coronary venous system proximate the left ventricle. Stimulating the ventricle at multiple locations in the left ventricle or at a single selected location may provide for increased cardiac output in a patients suffering from congestive heart failure (CHF), for example, and/or may provide for other benefits. Electrical stimulation pulses may be delivered via the selected electrodes according to a timing sequence and output configuration that enhances cardiac function. Although FIG. 6 illustrates multiple left ventricle electrodes, in other configurations, multiple electrodes may alternatively or additionally be provided in one or more of the right atrium, left atrium, and right ventricle.


Portions of the housing 601 of the implantable device 600 may optionally serve as one or more multiple can 681 or indifferent 682 electrodes. The housing 601 is illustrated as incorporating a header 689 that may be configured to facilitate removable attachment between one or more leads and the housing 601. The housing 601 of the therapy device 600 may include one or more can electrodes 681. The header 689 of the therapy device 600 may include one or more indifferent electrodes 682. The can 681 and/or indifferent 682 electrodes may be used to deliver pacing and/or defibrillation stimulation to the heart and/or for sensing electrical cardiac signals of the heart.


Communications circuitry is disposed within the housing 601 for facilitating communication between the CRM circuitry and a patient-external device, such as an external programmer or advanced patient management (APM) system. The therapy device 600 may also include sensors and appropriate circuitry for sensing a patient's metabolic need and adjusting the pacing pulses delivered to the heart and/or updating the electrode combination selection to accommodate the patient's metabolic need.


In some implementations, an APM system may be used to perform some of the processes discussed here, including evaluating, estimating, comparing, ordering, selecting, and updating, among others. Methods, structures, and/or techniques described herein, may incorporate various APM related methodologies, including features described in one or more of the following references: U.S. Pat. Nos. 6,221,011; 6,270,457; 6,277,072; 6,280,380; 6,312,378; 6,336,903; 6,358,203; 6,368,284; 6,398,728; and 6,440,066, which are hereby incorporated herein by reference in each of their respective entireties.


In certain embodiments, the therapy device 600 may include circuitry for detecting and treating cardiac tachyarrhythmia via defibrillation therapy and/or anti-tachyarrhythmia pacing (ATP). Configurations providing defibrillation capability may make use of defibrillation coils 641, 642 for delivering high energy pulses to the heart to terminate or mitigate tachyarrhythmia.


CRM devices using multiple electrodes, such as illustrated herein, are capable of delivering pacing pulses to multiple sites of the atria and/or ventricles during a cardiac cycle. Certain patients may benefit from activation of parts of a heart chamber, such as a ventricle, at different times in order to distribute the pumping load and/or depolarization sequence to different areas of the ventricle. A multi-electrode pacemaker has the capability of switching the output of pacing pulses between selected electrode combinations within a heart chamber during different cardiac cycles.



FIG. 7 illustrates an enlarged view of the area delineated by the dashed line circle in FIG. 6. FIG. 7 illustrates various pacing configurations 754a, 754b, 754c, 754d, 754cd, and 756 that may be used to deliver pacing pulses. Each of the pacing configurations 754a, 754b, 754c, 754d, 754cd, and 756 includes a common cathode electrode 655. Pacing configuration 754a is defined between cathode electrode 655 and anode electrode 654a; pacing configuration 754b is defined between cathode electrode 655 and anode electrode 654b; pacing configuration 754c is defined between cathode electrode 655 and anode electrode 654c; pacing configuration 754d is defined between cathode electrode 655 and anode electrode 654d; pacing configuration 756 is defined between cathode electrode 655 and anode electrode 656. In some configurations, the pacing configuration cathode, or the pacing configuration anode, or both, may comprise multiple electrodes. For example, pacing configuration 754cd includes cathode electrode 655 and anode electrodes 654c and 654d.


Each of the pacing configurations discussed above correspond to an electrode combination, and each pacing configuration and electrode combination likewise correspond to a pacing site and/or configuration. Delivering an identical electrical therapy using each electrode combination can elicit a different response from the patient. For example, therapy delivered at one electrode combination may be more likely to capture a chamber than another site. Also, therapy delivered using one electrode combination may be more likely to stimulate the diaphragm than another site. Therefore, it is important to identify the electrode combination through which optimum therapy can be delivered. In some cases, the optimum electrode combination for therapy is one that causes the desired response, using the smallest amount of power (such as battery storage), that does not cause undesirable stimulation. For example, an optimal electrode combination may be an electrode combination through which a delivered therapy captures the intended chamber requiring the smallest amount of voltage and current that does not stimulate the diaphragm or skeletal muscles, or other extra-cardiac tissue.


The flowchart of FIG. 8 illustrates a process 800 for estimating parameters, specifically, both beneficial (e.g., capture) and non-beneficial (e.g., undesirable activation) parameters. The process 800 includes measuring 810 a capture threshold of an initial electrode combination. The procedure for measuring 810 a capture threshold for the initial electrode combination can be done according to any capture threshold measuring methods disclosed herein or known in the art.


The process 800 of FIG. 8 further includes measuring 820 the impedance of the initial electrode combination. The impedance of the initial electrode combination may be measured with the capture threshold measurement of the initial electrode combination.


Any method for measuring impedance for each electrode combination may be used. One illustrative example of techniques and circuitry for determining the impedance of an electrode combination is described in commonly owned U.S. Pat. No. 6,076,015 which is incorporated herein by reference in its entirety.


In accordance with this approach, measurement of impedance involves an electrical stimulation source, such as an exciter. The exciter delivers an electrical excitation signal, such as a strobed sequence of current pulses or other measurement stimuli, to the heart between the electrode combination. In response to the excitation signal provided by an exciter, a response signal, e.g., voltage response value, is sensed by impedance detector circuitry. From the measured voltage response value and the known current value, the impedance of the electrode combination may be calculated.


The process 800 of FIG. 8 further includes measuring 830 the impedance of an alternate electrode combination. The measuring step 830 could be repeated for a plurality of different alternate electrode combinations.


The process 800 of FIG. 8 further includes measuring 840 an undesirable activation threshold of the initial electrode combination. The procedure for measuring 840 the undesirable activation threshold of the initial electrode combination may be similar to the procedure for measuring 810 the capture threshold of the initial electrode combination, and may be done concurrently with the measuring 810 of the capture threshold of the initial electrode combination.


Undesirable activation threshold measuring may be performed by iteratively increasing, decreasing, or in some way changing a voltage, current, duration, and/or some other therapy parameter between a series of test pulses that incrementally increase in energy level. One or more sensors can monitor for undesirable activation immediately after each test pulse is delivered. Using these methods, the point at which a parameter change causes undesirable activation can be identified as an undesirable activation threshold.


By way of example and not by way of limitation, the undesirable activation threshold for an electrode combination may be measured by delivering first test pulse using the initial electrode combination. During and/or after each test pulse is delivered, sensors can monitor for undesirable activation. For example, an accelerometer may monitor for contraction of the diaphragm indicating that the test pulse stimulated the phrenic nerve and/or diaphragm muscle. If no phrenic nerve and/or diaphragm muscle activation is detected after delivery of a test pulse, then the test pulse is increased a predetermined amount and another test pulse is delivered. This scanning process of delivering, monitoring, and incrementing is repeated until phrenic nerve and/or diaphragm muscle activation is detected. One or more of the test pulse energy parameters at which the first undesirable activation is detected, such as voltage, can be considered to be the undesirable activation threshold.


The process 800 of FIG. 8 further includes estimating 850 a capture threshold of the alternate electrode combination. Estimating 850 the capture threshold of the alternate electrode combination can be performed by using the capture threshold and the impedance of the initial electrode combination and the impedance of the alternate electrode combination.


Estimation of the capture threshold of the alternate electrode combination in accordance with some embodiments described herein, is based on the assumption that for a given pulse width, the capture threshold voltage for the initial electrode combination and the capture threshold voltage for the alternate electrode combination require an equal amount of current, energy or charge. The relationship between the capture threshold voltage and current for each electrode combination can be defined by Ohm's law as follows:

Vth=IthZ,  [1]


where Vth is the capture threshold voltage of the electrode combination, Ith is the capture threshold current of the electrode combination, and Z is the impedance of the electrode combination.


For the initial electrode combination, the relationship between the capture threshold voltage and current may be expressed as:

Vth-in=Ith-inZin  [2]


where, Vth-in is the capture threshold voltage of the initial electrode combination, Ith-in is the capture threshold current of the initial electrode combination, and Zin is the impedance of the initial electrode combination.


For the alternate electrode combination, the relationship between the capture threshold voltage and current may be expressed as:

Vth-ex=Ith-exZex  [3]


where, Vth-ex is the capture threshold voltage of the alternate electrode combination, Ith-ex is the capture threshold current of the alternate electrode combination, and Zex is the impedance of the alternate electrode combination.


As previously stated, in some embodiments, the capture threshold current of two electrode combinations having a common electrode is assumed to be about equal, or, Ith-in=Ith-ex.


The relationship between the alternate and initial capture threshold voltages may then be expressed as:










V

th


-


ex


=



V

th


-


i





n



Z

i





n





Z
ex






[
4
]







By the processes outlined above Vth-in, Zin, and, Zex are measured parameters, and the capture threshold voltage may be estimated based on these measured parameters.


The accuracy of an estimation calculation of a capture threshold for a particular electrode combination may be increased if the measured electrode combination has the same polarity as the electrode combination for which the capture threshold is being estimated. Methods for parameter estimation, including capture threshold estimation, are disclosed in United States Publication No. 20080046019, herein incorporated by reference in its entirety.


The process 800 of FIG. 8 further includes estimating 860 an undesirable activation threshold of the alternate electrode combination. Estimating 860 the undesirable activation threshold of the alternate electrode combination can be performed by using the undesirable activation threshold and the impedance of the initial electrode combination and the impedance of the alternate electrode combination. Estimating 850 the undesirable activation threshold of the alternative electrode combination can be performing using methods similar to estimating a capture threshold, as discussed and referenced herein.


Estimating a threshold, such as estimating a capture threshold and/or an undesirable activation threshold, instead of measuring the same, can provide several advantages. For example, in some circumstances, measuring and estimating of some thresholds for a plurality of electrode combinations can be done faster than measuring the threshold for each electrode combination of the plurality of electrode combinations, as one or more test pulses do not need to be delivered for each electrode combination. Additionally, a test pulse can be uncomfortable for a patient to experience, and therefore minimizing the number of test pulses can be preferable.


Appropriate selection of the energy parameters and an electrode combination that produce the desired activation that supports cardiac and avoid the undesirable activation, consistent with a prescribed therapy, can involve the use of strength-duration relationships measured or otherwise provided. The selection of an electrode combination may involve evaluating the cardiac response across ranges of one or more of pulse width, pulse amplitude, frequency, duty cycle, pulse geometry, and/or other energy parameters.


Capture is produced by pacing pulses having sufficient energy to produce a propagating wavefront of electrical depolarization that results in a contraction of the heart tissue. The energy of the pacing pulse is a product of two energy parameters—the amplitude of the pacing pulse and the duration of the pulse. Thus, the capture threshold voltage over a range of pulse widths may be expressed in a strength-duration plot 910 as illustrated in FIG. 9.


Undesirable activation by a pacing pulse is also dependent on the pulse energy. The strength-duration plot 920 for undesirable activation may have a different characteristic from the capture strength-duration and may have a relationship between pacing pulse voltage and pacing pulse width.


A CRM device, such as a pacemaker, may have the capability to adjust the pacing pulse energy by modifying either or both the pulse width and the pulse amplitude to produce capture. Identical changes in pacing pulse energy may cause different changes when applied to identical therapies using different electrode combinations. Determining a strength-duration plot 910 for a plurality of electrode combinations can aid in selecting an electrode combination, as the strength-duration plots can be a basis for comparison of beneficial and non-beneficial pacing characteristics and parameters.



FIG. 9 provides graphs illustrating a strength-duration plot 910 associated with capture and a strength-duration plot 920 associated with an undesirable activation. A pacing pulse having a pulse width of W1 requires a pulse amplitude of Vc1 to produce capture. A pacing pulse having pulse width W1 and pulse amplitude Vc1 exceeds the voltage threshold, Vu1, for an undesirable activation. If the pulse width is increased to W2, the voltage required for capture, Vc2, is less than the voltage required for undesirable activation, Vu2. Therefore, pacing pulses can be delivered at the pacing energy associated with W2, Vc2 to provide capture of the heart without causing the undesirable activation. The shaded area 950 between the plots 910, 920 indicates the energy parameter values that may be used to produce capture and avoid undesirable activation.


If multiple-point strength duration plots are known for capture and undesirable activation, the energy parameters for a particular electrode combination may be determined based on these two plots. For example, returning to FIG. 9, the area 950 to the right of the intersection 951 of the strength-duration plots 910, 920 defines the set of energy parameter values that produce capture while avoiding undesirable stimulation. Energy parameter values that fall within this region 950, or within a modified region 960 that includes appropriate safety margins for pacing 961 and undesirable activation 962, may be selected.


According to some embodiments of the present invention, various parameters and/or characteristics, such as ranges, windows, and/or areas, of the plots of FIG. 9 may be used in selecting an electrode combination. For example, equivalent strength-duration plots 910 and strength-duration plot 920 associated with an undesirable activation may be generated for each of a plurality of electrode combinations. Then the respective areas 960 and/or 950 may be compared between the electrode combinations, the comparison used to determine an order for the electrode combinations. Because the parameters represented by area 960 represent the available ranges of voltage and pulse width within an acceptable safety margin, electrode combinations with relatively large area 960 may be favorably ranked in an electrode combination order. A comparison can also be made between various electrode combinations of the voltage ranges, at a specific pulse width, that captures the heart without causing undesirable stimulation, with priority in the order being given to electrode combinations with the largest ranges.


Strength-duration plots, such as plots 910 and 920, can provide other parameters for evaluating and comparing to order electrode combinations and select an electrode combination. For example, criteria for selecting an electrode combination may specify that the selected combination is the combination with the lowest capture threshold that does not exceed a certain pulse width.


Methods and systems for determining and using strength-duration relationships are described in United States Publication No. 20080071318, which is incorporated herein by reference in its entirety.


The flowchart of FIG. 10 illustrates a process 1000 for determining capture thresholds for a plurality of electrode combinations. The process 1000 includes initiating 1010 a step down threshold test, and setting an initial pacing energy. The process 1000 further includes delivering 1020 a pacing pulse at pacing energy to an electrode combination. The electrode combination may be an initial electrode combination. The pacing energy may be the initial pacing energy, particularly in the case where step 1020 has not been previously performed.


After delivery 1020 of the pacing pulse, the process monitors to determine whether loss of capture is detected 1030. If loss of capture is detected, then the process 1000 proceeds to determining 1040 other beneficial parameters, and storing the beneficial parameter information. The other beneficial parameters determined could be any of the beneficial parameters discussed herein or known in the art that support cardiac function consistent with a prescribed therapy. Examples of such beneficial parameters include electrode combination responsiveness to CRT, low battery consumption, and cardiac output, among other parameters.


The process determines 1060 non-beneficial parameters, and stores the non-beneficial parameter information. The non-beneficial parameters determined could be any of the non-beneficial parameters discussed herein or known in the art. Examples of such non-beneficial parameters include extra-cardiac stimulation and anodal stimulation, among other parameters.


After determining 1060 non-beneficial parameters, the process 1000 proceeds to decrease 1070 the electrode combination energy. After the electrode combination energy is decreased 1070, a pacing pulse is delivered 1020 using the electrode combination using the energy level to which the energy level was decreased. In this way, steps 1020, 1030, 1040, 1060, and 1070 can be repeated, decreasing 1070 the pacing energy for the electrode combination until loss of capture is detected 1030. As such, steps 1010, 1020, 1030, 1040, 1060, and 1070 can scan for a capture threshold, the capture threshold being stored 1050 in memory for the electrode combination once it has been identified by a detected loss of capture 1030.


After detecting loss of capture 1030 and storing 1050 the capture threshold for the electrode combination, the process 1000 evaluates whether there are more electrode combinations to test 1090. If there are more electrode combinations to test, then the process 1000 switches 1080 to the next electrode combination and repeats steps 1020, 1030, 1040, 1060, and 1070 to determine the capture threshold for the next electrode combination. When there are no more electrode combinations to test 1090, the test ends 1095. As such, process 1000 can be used to determine the capture threshold, beneficial parameters, and non-beneficial parameters for one or more of a plurality of electrode combinations. This information can then be used in conjunction with other methods disclosed herein to select an electrode combination, among other things.


Although the process 1000 of FIG. 10 used a step down capture threshold test, in other implementations, the capture threshold test may involve a step-up capture threshold test, a binary search test, or may involve other capture threshold testing methods as are known in the art. Similar methods to those discussed herein can be used to determine other parameter thresholds.


The capture threshold of an electrode combination may change over time due to various physiological effects. Testing the capture threshold for a particular electrode combination may be implemented periodically or on command to ensure that the pacing energy delivered to the particular electrode combination remains sufficient to produce capture.


The flowchart of FIG. 11 illustrates a process 1100 for automatically updating a therapy electrode combination after an initial selection. Beneficial parameters and non-beneficial parameters are measured or estimated 1110 for a plurality of electrode combinations. Step 1110 can be scheduled to occur at implant, or could be initiated after implant. As in other embodiments discussed herein, the beneficial parameters can be parameters that support cardiac function consistent with a prescribed therapy and the non-beneficial parameters can be parameters that do not support cardiac function consistent with a prescribed therapy.


After the beneficial and non-beneficial parameters are evaluated 1110, the beneficial and non-beneficial parameters are compared 1120. Based on the comparison, electrode combinations are selected 1130. Therapy is then delivered 1140 using the selected electrode combinations. After therapy is delivered 1140 using the selected electrode combinations, the process 1100 evaluates whether a periodic update is required 1150. A periodic update could be mandated by a programmed update schedule, or may be performed upon command.


If no periodic update is required, then therapy continues to be delivered 1140 using the selected electrode combinations. However, if a periodic update is required, then the process automatically re-measures or re-estimates 1160 beneficial and non-beneficial parameters for the plurality of electrode combinations. Automatically re-measuring or re-estimating 1160 could be performed by a method similar or identical to the method used to measure or estimate beneficial parameters 1110 at implant. After re-measuring or re-estimating the beneficial and non-beneficial parameters, the re-measured or re-estimated parameters are compared 1120, such that electrode combinations may then be selected 1130 and used to deliver 1140 a therapy.


The flowchart of FIG. 12 illustrates a process 1200 for ranking electrode combinations and changing the electrode combination being used for therapy delivery using the ranking. The process 1200 begins with measuring or estimating 1210 beneficial parameters and non-beneficial parameters for a plurality of electrode combinations. As in other embodiments discussed herein, the beneficial parameters can be parameters that support cardiac function consistent with a prescribed therapy and the non-beneficial parameters can be parameters that do not support cardiac function consistent with a prescribed therapy.


After the beneficial and non-beneficial parameters are measured or estimated 1210, the beneficial and non-beneficial parameters are ranked 1220.


Ranking can include establishing a hierarchical relationship between a plurality of electrode combinations based on parameters. In such embodiments, the highest ranked electrode combination maybe the electrode combination with most favorable beneficial parameter and non-beneficial parameter values relative to other electrode combinations, which are likewise ordered in a rank.


Based on the ranking, electrode combinations are selected 1230. Therapy is then delivered 1240 using the selected electrode combinations.


After therapy is delivered 1240 using the selected electrode combinations, the process 1200 senses 1250 for one or more conditions indicative of a change in the patient's status. In some embodiments of the invention, a sensed change in the patient status could include a sensed change in activity level, posture, respiration, electrode position, body fluid chemistry, blood or airway oxygen level, blood pressure, hydration, hemodynamics, or electrode combination impedance, among other events.


If no status change is detected 1260, then therapy continues to be delivered 1240 using the selected electrode combinations. However, if a status change is detected 1260, then the process selects 1270 the next ranked electrode combination or sites for therapy delivery and delivers 1240 therapy via the selected site or sites. According to the particular process 1200 of FIG. 12, no re-measuring or re-estimating of parameters is needed, as the process uses the ranking determined in step 1220.


Although the embodiment of FIG. 12 uses a ranking method to order the electrode combinations, other ordering methods are contemplated within the scope of the present invention. Ordering may include grouping, attributing, categorizing, or other processes that are based on parameter evaluations.


Ordering can include grouping a plurality of electrode combinations according to one or more of the parameters that support cardiac function and one or more of the parameters that do not support cardiac function, consistent with a prescribed therapy. For example, the electrode combinations of the plurality of electrode combinations can be grouped in various categories, each category associated with a different type of detected undesirable stimulation (ex. phrenic nerve, anodal stimulation, excessive impedance) and/or parameter that does support cardiac function (ex. low capture threshold; low impedance).


In some applications, it is desirable to select pacing electrodes based on a number of interrelated parameters. For example, in cardiac resynchronization therapy (CRT) which involves left ventricular pacing, it is desirable to deliver pacing pulses that capture the heart tissue to produce a left ventricular contraction without unwanted stimulation to other body structures. However, the pacing therapy may be ineffective or less effective if pacing is delivered to a site that is a non-responder site to CRT. Thus, selection of a responder site for therapy delivery should also be taken into account. In some embodiments, the electrode selection may consider several inter-related parameters, ordering, ranking, grouping and/or recommending the electrode combinations to achieve specific therapeutic goals.


In some embodiments, the ordering, ranking, grouping and/or recommending may be performed using a multivariable optimization procedure. Electrode selection using some level of algorithmic automaticity is particularly useful when a large number of electrode combinations are possible in conjunction with the evaluation of several parameters.


Ordering can be based on the evaluations of any number of different parameters that support cardiac function consistent with a prescribed therapy and any number of parameters that do not support cardiac function consistent with a prescribed therapy. For example, ordering can be based on a comparison of the respective evaluations of two different parameters that each support cardiac function consistent with a prescribed therapy and one or more parameters that do not support cardiac function consistent with a prescribed therapy, each evaluation conducted for each electrode combination of a plurality of electrode combinations. In this example, the two different parameters that support cardiac function consistent with a prescribed therapy could be left ventricular capture threshold and improved hemodynamics, while the parameter that does not support cardiac function consistent with a prescribed therapy could be phrenic nerve activation.


Evaluating, ordering, and other comparisons of the present invention based on multiple parameters can include one, two, three, four, five, or more different parameters that support cardiac function consistent with a prescribed therapy and one, two, three, four, five, or more different parameters that do not support cardiac function consistent with a prescribed therapy.


In some embodiments of the invention, not all possible electrode combinations will be evaluated. For example, a very high capture threshold associated with a first electrode combination may indicate that another electrode combination using the cathode or the anode of the first electrode combination may as well have a very high capture threshold. In such cases, evaluations of parameters for electrode combinations using those electrodes and/or electrodes proximate one of those electrodes will not be conducted. Forgoing evaluation of those electrode combinations likely to perform poorly based on the performance of similar electrode combinations can save evaluation time, energy, and avoid unnecessary stimulation while testing patient response. The forgoing of evaluating certain electrode combinations can be based on any of the other parameters discussed herein.


The components, functionality, and structural configurations depicted herein are intended to provide an understanding of various features and combination of features that may be incorporated in an implantable pacemaker/defibrillator. It is understood that a wide variety of cardiac monitoring and/or stimulation device configurations are contemplated, ranging from relatively sophisticated to relatively simple designs. As such, particular cardiac device configurations may include particular features as described herein, while other such device configurations may exclude particular features described herein.


Various modifications and additions can be made to the preferred embodiments discussed hereinabove without departing from the scope of the present invention. Accordingly, the scope of the present invention should not be limited by the particular embodiments described above, but should be defined only by the claims set forth below and equivalents thereof.

Claims
  • 1. A programmer for programming an implantable cardiac rhythm management (CRM) device, wherein the CRM device includes an implantable lead having two or more electrodes, and wherein the CRM device is capable of selecting an electrode combination from a plurality of electrode combinations for use during therapy, the programmer comprising: a user interface including a display;an I/O unit for communicating with an implantable CRM device; anda data processor coupled to the display and the I/O unit, the data processor programmed to: receive measured or estimated values for two or more parameters for each of two or more electrode combinations of the implantable CRM device, wherein at least one of the two or more parameters relates to battery consumption for a respective one of the electrode combinations;compare battery consumption parameters for the electrode combinations;display the values for each of two or more of the parameters for at least two of the two or more electrode combinations on the display of the user interface, including a table showing the compared battery consumption parameters for the electrode combinations;receive a user selection of an electrode combination based on the displayed values of the two or more parameters for the at least two of the two or more electrode combinations via the user interface; andupload the selected electrode combination to the CRM device via the I/O unit.
  • 2. The programmer of claim 1, wherein the data processor is programmed to display the values for each of two or more of the parameters for at least two of the two or more electrode combinations in a table format.
  • 3. The programmer of claim 1, wherein the two or more parameters include a parameter related to a capture threshold, a parameter related to an impedance, and a parameter related to phrenic nerve stimulation.
  • 4. The programmer of claim 1, wherein the two or more parameters include a parameter related to a capture threshold and a parameter related to phrenic nerve stimulation.
  • 5. A method for programming an implantable cardiac rhythm management (CRM) device using an external programmer that has a display, wherein the CRM device includes an implantable lead having two or more electrodes, and wherein the CRM device is capable of selecting an electrode combination from a plurality of electrode combinations for use during therapy, the method comprising: establishing communication between the implantable CRM device and the external programmer;measuring or estimating two or more parameter values for each of two or more of the electrode combinations, the two or more parameter values including a value related to an expected battery consumption for the corresponding electrode combination, and the measuring or estimating performed at least in part by the implantable CRM device;communicating information about the two or more parameter values from the implantable CRM device to the external programmer;comparing battery consumption parameters for the electrode combinations using a table, displayed on the display of the external programmer, the table including the battery consumption parameters associated with the electrode combinations, and the comparing performed at least in part by the implantable CRM device or the external programmer; andconfiguring the CRM device for delivering a cardiac therapy using an electrode combination that is selected based on the comparison of the battery consumption parameters.
  • 6. The method of claim 5, wherein the table is a multi-dimensional table.
  • 7. The method of claim 5, wherein the two or more parameter values include a value related to a measured capture threshold for the corresponding electrode combination.
  • 8. The method of claim 5, wherein the two or more parameters include a value related to an impedance for the corresponding electrode combination.
  • 9. The method of claim 5, wherein the two or more parameters include a value related to phrenic nerve stimulation for the corresponding electrode combination.
  • 10. The method of claim 5, wherein the two or more parameter values include: a value related to a capture threshold for the corresponding electrode combination; anda value related to phrenic nerve stimulation for the corresponding electrode combination.
  • 11. The method of claim 5, wherein the two or more parameter values include: a value related to a capture threshold for the corresponding electrode combination.
  • 12. The method of claim 5, wherein the two or more parameter values include: a value related to depolarization and/or repolarization wave characteristics of the heart.
  • 13. The method of claim 5, wherein the two or more parameter values include: a value related to ventricular synchronization.
  • 14. The method of claim 13, wherein the two or more parameter values further include: a value related to an impedance for the corresponding electrode combination;a value related to a capture threshold for the corresponding electrode combination; anda value related to phrenic nerve stimulation for the corresponding electrode combination.
  • 15. The method of claim 5, further comprising: wherein the configuring the CRM device for delivering a cardiac therapy includes using the external programmer to select an electrode combination for the cardiac therapy based on one or more of the two or more parameter values; anduploading the selected electrode combination to the CRM device.
  • 16. A method, comprising: measuring or estimating values for two or more parameters for each of two or more electrode combinations of an implantable medical device, wherein at least one of the two or more parameters relates to battery consumption, the measuring or estimating performed at least in part by an implantable cardiac rhythm management (CRM) device or an external programmer device; anddisplaying the values for the two or more parameters for each of the two or more electrode combinations on a display of the external programmer device;selecting, using the external programmer device, at least one of the two or more electrode combinations for use by the CRM device for delivering a cardiac therapy, the selecting based on one or more of the displayed values for the two or more parameter; andconfiguring the CRM device for delivering the cardiac therapy using the selected at least one of the two or more electrode combinations.
  • 17. The method of claim 16, wherein at least one of the two or more parameters relates to a capture threshold measured by the implantable medical device, and at least one of the two or more parameters relates to whether phrenic nerve stimulation was identified or not.
  • 18. The method of claim 16, wherein at least one of the two or more parameters relates to an impedance measured using the implantable device.
  • 19. The method of claim 16, wherein the values for each of the two or more parameters are displayed for each of the two or more electrode combinations in a table format.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation of U.S. patent application Ser. No. 13/869,741, filed on Apr. 24, 2013; which is a continuation of pending U.S. application Ser. No. 12/220,496, filed July 24, 2008; which is a continuation-in-part of U.S. patent application Ser. No. 11/890,668 filed on Aug. 7, 2007, now U.S. Pat. No. 8,265,736, all of which are hereby incorporated by reference herein.

US Referenced Citations (588)
Number Name Date Kind
3920005 Gombrich et al. Nov 1975 A
4023564 Valiquette et al. May 1977 A
4340063 Maurer Jul 1982 A
4364396 Barthel Dec 1982 A
4365636 Barker et al. Dec 1982 A
4458692 Simson Jul 1984 A
4476869 Bihn Oct 1984 A
4550221 Mabusth Oct 1985 A
4552154 Hartlaub Nov 1985 A
4562841 Brockway et al. Jan 1986 A
4573481 Bullara et al. Mar 1986 A
4648407 Sackner Mar 1987 A
4680708 Ambos et al. Jul 1987 A
4686332 Greanias Aug 1987 A
4827935 Geddes et al. May 1989 A
4860766 Sackner Aug 1989 A
4878497 Callaghan et al. Nov 1989 A
4928688 Mower May 1990 A
4953551 Mehra et al. Sep 1990 A
4979507 Heinz et al. Dec 1990 A
5000189 Throne et al. Mar 1991 A
5033467 Bocchi et al. Jul 1991 A
5036849 Hauck et al. Aug 1991 A
5101831 Koyama et al. Apr 1992 A
5105354 Nishimura et al. Apr 1992 A
5133353 Hauser Jul 1992 A
5146918 Kallok Sep 1992 A
5170784 Ramon Dec 1992 A
5178156 Takishima et al. Jan 1993 A
5179945 Van Hofwegen et al. Jan 1993 A
5184615 Nappholz et al. Feb 1993 A
5187657 Forbes et al. Feb 1993 A
5203348 Dahl et al. Apr 1993 A
5209229 Gilli et al. May 1993 A
5217021 Steinhaus et al. Jun 1993 A
5222493 Sholder Jun 1993 A
5230337 Dahl et al. Jul 1993 A
5233983 Markowitz Aug 1993 A
5261400 Bardy Nov 1993 A
5271411 Ripley et al. Dec 1993 A
5273035 Markowitz et al. Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5292338 Bardy Mar 1994 A
5300106 Dahl et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5313953 Yomtov et al. May 1994 A
5314430 Bardy May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck Jun 1994 A
5324310 Greeninger Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5331996 Ziehm Jul 1994 A
5333095 Stevenson et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5350410 Kleks et al. Sep 1994 A
5353788 Miles et al. Oct 1994 A
5360442 Dahl et al. Nov 1994 A
5366496 Dahl et al. Nov 1994 A
5372606 Lang Dec 1994 A
5374280 den Dulk Dec 1994 A
5376106 Stahmann Dec 1994 A
5376476 Eylon et al. Dec 1994 A
5388578 Yomtov et al. Feb 1995 A
5391200 KenKnight Feb 1995 A
5397342 Heil et al. Mar 1995 A
5397956 Araki et al. Mar 1995 A
5411031 Yomtov et al. May 1995 A
5411525 Swanson et al. May 1995 A
5411529 Hudrlik et al. May 1995 A
5411533 Dubreuil et al. May 1995 A
5411539 Neisz et al. May 1995 A
5431693 Schroeppel Jul 1995 A
5439482 Adams et al. Aug 1995 A
5441518 Adams et al. Aug 1995 A
5443485 Housworth et al. Aug 1995 A
5447519 Peterson Sep 1995 A
5468254 Hahn et al. Nov 1995 A
5485851 Erickson Jan 1996 A
5517983 Deighan et al. May 1996 A
5520191 Karlsson et al. May 1996 A
5522860 Molin et al. Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5534017 van Krieken et al. Jul 1996 A
5540727 Tockman et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5549655 Erickson et al. Aug 1996 A
5557210 Cappa et al. Sep 1996 A
5591216 Testerman et al. Jan 1997 A
5603732 Dahl et al. Feb 1997 A
5620466 Haefner et al. Apr 1997 A
5626620 Kieval May 1997 A
5634938 Swanson et al. Jun 1997 A
5641326 Adams Jun 1997 A
5650759 Hittman et al. Jul 1997 A
5658318 Stroetmann et al. Aug 1997 A
5662688 Haefner et al. Sep 1997 A
5662696 Kroll et al. Sep 1997 A
5674254 van Krieken Oct 1997 A
5683431 Wang Nov 1997 A
5683434 Archer Nov 1997 A
5697953 Kroll et al. Dec 1997 A
5697956 Bornzin Dec 1997 A
5704365 Albrecht et al. Jan 1998 A
5713933 Condie et al. Feb 1998 A
5715812 Deighan et al. Feb 1998 A
5718720 Prutchi et al. Feb 1998 A
5724984 Arnold et al. Mar 1998 A
5735883 Paul et al. Apr 1998 A
5738102 Lemelson Apr 1998 A
5779645 Olson et al. Jul 1998 A
5814087 Renirie Sep 1998 A
5817027 Arand et al. Oct 1998 A
5827326 Kroll et al. Oct 1998 A
5836987 Baumann et al. Nov 1998 A
5844506 Binstead et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5857977 Caswell et al. Jan 1999 A
5860918 Schradi et al. Jan 1999 A
5861011 Stoop Jan 1999 A
5861013 Peck et al. Jan 1999 A
5871512 Hemming et al. Feb 1999 A
5873898 Hemming et al. Feb 1999 A
5876353 Riff et al. Mar 1999 A
5895414 Sanchez-Zambrano Apr 1999 A
5916243 KenKnight et al. Jun 1999 A
5944680 Christopherson et al. Aug 1999 A
5957956 Kroll et al. Sep 1999 A
5964778 Fugoso et al. Oct 1999 A
5974340 Kadhiresan Oct 1999 A
5987352 Klein et al. Nov 1999 A
6026320 Carlson et al. Feb 2000 A
6038474 Zhu et al. Mar 2000 A
6044298 Salo et al. Mar 2000 A
6045513 Stone et al. Apr 2000 A
6049730 Kristbjarnarson Apr 2000 A
6052620 Gillberg et al. Apr 2000 A
6055454 Heemels Apr 2000 A
6064910 Andersson et al. May 2000 A
6076014 Alt Jun 2000 A
6076015 Hartley et al. Jun 2000 A
6084253 Turner Jul 2000 A
6091973 Colla et al. Jul 2000 A
6101416 Sloman Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6120441 Griebel et al. Sep 2000 A
6126611 Bourgeois et al. Oct 2000 A
6128534 Park et al. Oct 2000 A
6128535 Maarse Oct 2000 A
6132384 Christopherson et al. Oct 2000 A
6134473 Hemming et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6147680 Tareev Nov 2000 A
6148230 KenKnight Nov 2000 A
6148234 Struble Nov 2000 A
6163724 Hemming et al. Dec 2000 A
6166554 Webster et al. Dec 2000 A
6169921 KenKnight et al. Jan 2001 B1
6175766 Bornzin et al. Jan 2001 B1
6190326 McKinnon et al. Feb 2001 B1
6192275 Zhu et al. Feb 2001 B1
6221011 Bardy Apr 2001 B1
6226551 Zhu et al. May 2001 B1
6227072 Ritchey May 2001 B1
6238419 Lindgren et al. May 2001 B1
6251126 Ottenhoff et al. Jun 2001 B1
6253102 Hsu et al. Jun 2001 B1
6258039 Okamoto et al. Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266554 Hsu et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6275731 Zhu et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6280462 Hauser et al. Aug 2001 B1
6282440 Brodnick et al. Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6295330 Skog et al. Sep 2001 B1
6299581 Rapoport et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6312388 Marcovecchio et al. Nov 2001 B1
6324421 Stadler et al. Nov 2001 B1
6324427 Florio Nov 2001 B1
6336903 Bardy Jan 2002 B1
6345201 Sloman et al. Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6351673 Ding et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6360127 Ding et al. Mar 2002 B1
6363270 Colla et al. Mar 2002 B1
6363281 Zhu et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6368287 Hadas Apr 2002 B1
6371922 Baumann Apr 2002 B1
6375621 Sullivan Apr 2002 B1
6393316 Gillberg et al. May 2002 B1
6398728 Bardy Jun 2002 B1
6409675 Turcott Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6415174 Bebehani et al. Jul 2002 B1
6415183 Scheiner Jul 2002 B1
6418340 Conley et al. Jul 2002 B1
6418343 Zhang et al. Jul 2002 B1
6421564 Yerich et al. Jul 2002 B1
6424234 Stevenson Jul 2002 B1
6424865 Ding Jul 2002 B1
6434417 Lovett Aug 2002 B1
6434428 Sloman et al. Aug 2002 B1
6438409 Malik et al. Aug 2002 B1
6438410 Hsu Aug 2002 B2
6440066 Bardy Aug 2002 B1
6449503 Hsu Sep 2002 B1
6456481 Stevenson Sep 2002 B1
6456880 Park et al. Sep 2002 B1
6456881 Bornzin et al. Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6463327 Lurie et al. Oct 2002 B1
6466820 Juran et al. Oct 2002 B1
6477415 Yerich et al. Nov 2002 B1
6477422 Splett Nov 2002 B1
6480733 Turcott Nov 2002 B1
6480734 Zhang et al. Nov 2002 B1
6487443 Olson et al. Nov 2002 B2
6491639 Turcott Dec 2002 B1
6493586 Stahmann et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6505067 Lee et al. Jan 2003 B1
6505071 Zhu et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6512953 Florio et al. Jan 2003 B2
6522915 Ceballos et al. Feb 2003 B1
6542775 Ding et al. Apr 2003 B2
6553259 Mouchawar et al. Apr 2003 B2
6564106 Guck et al. May 2003 B2
6567701 Vonk May 2003 B2
6574507 Bonnet Jun 2003 B1
6587726 Lurie et al. Jul 2003 B2
6589188 Street et al. Jul 2003 B1
6595927 Pitts-Crick et al. Jul 2003 B2
6597951 Kramer et al. Jul 2003 B2
6600949 Turcott Jul 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6611712 Spinelli et al. Aug 2003 B2
6615082 Mandell Sep 2003 B1
6615083 Küpper et al. Sep 2003 B2
6615089 Russie et al. Sep 2003 B1
6618619 Florio et al. Sep 2003 B1
6622046 Fraley et al. Sep 2003 B2
6631290 Guck et al. Oct 2003 B1
6640136 Helland et al. Oct 2003 B1
6641542 Cho et al. Nov 2003 B2
6654637 Rouw et al. Nov 2003 B2
6658293 Vonk Dec 2003 B2
6684100 Sweeney et al. Jan 2004 B1
6690967 Meij et al. Feb 2004 B2
6701170 Stetson Mar 2004 B2
6708058 Kim et al. Mar 2004 B2
6725085 Schwartzman et al. Apr 2004 B2
6725086 Marinello Apr 2004 B2
6731973 Voith May 2004 B2
6731983 Ericksen et al. May 2004 B2
6731984 Cho et al. May 2004 B2
6731985 Poore et al. May 2004 B2
6738668 Mouchawar et al. May 2004 B1
6738669 Sloman et al. May 2004 B1
6754523 Toole Jun 2004 B2
6754528 Bardy et al. Jun 2004 B2
6760615 Ferek-Petric Jul 2004 B2
6766190 Ferek-Petric Jul 2004 B2
6768923 Ding et al. Jul 2004 B2
6768924 Ding et al. Jul 2004 B2
6772008 Zhu et al. Aug 2004 B2
6773404 Poezevera et al. Aug 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6782291 Bornzin et al. Aug 2004 B1
6788974 Bardy et al. Sep 2004 B2
6830548 Bonnet et al. Dec 2004 B2
6834204 Ostroff et al. Dec 2004 B2
6856835 Bardy et al. Feb 2005 B2
6865417 Rissmann Mar 2005 B2
6866044 Bardy et al. Mar 2005 B2
6881192 Park Apr 2005 B1
6884218 Olson Apr 2005 B2
6885893 Lu Apr 2005 B1
6888538 Ely et al. May 2005 B2
6889079 Bocek et al. May 2005 B2
6890306 Poezevera May 2005 B2
6895274 Mower May 2005 B2
6904315 Panken et al. Jun 2005 B2
6904320 Park et al. Jun 2005 B2
6915160 Auricchio et al. Jul 2005 B2
6915164 Bradley et al. Jul 2005 B2
6917832 Hutten et al. Jul 2005 B2
6922589 Stahmann et al. Jul 2005 B2
6925324 Shusterman Aug 2005 B2
6925330 Kleine Aug 2005 B2
6927721 Ostroff Aug 2005 B2
6928324 Park et al. Aug 2005 B2
6937907 Bardy et al. Aug 2005 B2
6944495 MacAdam et al. Sep 2005 B2
6944579 Shimizu Sep 2005 B2
6950702 Sweeney Sep 2005 B2
6950705 Bardy et al. Sep 2005 B2
6952608 Ostroff Oct 2005 B2
6952610 Ostroff et al. Oct 2005 B2
6954670 Ostroff Oct 2005 B2
6959214 Pape et al. Oct 2005 B2
6961613 Björling et al. Nov 2005 B2
6961619 Casey Nov 2005 B2
6973350 Levine et al. Dec 2005 B1
6975904 Sloman Dec 2005 B1
6978178 Sommer et al. Dec 2005 B2
6983264 Shimizu Jan 2006 B2
6988003 Bardy et al. Jan 2006 B2
6993379 Kroll et al. Jan 2006 B1
6993389 Ding et al. Jan 2006 B2
6999817 Park et al. Feb 2006 B2
7006869 Bradley Feb 2006 B2
7025730 Cho et al. Apr 2006 B2
7027861 Thompson Apr 2006 B2
7027868 Rueter Apr 2006 B2
7027871 Burnes et al. Apr 2006 B2
7031773 Levine et al. Apr 2006 B1
7039459 Bardy et al. May 2006 B2
7039465 Bardy et al. May 2006 B2
7043299 Erlinger et al. May 2006 B2
7050851 Plombon May 2006 B2
7062327 Bradley Jun 2006 B2
7065400 Schechter Jun 2006 B2
7065407 Bardy et al. Jun 2006 B2
7065410 Bardy et al. Jun 2006 B2
7069080 Bardy et al. Jun 2006 B2
7076296 Rissmann et al. Jul 2006 B2
7079988 Albera et al. Jul 2006 B2
7081095 Lynn et al. Jul 2006 B2
7085599 Kim Aug 2006 B2
7090682 Sanders et al. Aug 2006 B2
7092754 Bardy et al. Aug 2006 B2
7094207 Koh Aug 2006 B1
7096064 Deno et al. Aug 2006 B2
7103404 Stadler et al. Sep 2006 B2
7107093 Burnes Sep 2006 B2
7113823 Yonce et al. Sep 2006 B2
7115097 Johnson Oct 2006 B2
7117036 Florio Oct 2006 B2
7120495 Bardy et al. Oct 2006 B2
7123960 Ding et al. Oct 2006 B2
7123963 Sawchuk et al. Oct 2006 B2
7127290 Girouard et al. Oct 2006 B2
7129935 Mackey Oct 2006 B2
7139610 Ferek-Petric Nov 2006 B2
7144586 Levy et al. Dec 2006 B2
7146212 Bardy et al. Dec 2006 B2
7149575 Ostroff et al. Dec 2006 B2
7155278 King et al. Dec 2006 B2
7160252 Cho et al. Jan 2007 B2
7177689 Ternes et al. Feb 2007 B2
7179229 Koh Feb 2007 B1
7181285 Lindh et al. Feb 2007 B2
7184825 Leinsing et al. Feb 2007 B2
7184835 Kramer et al. Feb 2007 B2
7191003 Greenhut et al. Mar 2007 B2
7191004 Kim et al. Mar 2007 B2
7194302 Bardy et al. Mar 2007 B2
7194309 Ostroff et al. Mar 2007 B2
7194313 Libbus Mar 2007 B2
7203540 Ding et al. Apr 2007 B2
7203542 Obel Apr 2007 B2
7203543 Meyer et al. Apr 2007 B2
7212862 Park et al May 2007 B2
7218925 Crocker et al. May 2007 B2
7225016 Koh May 2007 B1
7225021 Park et al. May 2007 B1
7225035 Brabec et al. May 2007 B2
7228173 Cazares Jun 2007 B2
7228174 Burnes et al. Jun 2007 B2
7233821 Hettrick Jun 2007 B2
7236819 Brockway et al. Jun 2007 B2
7242978 Cao et al. Jul 2007 B2
7242983 Frei et al. Jul 2007 B2
7245962 Ciaccio et al. Jul 2007 B2
7248921 Palreddy et al. Jul 2007 B2
7248925 Bruhns et al. Jul 2007 B2
7263399 Carlson Aug 2007 B2
7277754 McCabe et al. Oct 2007 B2
7277757 Casavant et al. Oct 2007 B2
7286876 Yonce et al. Oct 2007 B2
7299086 McCabe et al. Nov 2007 B2
7299093 Zhu et al. Nov 2007 B2
7308311 Sorensen et al. Dec 2007 B2
7309465 Fujiki et al. Dec 2007 B2
7319900 Kim et al. Jan 2008 B2
7330761 Zhang Feb 2008 B2
7337000 Meyer et al. Feb 2008 B2
7340302 Falkenberg et al. Mar 2008 B1
7359749 Quenet et al. Apr 2008 B2
7363086 Koh et al. Apr 2008 B1
7369889 Aström et al. May 2008 B2
7392086 Sathaye Jun 2008 B2
7412287 Yonce et al. Aug 2008 B2
7426412 Schecter Sep 2008 B1
7438686 Cho et al. Oct 2008 B2
7457664 Zhang et al. Nov 2008 B2
7463924 Bardy et al. Dec 2008 B2
7468040 Hartley et al. Dec 2008 B2
7469161 Gandhi et al. Dec 2008 B1
7471983 Voegele et al. Dec 2008 B2
7477932 Lee et al. Jan 2009 B2
7496409 Greenhut et al. Feb 2009 B2
7499751 Meyer et al. Mar 2009 B2
7509170 Zhang et al. Mar 2009 B2
7519423 Begemann et al. Apr 2009 B2
7555336 Sheth et al. Jun 2009 B2
7555340 Dong et al. Jun 2009 B2
7558628 Yonce et al. Jul 2009 B2
7574260 Stalsberg et al. Aug 2009 B2
7580741 Cazares et al. Aug 2009 B2
7587240 Zhang et al. Sep 2009 B2
7617002 Goetz Nov 2009 B2
7620452 Russie Nov 2009 B1
7647108 Freeberg Jan 2010 B2
7653431 Cazares et al. Jan 2010 B2
7657314 Sathaye et al. Feb 2010 B2
7680536 Sathaye et al. Mar 2010 B2
7684861 Sanders Mar 2010 B2
7706866 Zhang et al. Apr 2010 B2
7711423 Burnes et al. May 2010 B2
7711426 Armstrong et al. May 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734347 Sathaye et al. Jun 2010 B2
7738959 Manrodt et al. Jun 2010 B2
7761162 Dong et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765004 Stalsberg et al. Jul 2010 B2
7792585 Shelchuk Sep 2010 B1
7848812 Crowley et al. Dec 2010 B2
7899535 Bohn et al. Mar 2011 B2
7953489 Warren et al. May 2011 B2
7957803 Zhang et al. Jun 2011 B2
7996072 Haefner Aug 2011 B2
8010203 DeMulling et al. Aug 2011 B2
8036743 Savage et al. Oct 2011 B2
8056002 Suzuki Nov 2011 B2
8065002 Arand et al. Nov 2011 B2
8078276 Dong et al. Dec 2011 B2
8135463 Burnes et al. Mar 2012 B2
8145296 Stalsberg et al. Mar 2012 B2
8150512 Bornzin et al. Apr 2012 B2
8160700 Ryu et al. Apr 2012 B1
8175703 Dong et al. May 2012 B2
8185202 Sathaye May 2012 B2
8200331 Libbus et al. Jun 2012 B2
8200332 Libbus et al. Jun 2012 B2
8209013 Brooke et al. Jun 2012 B2
8233979 Shelchuk Jul 2012 B1
8260421 Sathaye Sep 2012 B2
8265736 Sathaye et al. Sep 2012 B2
8271086 Voegele et al. Sep 2012 B2
8271087 Sathaye et al. Sep 2012 B2
8306622 Arcot-Krishnamurthy et al. Nov 2012 B2
8401646 Stadler Mar 2013 B2
8615297 Sathaye et al. Dec 2013 B2
9008775 Sathaye et al. Apr 2015 B2
9037239 Brooke et al. May 2015 B2
20020002327 Grant et al. Jan 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035379 Bardy et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020052631 Sullivan et al. May 2002 A1
20020082658 Heinrich et al. Jun 2002 A1
20020095184 Bardy et al. Jul 2002 A1
20020107544 Ostroff et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20030023175 Arzbaecher et al. Jan 2003 A1
20030065365 Zhu et al. Apr 2003 A1
20030083708 Bradley et al. May 2003 A1
20030135248 Stypulkowski Jul 2003 A1
20030195571 Burnes et al. Oct 2003 A1
20030199945 Ciulla Oct 2003 A1
20030204213 Jensen et al. Oct 2003 A1
20030208241 Bradley Nov 2003 A1
20030212436 Brown Nov 2003 A1
20040064162 Manrodt et al. Apr 2004 A1
20040082975 Meyer et al. Apr 2004 A1
20040116978 Bradley Jun 2004 A1
20040172065 Sih et al. Sep 2004 A1
20040215253 Weinberg Oct 2004 A1
20040215277 Oosterhoff Oct 2004 A1
20040230229 Lovett et al. Nov 2004 A1
20040260351 Holmstrom Dec 2004 A1
20050004612 Scholten et al. Jan 2005 A1
20050010120 Jung et al. Jan 2005 A1
20050038478 Klepfer Feb 2005 A1
20050043652 Lovett et al. Feb 2005 A1
20050060002 Zhu Mar 2005 A1
20050060007 Goetz Mar 2005 A1
20050065587 Gryzwa Mar 2005 A1
20050085865 Tehrani Apr 2005 A1
20050113710 Stahmann et al. May 2005 A1
20050131476 Kim et al. Jun 2005 A1
20050131477 Meyer et al. Jun 2005 A1
20050131478 Kim et al. Jun 2005 A1
20050177206 North et al. Aug 2005 A1
20060025829 Armstrong et al. Feb 2006 A1
20060069322 Zhang et al. Mar 2006 A1
20060074331 Kim et al. Apr 2006 A1
20060074454 Freeberg Apr 2006 A1
20060111747 Cazares et al. May 2006 A1
20060116593 Zhang et al. Jun 2006 A1
20060129193 Zhang Jun 2006 A1
20060129194 Zhang Jun 2006 A1
20060129195 Sathaye Jun 2006 A1
20060129196 Dong et al. Jun 2006 A1
20060129197 Zhang et al. Jun 2006 A1
20060129198 Zhang Jun 2006 A1
20060129199 Zhang Jun 2006 A1
20060241711 Sathaye Oct 2006 A1
20060247693 Dong et al. Nov 2006 A1
20060247695 Stalsberg et al. Nov 2006 A1
20060253043 Zhang et al. Nov 2006 A1
20060253044 Zhang et al. Nov 2006 A1
20070049974 Li et al. Mar 2007 A1
20070055124 Viswanathan Mar 2007 A1
20070129764 Burnes Jun 2007 A1
20070142741 Berthon-Jones et al. Jun 2007 A1
20070179549 Russie Aug 2007 A1
20070239057 Pu et al. Oct 2007 A1
20070255321 Gerber et al. Nov 2007 A1
20080004665 McCabe et al. Jan 2008 A1
20080009909 Sathaye et al. Jan 2008 A1
20080046019 Sathaye Feb 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080234556 Brooke et al. Sep 2008 A1
20080294215 Sathaye Nov 2008 A1
20080294218 Savage et al. Nov 2008 A1
20080300644 Sathaye Dec 2008 A1
20090030470 Holmstrom et al. Jan 2009 A1
20090043351 Sathaye et al. Feb 2009 A1
20090043352 Brooke et al. Feb 2009 A1
20090054946 Sommer et al. Feb 2009 A1
20090210024 Brooke Aug 2009 A1
20100125306 McCabe et al. May 2010 A1
20100152801 Koh et al. Jun 2010 A1
20100198292 Honeck et al. Aug 2010 A1
20100305637 McCabe et al. Dec 2010 A1
20100305638 McCabe et al. Dec 2010 A1
20100305647 McCabe et al. Dec 2010 A1
20100324617 Ong Dec 2010 A1
20110004264 Siejko et al. Jan 2011 A1
20110022110 Min Jan 2011 A1
20110022112 Min Jan 2011 A1
20110098770 Ryu et al. Apr 2011 A1
20110098773 Brisben et al. Apr 2011 A1
20110098774 Brisben et al. Apr 2011 A1
20110152956 Hincapie Ordonez et al. Jun 2011 A1
20110196441 Ryu et al. Aug 2011 A1
20110196442 Ryu et al. Aug 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110319954 Niazi et al. Dec 2011 A1
20120035685 Saha et al. Feb 2012 A1
20120053916 Tzidon Mar 2012 A1
20120078320 Schotzko et al. Mar 2012 A1
20120101543 Demmer et al. Apr 2012 A1
20120101546 Stadler Apr 2012 A1
20120130442 Rockweiler et al. May 2012 A1
20120150253 Burnes et al. Jun 2012 A1
20120229496 Bloemer Sep 2012 A1
20120271371 Keel et al. Oct 2012 A1
20120290036 Karamanoglu et al. Nov 2012 A1
20120296387 Zhang et al. Nov 2012 A1
20120296388 Zhang et al. Nov 2012 A1
20120323291 Sathaye et al. Dec 2012 A1
20120330372 Sathaye et al. Dec 2012 A1
20130006332 Sommer et al. Jan 2013 A1
20130035737 Ryu et al. Feb 2013 A1
20130035738 Karst et al. Feb 2013 A1
20130046356 Jensen et al. Feb 2013 A1
20130046369 Eggen et al. Feb 2013 A1
20130053916 Sambelashvili et al. Feb 2013 A1
20130053918 Sambelashvili et al. Feb 2013 A1
20130268018 Brooke et al. Oct 2013 A1
20140005741 Brooke et al. Jan 2014 A1
20150190639 Sathaye et al. Jul 2015 A1
Foreign Referenced Citations (45)
Number Date Country
104874105 Sep 2015 CN
0468720 Jan 1992 EP
0560569 Sep 1993 EP
0940155 Sep 1999 EP
0940155 Sep 1999 EP
1038498 Sep 2000 EP
1151718 Nov 2001 EP
1151718 Sep 2002 EP
1038498 Jan 2003 EP
1291038 Mar 2003 EP
1629863 Mar 2006 EP
1151718 Jan 2007 EP
1291038 Jun 2007 EP
1629863 Jun 2011 EP
1038498 Nov 2011 EP
1291038 Jan 2015 EP
9217240 Oct 1992 WO
WO-9217240 Oct 1992 WO
9220402 Nov 1992 WO
WO-9220402 Nov 1992 WO
WO-9904841 Feb 1999 WO
9904841 May 1999 WO
0001438 Jan 2000 WO
WO-0017615 Mar 2000 WO
WO-0017615 Jul 2000 WO
0240097 May 2002 WO
0247761 Jun 2002 WO
WO-0247761 Jun 2002 WO
02087696 Nov 2002 WO
WO-03003905 Jan 2003 WO
03028550 Apr 2003 WO
WO-03028550 Apr 2003 WO
03003905 Aug 2003 WO
WO-2004026398 Apr 2004 WO
2004091720 Oct 2004 WO
WO-2005058412 Jun 2005 WO
WO-2005089865 Sep 2005 WO
WO-2006065707 Jun 2006 WO
WO-2006105474 Oct 2006 WO
WO-2006105474 Oct 2006 WO
2007087025 Aug 2007 WO
WO-2008005270 Jan 2008 WO
WO-2008005270 Jan 2008 WO
2009020639 Feb 2009 WO
WO-2009137502 Nov 2009 WO
Non-Patent Literature Citations (121)
Entry
Ajilore, O. et al., “Nightcap: laboratory and home-based evaluation of a portable sleep monitor,” Psychophysiology, Jan. 1995;32(1):92-8. Abstract only.
Krahn, Ad et al., “Recurrent syncope. Experience with an implantable loop recorder,” Cardiol Clin. May 1997:15 (2):313-26. Abstract only.
Acar et al., “SVD-Based on-line Exercise ECG Signal orthogonalization,” IEEE Transactions on Biomedical Engineering, vol. 46, No. 3, Mar. 1999. Abstract only.
Ajilore et al., “Nightcap: Laboratory and home-based evaluation of a portable sleep monitor,” 32 Psychophysiology, 32-98, 1995. Abstract only.
Belouchrani et al., “Bline Source Seperation Based on Time-Frequency Signal Representations,” IEEE Transactions on Signal Processing, vol. 46, No. 11, pp. 2888-2897, Nov. 1998.
Cohen et al., “Captuer Management Efficacy in children and young adults with endocardial and unipolar epicardial systems,” Europace, vol. 6, pp. 248-255, 2004.
Comon, “Independent component analysis, A new concept?” Signal Processing, vol. 36, No. 3, pp. 287-314, Apr. 1994.
Gallois et al., “Multi-Channel Analysis of the EEG Signals and Statistic Particularities for Epileptic Seizure Forecast”, Second Joint EMBS/BMES Conference, pp. 208-215, Oct. 23-26, 2002.
Gradaus et al., “Nonthoracotomy Implantable Cardioverter Defibrillator Placement in Children: Use of a Subcutaneous Array Leads and Abdominally Placed Implantable Cardioverter Defibrillators in Children”, Journal of Cardiovascular Electrophysiology, vol. 12, No. 3, pp. 356-360, Mar. 2001.
Hartz et al., “New Approach to Defibrillator Insertion”, Journal of Thoracic Cardiovascular Surgery, vol. 97, pp. 920-922, 1989.
Hyvarinen et al., “Independent Component Analysis: A Tutorial”, Helsinski University of Technology, Apr. 1999.
Kolettis et al., “Submammary Implantation of a Cardioverter-Defibrillator with a Nonthoractomy Lead System”, American Heart Journal, vol. 126, pp. 1222-1223, Nov. 1993.
Krahn et al., “Recurrent syncope. Experience with an implantable loop record”, Cardiol. Clin., vol. 15(2), pp. 316-326, May 1997.
Leng et al., “Lead Configuration for Defibrillator Implantation in a Patient with Congenital Heart Disease and a Mechanical Prosthetic Tricuspid Valve”, PACE, vol. 24, No. 8, pp. 1291-1292, Aug. 2001.
Park et al., “Use of an Implantable Cardioverter Defibrillator in an Eight-Month-Old Infant with Ventricular Fibrillation Arising from a Myocardial Fibroma”, PACE,vol. 22, No. 1, pp. 138-139, Jan. 1999.
Rieta, et al., “Atrial Activity Extraction Based on Blind Source Separation as an Alternative to QRST Cancellation for Atrial Fibrillation Analysis”, Computers in Cardiology, vol. 27, pp. 69-72, 2000.
Schuder et al., “Experimental Ventricular Defibrillation with an Automatic and Completely Implanted Syste”, Trans. American Society Artif Int. Organs, vol. 16, pp. 207-212, 1970.
Schuder et al., “Transthoracic Ventricular Defibrillation in the Dog with Truncated and Untruncated Exponential Stimul”••, IEEE Transitions on Bio-Medical Engineering, vol. BME-18, No. 6, pp. 410-415, Nov. 1971.
Schuder et al., “Ventricular Defibrillation in the Dog Using Implanted and Partially Implanted Electrode Systems”, American Journal of Cardiology, vol. 33, pp. 243-247, Feb. 1974.
Smits et al., “Defibrillation Threshold (DFT) Model of a Fully Subcutaneous ICD System, Europace Supplements”, vol. 2, Jun. 2001 at col. 778, p. B83.
Splett et al. “Determination of Pacing Capture in Implantable Defibrillators: Benefit of Evoked Response Detection Using RV Coil to Can Vector,” PACE, vol. 23, 2000, pp. 1645-1650.
Stirbis et al., “Optimizing of the Shape of Implanted Artificial Pacemakers”, Kaunas Medical Institute, Translated from Meditsinskaya Tekhnika, No. 6, pp. 25-27, 1986.
Verrier et al., “Sleep, dreams, and sudden death: the case for sleep as an autonomic stress test for the heart”, 31 Cardiovascular Research, 181-211, 1996.
Verrier et al., “Sleep Related Cardiovascular Risk: New Home-Based MonitoringTechnology for Improved Diagnosis and Therapy”, 2 A.N.E. 158-175, 1997.
Waldemark et al., “Detection of Apnea using Short Window FFT Technique and Artificial Neural Network”, 3390 SPIE International Society for Optical Engineering 122-133, 1998. Partial article.
Zarzoso et al., “Blind Separation of Independent Sources for Virtually Any Source Probability Density Function”, IEEE Transactions on Signal Processing, vol. 47, No. 9, pp. 2419-2432, Sep. 1999.
Zarzoso et al., “Noninvasive Fetal Electrocardiogram Extraction: Blind Separation Versus Adaptive Noise Cancellation”, IEEE Transactions on Biomedical Engineering, vol. 48, No. 1, pp. 12-18, Jan. 2001.
“U.S. Appl. No. 13/869,741, Final Office Action mailed Jun. 8, 2015”, 20 pgs.
“U.S. Appl. No. 13/869,741, Non Final Office Action mailed Jan. 9, 2015”, 14 pgs.
“U.S. Appl. No. 13/869,741, Preliminary Amendment filed Apr. 25, 2013”, 11 pgs.
“U.S. Appl. No. 13/869,741, Response filed Apr. 9, 2015 to Non Final Office Action mailed Jan. 9, 2015”, 20 pgs.
“U.S. Appl. No. 13/925,413, Advisory Action mailed Jun. 20, 2014”, 3 pgs.
“U.S. Appl. No. 13/925,413, Final Office Action mailed Apr. 4, 2014”, 14 pgs.
“U.S. Appl. No. 13/925,413, Final Office Action mailed May 26, 2015”, 13 pgs.
“U.S. Appl. No. 13/925,413, Non Final Office Action mailed Jan. 28, 2015”, 13 pgs.
“U.S. Appl. No. 13/925,413, Non Final Office Action mailed Nov. 21, 2013”, 13 pgs.
“U.S. Appl. No. 13/925,413, Response filed Feb. 20, 2014 to Non Final Office Action mailed Nov. 21, 2013”, 14 pgs.
“U.S. Appl. No. 13/925,413, Response filed Apr. 28, 2015 to Non Final Office Action mailed Jan. 28, 2015”, 13 pgs.
“U.S. Appl. No. 13/925,413, Response filed Jun. 4, 2014 to Final Office Action mailed Apr. 4, 2014”, 15 pgs.
“U.S. Appl. No. 13/925,413, Response filed Aug. 26, 2015 to Final Office Action mailed May 26, 2015”, 20 pgs.
“European Application Serial No. 08795112.5, Summons to Attend Oral Proceedings mailed Nov. 3, 2014”, 2 pgs.
“U.S. Appl. No. 10/955,393, Final Office Action mailed Jul. 31, 2008”, 7 pgs.
“U.S. Appl. No. 10/955,393, Non Final Office Action mailed Mar. 20, 2009”, 9 pgs.
“U.S. Appl. No. 10/955,393, Non Final Office Action mailed Nov. 9, 2007”, 13 pgs.
“U.S. Appl. No. 10/955,393, Notice of Allowance mailed Sep. 2, 2009”, 4 pgs.
“U.S. Appl. No. 10/955,393, Response filed Apr. 21, 2008 to Non Final Office Action mailed Nov. 9, 2007”, 12 pgs.
“U.S. Appl. No. 10/955,393, Response filed Jun. 9, 2009 to Non Final Office Action mailed Mar. 20, 2009”, 10 pgs.
“U.S. Appl. No. 10/955,393, Response filed Dec. 22, 2008 to Final Office Action mailed Jul. 31, 2008”, 10 pgs.
“U.S. Appl. No. 11/114,569, Final Office Action mailed Nov. 14, 2007”, 11 pgs.
“U.S. Appl. No. 11/114,569, Non Final Office Action mailed Apr. 17, 2007”, 9 pgs.
“U.S. Appl. No. 11/114,569, Notice of Allowance mailed Feb. 14, 2008”, 4 pgs.
“U.S. Appl. No. 11/114,569, Response filed Jan. 14, 2008 to Final Office Action mailed Nov. 14, 2007”, 8 pgs.
“U.S. Appl. No. 11/114,569, Response filed Aug. 17, 2007 to Non Final Office Action mailed Apr. 17, 2007”, 9 pgs.
“U.S. Appl. No. 11/520,879, Non Final Office Action mailed Mar. 10, 2010”, 15 pgs.
“U.S. Appl. No. 11/520,879, Non Final Office Action mailed Jul. 30, 2010”, 13 pgs.
“U.S. Appl. No. 11/520,879, Response filed May 19, 2010 to Non Final Office Action mailed Mar. 10, 2010”, 13 pgs.
“U.S. Appl. No. 11/520,879, Response filed Dec. 2, 2009 to Restriction Requirement mailed Nov. 3, 2009”, 7 pgs.
“U.S. Appl. No. 11/520,879, Restriction Requirement mailed Nov. 3, 2009”, 8 pgs.
“U.S. Appl. No. 11/890,668, Applicant's Summary of Examiner Interview filed Aug. 9, 2012”, 1 pgs.
“U.S. Appl. No. 11/890,668, Examiner Interview Summary mailed Nov. 18, 2011”, 3 pgs.
“U.S. Appl. No. 11/890,668, Final Office Action mailed May 11, 2011”, 13 pgs.
“U.S. Appl. No. 11/890,668, Non Final Office Action mailed Dec. 20, 2010”, 12 pgs.
“U.S. Appl. No. 11/890,668, Notice of Allowance mailed May 10, 2012”, 8 pgs.
“U.S. Appl. No. 11/890,668, Preliminary Amendment filed Dec. 6, 2011”, 6 pgs.
“U.S. Appl. No. 11/890,668, Response filed Mar. 15, 2011 to Non Final Office Action mailed Dec. 20, 2010”, 11 pgs.
“U.S. Appl. No. 11/890,668, Response filed Oct. 12, 2010 to Restriction Requirement mailed Sep. 24, 2010”, 7 pgs.
“U.S. Appl. No. 11/890,668, Restriction Requirement mailed Sep. 24, 2010”, 10 pgs.
“U.S. Appl. No. 13/595,688, Notice of Allowance mailed Aug. 21, 2013”, 9 pgs.
“U.S. Appl. No. 13/595,688, Response filed Jul. 25, 2013 to Restriction Requirement mailed Jun. 26, 2013”, 7 pgs.
“U.S. Appl. No. 13/595,688, Restriction Requirement mailed Jun. 26, 2013”, 6 pgs.
“U.S. Appl. No. 13/869,741, Appeal Brief filed Nov. 9, 2015”, 57 pgs.
“U.S. Appl. No. 13/925,413, Advisory Action mailed Sep. 23, 2015”, 4 pgs.
“U.S. Appl. No. 13/925,413, Non Final Office Action mailed Nov. 23, 2015”, 6 pgs.
“U.S. Appl. No. 13/925,413, Non Final Office Action mailed Dec. 15, 2015”, 6 pgs.
“U.S. Appl. No. 13/925,413, Response filed Feb. 3, 2016 to Non Final Office Action mailed Dec. 15, 2015”, 9 pgs.
“U.S. Appl. No. 13/925,413, Response filed Oct. 25, 2015 to Final Office Action mailed May 26, 2015”, 17 pgs.
“U.S. Appl. No. 14/085,398, Non Final Office Action mailed Aug. 11, 2014”, 7 pgs.
“U.S. Appl. No. 14/085,398, Notice of Allowance mailed Oct. 31, 2014”, 6 pgs.
“U.S. Appl. No. 14/085,398, Response filed Oct. 10, 2014 to Non Final Office Action mailed Aug. 11, 2014”, 8 pgs.
“U.S. Appl. No. 14/209,364, Non Final Office Action mailed Aug. 8, 2014”, 8 pgs.
“U.S. Appl. No. 14/209,364, Notice of Allowance mailed Dec. 10, 2014”, 6 pgs.
“U.S. Appl. No. 14/209,364, Response filed Oct. 13, 2014 to Non Final Office Action mailed Aug. 8, 2014”, 11 pgs.
“U.S. Appl. No. 14/667,240, Notice of Allowance mailed Nov. 17, 2015”, 8 pgs.
“Australian Application Serial No. 2008284265, First Examination Report mailed May 3, 2011”, 3 pgs.
“Australian Application Serial No. 2008284265, Notice of Acceptance mailed Jan. 5, 2012”, 3 pgs.
“Australian Application Serial No. 2008284265, Office Action mailed May 13, 2011”, 3 pgs.
“Australian Application Serial No. 2008284265, Response filed Dec. 14, 2011 to First Examination Report mailed May 3, 2011”, 28 pgs.
“Australian Application Serial No. 2012201930, Examination Report No. 1 mailed Jan. 8, 2014”, 3 pgs.
“Australian Application Serial No. 2012201930, Notice of Acceptance mailed Jan. 15, 2015”, 2 pgs.
“Australian Application Serial No. 2012201930, Response filed Jan. 6, 2015 to Examination Report No. 1 mailed Jan. 8, 2014”, 27 pgs.
“European Application Serial No. 08795112.5, Decision mailed Oct. 22, 2015”, 27 pgs.
“European Application Serial No. 08795112.5, Minutes mailed Oct. 22, 2015”, 4 pgs.
“European Application Serial No. 08795112.5, Office Action mailed Mar. 25, 2010”, 2 pgs.
“European Application Serial No. 08795112.5, Office Action mailed Nov. 28, 2013”, 4 pgs.
“European Application Serial No. 08795112.5, Response filed Mar. 24, 2014 to Office Action mailed Nov. 28, 2013”, 6 pgs.
“European Application Serial No. 08795112.5, Response filed May 24, 2010”, 10 pgs.
“European Application Serial No. 08795112.5, Response filed Sep. 7, 2015 to Summons to Attend Oral Proceedings mailed Nov. 3, 2014”, 70 pgs.
“File History for EP Application No. 08795112.5 as retrieved from the European Patent Office Electronic Filing System”, (as of Mar. 15, 2011), 64 pgs.
“File history for EP Application No. 09743488.0 as retrieved from European Patent Office electronic file system”, (as of Mar. 15, 2011), 65 pgs.
“File History for U.S. Appl. No. 11/520,879”, (as of Jan. 21, 2011), 300 pgs.
“File History for U.S. Appl. No. 11/520,879”, (as of Nov. 8, 2011), 370 pgs.
“File history for U.S. Appl. No. 12/368,828”, (as of Nov. 8, 2011), 344 pgs.
“Implantable Cardiac Device and Method for Reduced Phrenic Nerve Stimulation”, U.S. Appl. No. 11/114,569, filed Apr. 26, 2005.
“International Application Serial No. PCT/US2008/009488, International Preliminary Report on Patentability mailed Feb. 18, 2010”, 7 pgs.
“International Application Serial No. PCT/US2008/009488, International Search Report mailed Dec. 12, 2008”, 3 pgs.
“International Application Serial No. PCT/US2008/009488, Written Opinion mailed Dec. 12, 2008”, 6 pgs.
“International Application Serial No. PCT/US2009/033687, International Search Report mailed Apr. 6, 2009”, 4 pgs.
“International Application U.S. Appl. No. PCT/US2009/033687, Written Opinion mailed Apr. 6, 2009”, 8 pgs.
“Japanese Application Serial No. 2010-519984, Office Action mailed Mar. 6, 2012”, 10 pgs.
“Japanese Application Serial No. 2010-519984, Response filed Jun. 6, 2012 to Office Action mailed Mar. 6, 2012”, (w/ English Translation of Amended Claims), 11 pgs.
“Methods and Systems for Selection of Cardiac Pacing Electrode Configurations”, U.S. Appl. No. 10/955,393, filed Sep. 30, 2004.
“Therapeutic Electrical Stimulation That Avoids Undesirable Activation”, (U.S. Appl. No. 11/520,879).
Brooke, et al., “Method and apparatus to perform electrode combination selection”, U.S. Appl. No. 12/220,496, filed Jul. 24, 2008.
Dong, et al., “Non-captured intrinsic discrimination in cardiac pacing response classification”, U.S. Appl. No. 11/116,558, filed Apr. 28, 2005.
Meyer, et al., “Cardiac Signal Template Generation Using Waveform Clustering”, U.S. Appl. No. 11/116,544, filed Apr. 28, 2005.
Meyer, et al., “Selection of Cardiac Signal Features Detected in Multiple Classification Intervals for Cardiac Pacing Response Classification”, U.S. Appl. No. 11/116,525, filed Apr. 28, 2005.
Sathaye, et al., “Implantable Cardiac Device for Reduced Phrenic Nerve Stimulation”, U.S. Appl. No. 12/154,410, filed May 22, 2008.
Sathaye, et al., “Method for Reducing Phrenic Nerve Stimulation”, U.S. Appl. No. 12/154,411, filed May 22, 2008.
Stalsberg, et al., “Adaptive Windowing for Cardiac Waveform Discrimination”, U.S. Appl. No. 11/116,578, filed Apr. 28, 2005.
Stalsberg, et al., “Methods and Systems for Managing Fusion and Noise in Cardiac Pacing Response Classification”, U.S. Appl. No. 11/116,565, filed Apr. 28, 2005.
Stirbis, et al., “Optimizing the Shape of Implanted Artificial Pacemakers”, Kaunas Medical Institute. Translated from Meditsinskaya Tekhnika, No. 6, (1986), 25-27.
Related Publications (1)
Number Date Country
20130296961 A1 Nov 2013 US
Continuations (2)
Number Date Country
Parent 13869741 Apr 2013 US
Child 13925448 US
Parent 12220496 Jul 2008 US
Child 13869741 US
Continuation in Parts (1)
Number Date Country
Parent 11890668 Aug 2007 US
Child 12220496 US