This invention relates to data transfer devices and methods. More particularly the invention relates to an apparatus and method for transferring data over a fieldbus network between a fieldbus device and a host application.
The F
Unlike proprietary network protocols, F
Typical techniques for transferring data into and out of a fieldbus device, such as a machine monitoring device, are to define singular named parameter values which may be read and/or written using bus-specific commands. The sizes of these transferred data blocks are typically small, usually on the order of tens of bytes or less. It is desirable to implement an improved transfer system for efficiently moving larger blocks of data into and out of a fieldbus device.
The above and other needs are met by a data transfer system that utilizes one or more standard simple parameters as a mechanism to move arbitrarily large blocks of arbitrary binary data into and out of a fieldbus device. The preferred embodiment of the invention moves delineated streams of bytes across a virtual connection to the device by layering and tunneling, utilizing the underlying fieldbus network as a generic reliable transport. These streams are referred to herein as VStreams™. One or more devices may have one or more VStreams™ moving data in either direction simultaneously.
According to a preferred embodiment, a standard multi-byte parameter that is natively supported by the fieldbus is defined for use as a window. This parameter is preferably as large as the underlying fieldbus will allow. Writes to this parameter are interpreted as sequential transfers of data into the device. Reads from this parameter are interpreted as sequential transfers of data out of the device.
Each VStream™ transfer is initiated by writing through the parameter a special block which contains information identifying it as a stream header. Among other things, the header includes a unique stream identifier for associating segments with the stream, a count of the overall stream length, and a cyclic redundancy check value (CRC) for validation. Each VStream™ transfer is continued by writing through the parameter a block which contains information identifying it as the next fragment of an active stream. In addition to the next segment of the stream, each block includes among other things the stream identifier, the current segment window identifier, and a CRC for validation.
The preferred embodiment of the invention provides a mechanism for fragmenting arbitrary blocks of data, transporting those fragments reliably over the underlying fieldbus, and reassembling the fragments in the device or at the host. Using this mechanism, the invention provides for: (1) transferring arbitrarily sized blocks of data that have been too large to manage with standard fieldbus parameters; (2) transferring firmware modules for updating device capabilities in the field or archiving at the host; (3) transferring arbitrarily sized blocks of proprietary data for historical purposes and detailed analysis; and (4) implementing a standard protocol such as the PPP variant of TCP/IP that requires a reliable underlying transport mechanism while imposing a minimum amount of overhead for bookkeeping.
Further advantages of the invention are apparent by reference to the detailed description when considered in conjunction with the figures, which are not to scale so as to more clearly show the details, wherein like reference numbers indicate like elements throughout the several views, and wherein:
As shown in
Generally, the primary mechanism for a fieldbus device 15 to publish data is through transducer blocks of the fieldbus output board 16. The transducer blocks are represented in
While it is possible for the host computer 18 to communicate directly on the fieldbus network 14 in some embodiments of the invention, preferred embodiments include a controller 13, such as a DeltaV controller or a Rosemount 3420 communications concentrator. In these embodiments, the controller 13 provides communication with the host computer 18 using Ethernet protocol and with the multiple fieldbus devices 15 using H1 fieldbus protocol.
One of the primary considerations in transferring significant amounts of machine health data is the limitation imposed by using a F
Furthermore, the F
In any event, there is a need for a mechanism for moving arbitrary size blocks of data between the fieldbus device 15 and a host application on the host computer 18. The present invention provides a mechanism for accessing such data remotely across the fieldbus network 14 and message formats required for the data transfer. In order to maximize the use of the limited bandwidth on the F
The F
A preferred embodiment of the present invention addresses this problem by having the host application: (1) keep track of its data requests and use polling to extract the response; (2) use whatever mechanisms are available within the host system to detect when exceptional conditions have occurred in the monitored machine and data are likely to be waiting, and use polling to verify the presence of data and extract it if necessary; and (3) command periodic collection of data at a data collection interval that is based on timers under the management of the host application, rather than having the device 15 manage the report timing.
In the preferred embodiment of the invention, the fieldbus device 15 exposes its capability through the five transducer blocks 17a-17e within the fieldbus output board 16. These blocks roughly correspond to conceptual domains within the host application and can be thought of as “objects.” Each transducer block 17a-17e in the fieldbus output board 16 represents an information context, such as a group of related values. Within the fieldbus device 15 there are analogs of these blocks which represent the information in a manner suited to the analytical purposes of the device 15. The outer blocks contain configuration parameters that are typically scalar values managed by change messages across the network.
The link 14 is preferably a serial link. This link 14 is treated as a point-to-point “network” with a stack modeled roughly on the IEEE1451.1 model. Parameters are preferably addressed by unique identification numbers. Changes to “static” parameters come across the link 14 as write commands and are handled by a callback mechanism that routes the operation based on the identification numbers. Synchronous reads are handled similarly. Live sensor readings, such as analysis results, are preferably published across the link 14 by asynchronous messages to the fieldbus output board 16.
In the preferred embodiment of the invention, each arbitrarily sized data block is exported from the fieldbus device 15 to a host application in the host computer 18 by utilizing parameters to “window” the data block into a sequence of packets that are suitable for transfer across the F
The invention also provides for downloading information to the fieldbus device 15 from the host computer 18. For example, core operational firmware in the device 15 may need to be upgraded in the field, or the rules for analysis may need to be upgraded as techniques for detecting a particular fault are improved. In the past, the fieldbus mechanisms for downloading firmware have been problematic as they are primarily intended for updating control firmware in the fieldbus output board 16. In prior fieldbus networks, management of the caching between the fieldbus output board 16 and the field device 12 has been complex and potentially fragile. To address these problems, the preferred embodiment of the invention extends the extraction protocol to include downloads from a host computer 18 to the fieldbus device 15. The operation of the data transfer process described herein depends at least in part on the synchronous read and write capability of transducer block parameters between the fieldbus output board 16 and the field device 12.
In the preferred embodiment of the present invention, the transducer blocks 17a-17e transfer data blocks by means of a VSTREAM “object” which represents a communication link for transferring block data. The VSTREAM object provides a logical grouping of parameters that correspond to the concept of a “stream” in a transducer block 17a-17e. These parameters, which are available via the Fieldbus Messaging Specification (FMS), are UPLOAD_NOTIFY, COMMAND, TRANSFER and SLIDING_WINDOW. In the actual transducer blocks, the COMMAND parameter is shadowed by the XA_TOKEN parameter, the TRANSFER parameter is shadowed by the XA_HEADER parameter, and the SLIDING_WINDOW parameter is shadowed by the XA_SEGMENT parameter. In a preferred embodiment of the invention, the 229-byte VSTREAM object may be interpreted according to Table I. Descriptions of the individual parameters appear in Table II.
Within the fieldbus device 15 there are preferably queues of transmission request headers associated with the transducer blocks 17a-17e.
In the preferred embodiment, a HEADER 32 describes a virtual circuit for transmission of a sequence of octets (a VStream™). As listed in Tables VI and VII, the HEADER 32 contains the ACTION token describing the unsolicited or requested data contained in the corresponding VStream™. The HEADER also contains the TOTAL_LENGTH of the buffer and the TIMESTAMP indicating the time of the event that triggered the transmission, which is the time of receipt for a request.
For the case of pending data, the data stream represented by the HEADER 32 is moved from the pending queue 30 to an active output list 40 (
An ACTION token of zero (0) in a HEADER (see tables VI and VII) is considered a null operation and is discarded by the host application. This use of multiple parameters is preferred based on ease of use. However, the same results could be achieved by using a single block parameter and including a flag in the HEADER indicating whether the encapsulated data represents a new stream or a continuation of a stream.
Another way for a transmission HEADER to be placed into the pending output queue 30 is by a request from the host computer 18. In this process, XA_TOKEN is written to the COMMAND parameter of a transducer block 17a-17e which is forwarded to the field device 12 over the intra-device interface. If XA_TOKEN is valid, the field device 12 returns a “success” code and the request is queued to an input message handler, where it ultimately causes a response output header to be queued in the output queue 30. In the preferred embodiment, the COMMAND field returns zero if it is read from the transducer block 17a-17e.
As shown in
At the host computer 18, this same process is performed in parallel as the data segments are received. If the SEQUENCE_ID disagrees, this indicates that the stream has been corrupted and should be discarded. Under these circumstances, the host 18 writes a token to the COMMAND parameter of the appropriate block with the MANAGE_STREAM primary value, ABORT_TRANSACTION secondary value, and the STREAM_ID as the primary parameter. If blocks are buffered piecewise and released as the transmission proceeds, the remainder of the VStream™ is flushed from the output list 40 and the contents of this particular block transfer are lost. However, if memory allows blocks to be held until the completion of the transfer, the transfer could potentially be restarted.
Preferably, all active streams in a transducer block 17a-17e are round-robin multiplexed through the single SEGMENT parameter of the associated block. For example, each FMS Read of the SEGMENT parameter (step 120) returns the next data segment of the stream at the head of the list (step 126), and moves that output control block 42 to the end of the list 40 (step 138). Thus, if there are N number of active data streams, a segment from any given stream will show up every Nth read operation. As streams complete (N decreases), the “interleave” rate of the remaining streams increases. If there is only a single active stream, it appears to a host application as if no interleaving were occurring, and every read (step 120) returns the next segment (step 126) of the single data stream.
A host application on the host computer 18 may initiate a download operation by simply writing to the HEADER parameter of the appropriate block, and all the rules described herein regarding the set up of the internal fields apply. The host application is responsible for ensuring that the active STREAM_ID values are unique within a particular block context. There is no requirement that the STREAM_ID values be contiguous or sequential, although the STREAM_ID values coming from the fieldbus device 15 satisfy both of these constraints.
Actual transfer of the data from the host 18 is accomplished by writing segments of the data through the SEGMENT parameter in the associated block. In the preferred embodiment, all the same rules apply regarding management of the SEGMENT_ID and SEQUENCE_ID parameters. As before, the use of multiple parameters to effect the transfer is merely a convenience.
The preferred embodiment of the invention provides for host management of multiple active data streams. Preferably, there are no requirements regarding how the segments of these streams should be multiplexed. Thus, the fieldbus device 15 preferably makes no assumptions about the interleave mechanism and simply appends segments to the appropriate data stream as the segments arrive according to the SEQUENCE_ID value.
Since the fieldbus device 15 generally cannot “source” a message to the host 18, the invention provides a means for the fieldbus device 15 to indicate a “failed” transfer. This occurs in a manner similar to the host aborting an upload that has been detected to be “bad.” Preferably, it does not require a completion of the download to the “bit bucket,” but allows the fieldbus device 15 to “early abort” the transfer. Preferably, the transfer process avoids two round-trip fieldbus operations per download segment while still allowing the early abort. In practice this is managed by exchanging a bitmap of which segments have been received and which ones need to be resent.
The fact that a particular stream is “reliable” is marked by the sign bit (MSB) of the STREAM_ID. This leaves open the question of how to specify which messages should use the technique. For response messages, the indication is setting the sign bit (MSB) of the CMD_CODE portion of the requesting TOKEN. If the device receives a command with this reliable response flag bit set, either in the header of a download stream transfer or independently through the COMMAND parameter, the response to that command is sent using the reliable transfer mechanism; i.e., the reliable stream flag will be set in the STREAM_ID. The echo of the command token in the response also has the reliable response flag bit set, just as in the request.
When the device produces unsolicited data, particularly event data which cannot be readily reproduced, it submits the data for transmission with a zero (0) transaction identifier to indicate that it is not a response to any command. It may also set the reliable stream flag in the STREAM_ID to indicate that the host agent should use the reliable upload handshake to guarantee success.
Reliable Downloads
The host agent prepares a stream transfer and sets the reliable stream flag bit (MSB) in the NEW_STREAM_ID field of the HEADER. This HEADER is written to the device as usual. The NEW_STREAM_ID, with the reliable stream flag bit set, is copied to the STREAM_ID field in each subsequent segment. The SEQUENCE_ID.SEGMENT_ID is set to the position of this segment in the stream; the first segment should get a SEGMENT_ID of one (1).
As the device receives each segment, the segment is placed in its proper location in the stream. When the device believes it has received the “last” segment (based on TOTAL_LENGTH from the HEADER), it will keep the stream in the active queue pending a ReleaseStream message with its stream identifier.
At any time during the transfer the host agent may send an AcknowledgeRequest message to the device. The device responds according to its current belief about the integrity and progress of the stream. The host agent resends any segments necessary to “fill in” holes identified by the response, or it abandons the transfer as a lost cause and sends an AbortAndFlush message to release the stream resources. The AcknowledgeRequest and resending cycle may be repeated an arbitrary number of times as needed.
Once the host agent believes the transfer to be complete it sends a ReleaseStream(D) message with the appropriate stream identifier, and the device transfers the completed message to the action queue where it will be processed at the next synchronization point.
Reliable Uploads
The host agent reads a new HEADER from the device and discovers the reliable stream bit (MSB) to be set in the NEW_STREAM_ID field. It makes whatever provisions are necessary to track the subsequent segments as they are received. The host agent issues a sequence of reads from the SEGMENT parameter of the device. Each segment is placed in its proper position in the stream. When the device believes it has sent the “last” segment (based on TOTAL_LENGTH from the HEADER) it keeps the stream in the active queue pending a ReleaseStream message with its stream identifier.
At any time during the transfer the host agent may send a RetransmitRequest message to the device. The device takes steps to ensure that further reads of the SEGMENT parameter eventually includes the specified segments. The host agent continues to request retransmission of “missing” segments until it believes the transfer has been successful or it decides to abandon the transfer as a lost cause and sends an AbortAndFlush message to release the stream resources. The RetransmitRequest and repeated segment transmission cycle may be repeated an arbitrary number of times as needed.
Once the host agent believes the transfer to be complete it sends a ReleaseStream(U) message with the appropriate stream identifier and the device releases the stream resources. Either an AbortAndFlush or a ReleaseStream(U) message may be used to release the active stream resources.
Record Object: TOKEN
The TOKEN data object represents a communication token for specifying upload or download requests, and for identifying any unsolicited data published by the fieldbus device 15 for historical or analysis purposes. The TOKEN object provides a mechanism to support a full command and response protocol between the fieldbus device 15 and the host computer 18. This object is the “memory template overlay” for the XA_TOKEN parameter in the transducer blocks 17a-17e. In the preferred embodiment, the 8-byte array corresponding to the TOKEN object returned from the device 15 is interpreted according to Table III. Descriptions of the individual fields in the TOKEN object appear in Table IV. Table V provides an example of the protocol using the requirements of stream management as its basis.
Record Object: HEADER
The HEADER data object defines the beginning of a block data transfer from the fieldbus device 15 to a host application or from a host application to the fieldbus device 15. This record is the “memory template overlay” for the XA_HEADER parameter in the transducer blocks 17a-17e. The 110-byte array returned from the device 15 should be interpreted according to Table VI. Descriptions of the individual fields in the HEADER object appear in Table VII.
Record Object: SEGMENT
The SEGMENT data object encapsulates the concept of a single segment within a multi-segment data transfer from the fieldbus device 15 to a host application or from a host application to the fieldbus device 15. This record is the “memory template overlay” for the XA_SEGMENT parameter in the transducer blocks 17a-17e. The 110-byte array returned from the device 15 should be interpreted according to Table VIII. Descriptions of the individual fields in the SEGMENT object appear in Table IX.
Basic descriptions of the primary classes depicted in
Data Compression on Fieldbus
A preferred embodiment of the invention also provides for improving throughput of arbitrary data transfers over an active fieldbus network. Because typical fieldbus networks are fairly slow and generally support moving data only in small quantities, it becomes very important to maximize the utilization of the available bandwidth. Given that the VStream™ technique described above provides for movement of arbitrary blocks of data across such a network, it is desirable to compress the data being transferred. Accordingly, the invention provides a data compression technique that is directly related to the domain data being transferred, specifically waveform and spectral blocks. Preferred embodiments of the compression technique are depicted in
According to a preferred embodiment of the invention depicted in
As shown in
Blocks of real-valued historical trend data may be processed in a fashion identical to the waveform. Sets of statistical blocks of data may be concatenated and treated as a waveform. Combining large magnitude and small magnitude data in the same block should be avoided to prevent unacceptable loss of resolution due to quantization artifacts. As would be apparent to one skilled in the art, before any particular stream of bytes is presented to the block transporter for fragmentation, any standard compression algorithm, such as Adaptive Huffman Encoding or one of the Lempel-Ziv variants may be applied.
This technique does not depend on the arbitrary block transport mechanism used, nor does any particular implementation of a block transport mechanism depend on the availability of this technique.
Data Encryption on Fieldbus
A preferred embodiment of the invention provides a technique for safeguarding the proprietary contents of arbitrary application domain data being transferred across an active fieldbus network. Typical fieldbus networks generally move simple scalar process values and alarm notifications. Few, if any, of these values could be considered “sensitive” in themselves, although the integrity of the process as a whole probably would be. Given that the VStream™ technique described above provides for movement of arbitrary blocks of data across a fieldbus network, it is desirable to take some steps to protect any proprietary data being transferred.
It is possible for a compression algorithm to function as an “encoder,” in that the normal form of the data is altered. Thus, a first level protection mechanism is to implement a compression technique, such as that described above. It is further desirable, however, to implement a more sophisticated technique to protect large blocks of sensitive information, particularly when the transport and compression techniques are public knowledge.
In the preferred embodiment of the invention, the higher level of protection is attained by encoding the compressed data stream using a variant of public-key cryptography. (Step 157 in
Alternatively, the encryption keys are assigned as part of the manufacturing process and are retained in non-volatile storage, as are other configuration data. This technique will work on the uncompressed stream as well. However, if compression is going to be used, it is best to do the compression first to take advantage of redundancy in the original (application domain) data. The output of a reasonably secure cryptographic technique is typically not as amenable to compression.
This encryption technique does not depend on the arbitrary block transport and/or compression mechanisms used, nor does any particular implementation of a block transport or compression mechanism depend on the availability of this technique.
“Hot” Firmware and Configuration Module Updates on Fieldbus
A preferred embodiment of the invention also provides a mechanism for updating firmware in an active device on an active fieldbus network without ceasing normal operation. Typical fieldbus devices must be taken out of service to update their firmware. Frequently they must also be isolated from the fieldbus network and require a separate connection mechanism for downloading and updating the operational firmware. Given that the VStream™ technique described above provides for movement of arbitrary blocks of data across such a network, it is desirable to download firmware updates to a fieldbus device utilizing standard capabilities of the active fieldbus network.
In the preferred embodiment of the invention, the fieldbus device 15 has sufficient storage space to buffer the entire upgrade to minimize the amount of time the device is unavailable, and is capable of remembering its configuration and status in order to resume operation smoothly after the upgrade.
The invention takes advantage of modularity in the operational firmware to allow upgrading subsets of the overall operating code base independently. According to the invention, an appropriate module is transferred to the device from an application at the host using the generic transport mechanism. The device accumulates the module upgrade and replaces it in the program flash module while continuing to perform normal operation. These steps are repeated until all desired modules have been updated in the device. At a convenient or appropriate time the device is commanded to save its current operating state and restart operations using the new firmware module(s). The same mechanism may be used in reverse to upload one or more firmware modules for archival or recovery purposes.
The foregoing descriptions of preferred embodiments for this invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The embodiments are chosen and described in an effort to provide the best illustrations of the principles of the invention and its practical application, and to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as is suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
This application claims priority to U.S. provisional patent application 60/616,192 filed Oct. 5, 2004.
Number | Date | Country | |
---|---|---|---|
60616192 | Oct 2004 | US |