All of the material in this patent application is subject to copyright protection under the copyright laws of the United States and of other countries. As of the first effective filing date of the present application, this material is protected as unpublished material.
However, permission to copy this material is hereby granted to the extent that the copyright owner has no objection to the facsimile reproduction by any one of the patent documentation or patent disclosure, as it appears in the United States Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
1. Field of the Invention
The present invention relates to memory management and display control techniques typically used in digital appliances such as Personal Digital Assistants (PDAs), Digital Still Cameras (DSCs), Personal Computers (PCs) and game consoles.
2. Description of Related Art
Electronic systems that display image data often contain a display that allows the user to view portions of a larger image object, and to scroll the viewing window to allow the user to view different portions of that object. Examples of such electronic systems include:
personal digital assistants, which because of their small screen, often display only a very small part of a whole image, such as a map;
digital still cameras, which may include a display using either an integrated display or attached monitor, that allow scrolling through a panorama picture or viewing of a photograph in zoom mode;
game consoles, where games often use a 2D textured background that scrolls as the user interacts with the game; and
personal computers, where an “extended desktop” extends beyond the limits imposed by the physical screen size.
Electronic devices with scrolling image displays may integrate display features into a single integrated circuit. These integrated circuits are sometimes referred to as a system-on-chip (SoC). The SoC typically interface to the following additional elements:
a display device which receives a video signal,
a combination of non-volatile memory (e.g. flash) and system memory (e.g. DRAM),
and a number of input and output facilities in the appliance, such as buttons and step motors.
Internally, an SoC may include:
a CPU, which runs the software of the embedded application,
a display DMA controller which reads, directly from memory, data defining pixels to be displayed and sending that data to a display processor which processes that data into a suitable video signal,
an optional “block move” (a.k.a. 2D DMA) accelerator which accelerates the copying of rectangular areas from a source location in memory to a destination location in memory (these operations can be done in software at the cost of reduced performance),
an I/O controller which interfaces with input and output devices,
a memory controller which interfaces With external memory,
a memory arbiter which arbitrates access to the memory between the various processes operating on the chip,
other hardware acceleration blocks, such as a JPEG codec,
and an “on chip bus” interconnecting all of the above.
In the operation of an electronic device with a scrolling display, the image to be displayed is either computed by the CPU or other dedicated hardware block included in the device, or it may be read directly from some other storage device, such as a flash memory. Once the image to be displayed is determined, the image is stored in system memory.
In the example of a digital still camera, the image is usually compressed and is typically read from flash memory, decompressed by the CPU or dedicated hardware, and stored in system memory. This stored image data in this example is then retrieved by a display Direct Memory Access (DMA) controller and is provided to a display controller. The display controller processes and formats the image data as required prior to output to the display device, such as a LCD or a TV.
The DMA controller in this example generates requests to the system memory arbiter to read data that defines the displayed image pixels. The arbiter grants the requests based on considerations such as memory availability and the relative priority of pending requests. When the DMA request is granted, the display DMA controller communicates pixel addresses to the memory controller, which generates the proper control signals to read the pixel data from system memory. Pixel data is usually retrieved in bursts of several pixels at a time in order to optimize memory bandwidth usage. The display controller typically stores the burst of retrieved data in a First In, First Out (FIFO) storage buffer for processing. The display controller then configures the DMA controller to read a new burst of data prior to exhausting the data within the FIFO.
Systems that have scrolling image displays that display a subset of a larger 2D graphics image generally utilize one of two techniques to buffer the image during scrolling.
A first technique, denoted herein as the “single-buffer” technique, is generally used in applications such as extended computer desktops. In the Single Buffer technique, the entire 2D graphics object is mapped into a contiguous segment of system memory. Scrolling is realized simply by changing the base address of the display buffer. The main drawback of this technique is that the size of the 2D graphics object is limited by the amount of system memory available to store the image.
A control program associated with the single-buffer technique first stores the entire 2D object in system memory. A control loop then starts which consists in sampling the user input and updating the display base address to implement scrolling. This simple control program is often merged into a more complex application specific program, e.g. there might be parallel processes that update the content of the 2D object. For example, in the “extended desktop” application, when the mouse pointer reaches the edge of the screen, the desktop scrolls to reveal an off-screen part of the desktop. Transfers of data into the buffer of a single image data buffer implementation are not required as a result of scrolling since the entire image is stored in the single data buffer.
A second technique, typically used with digital appliances or 2D game consoles, is referred to herein as the double-buffer technique. The double-buffer technique uses two buffers that are each the size required to store a frame of the image data that is displayed to the user. The entire 2D graphics object is not stored in system memory, only the portions of the image that is or is to be next displayed are stored in the buffer. One buffer is used as a display buffer while the second is used as the update buffer. The next scene is built in the update buffer while the display controller reads data from the display buffer. When the new scene is complete in the update buffer, the functions of the buffers are swapped; the display buffer becomes the update buffer and vice-versa. Simply toggling a data pointer between the two base addresses may be used to rapidly accomplish this switch.
The double-buffer method has several drawbacks. Some of these drawbacks are:
A simpler version of this technique uses just one buffer. The new scene in this simpler version is constructed in the same buffer as is used for display. Apart from the smaller memory footprint, it retains all the drawbacks of the double-buffering technique, while adding the drawback of a less elegant user interface. If the update process takes more time than display vertical refresh period, the user of a device with this simpler version will see artifacts, such as image tearing, on the display during an update because the new scene is being written over the previous scene that is in the same display buffer.
The control program that implements the double-buffering technique first builds the initial scene in one of the buffers, buffer A for example. Buffer A is then used as the display buffer. A control loop then begins that samples user input and based on user input concerning scrolling direction, the next scene is built in another buffer, e.g. buffer B. While the new scene is being built, which can take some time, user inputs must be ignored or queued, in both cases the user does not perceive any response to her inputs. When the new scene is ready, the functions of the buffers are swapped, buffer B becomes the display buffer and buffer A becomes the update buffer.
Therefore a need exists for a technique that circumvents all the above-described drawbacks by providing simultaneously:
The present invention provides a system and method for buffering and accessing image data. The present invention stores image data in a buffer that acts as a display buffer and that is larger than the data that is displayed at a given time. The buffer therefore retains a rectangular portion of the 2D graphics object that is larger than the rectangular portion currently being displayed. The present invention also provides a novel and efficient method and apparatus to store and retrieve the data within the buffer.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The features and advantages of the invention will be apparent from the following detailed description of example embodiments that are taken in conjunction with the accompanying drawings.
The present invention, according to a preferred embodiment, overcomes problems with the prior art by providing a system and method of using a two dimensional, circular buffer to buffer data for an image data display while increasing the efficiency of memory utilization and data transfers.
The drawings accompanying this specification use like numerals to refer to like parts throughout the several views. However, it should be understood that these embodiments are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in the plural and vice versa with no loss of generality.
The present invention, as is shown in the illustrated embodiments, provides a system and method for buffering and accessing image data. The example embodiments of the present invention store image data in a portion of memory that acts as a display buffer cache and that is larger than the data that is displayed at a given time. The display buffer cache in this embodiment therefore retains a rectangular portion of a 2D graphics object that is larger than the rectangular portion currently being displayed. The present invention also provides an efficient method and apparatus to store and retrieve the data within the display buffer cache.
The relevant components 100 of an exemplary embodiment of the present invention are shown in
The cached image data 206 consists of a number of pixel data contained in the complete set of digital image data 202. The cached image data 206 contains Hc rows of image data that each contains Wc pixels of data (i.e. each row is Wc pixels long).
The illustrated embodiments of the present invention display a subset of the cached image data 204 contained in the display buffer cache 102. The data actually displayed at a given time is referred to herein as the “display buffer” 204. The display buffer 204 is shown in
The rows of image data discussed above are linear segments of the image stored in the set of digital image data 202. These rows in the exemplary embodiment generally correspond to pixel rows that are displayed to a user. It is clear that further embodiments of the present invention are able to utilize linear segments of image data that correspond to columns or other lines within the digital image data 202.
How the 2D graphics object that is the complete set of image data 202 is created and stored is system and application dependent. A more complex example might be a display of a photographic panorama that is actually composed of several pictures that are each compressed in the JPEG format and stored in flash memory. As a user scrolls through the panorama, compressed pictures will have to be read from the flash memory and decoded into system memory before they can be copied into the display buffer cache 102. Practitioners with average skill in the relevant arts are able to develop these and other methods to retrieve, process and produce the image data to be displayed by the illustrated embodiments.
Exemplary embodiments of the present invention are designed to use a display buffer cache 102 that is larger than the display buffer 204. The user of the exemplary embodiment may change the section of the image data that is within the display buffer cache 102 to be displayed by “scrolling” the display buffer 204 within the cached image data 206 stored in the display buffer cache 102. Exemplary embodiments of the present invention monitor user inputs that specify the direction in which the display buffer 204 is to be scrolled. The user may specify that the display buffer 204 be moved in one of four directions: Up, Down, Left or Right. Movement in orthogonal combinations of these directions is also possible. The design of user interfaces for this input is known in the relevant arts. As user inputs direct scrolling in a particular direction, the display buffer 204 will be reconfigured so as to add image pixels in the direction of the scroll, and remove pixels from the opposite direction. As an example, a user command to scroll leftward results in image pixels being added to the left of the display buffer 204 and image pixels therefore being removed from the right side to make room for the new, left side pixels.
In processing the scroll commands, example embodiments change the base address of the display buffer 204 within the display buffer cache 102. These example embodiments utilize a display buffer cache 102 that is larger than the display buffer 204 which allows some scrolling to occur prior to loading new data into the display buffer cache 102. The display buffer cache 102 is thereafter updated with new data as the user scrolls over the 2D graphics object, although this update is not necessarily performed for each scroll increment. The display buffer cache 102 of example embodiments is updated only when one edge of the display buffer 204 becomes sufficiently close to the edge of the rectangle of the cached image data 206 that is stored in the display buffer cache 102. The display buffer update in the example embodiment is performed by replacing pixels stored in the display buffer cache 102 that are furthest away from the display buffer 204 with new pixels that are on the opposite side of display buffer 204. This action has the effect of maintaining the display buffer 204 effectively in the center of the rectangle of image data stored in the display buffer cache 102.
The part of the display buffer cache 102 that is updated by these example embodiments is always “off-screen,” which means that the updating is performed on data that is outside of the data window currently being displayed. This results in update processing that does not interfere with the image currently displayed.
Updating of the display buffer cache 102 may be performed as a background process since the display buffer cache 102 is usually updated before the new image data is actually needed by the display processor 106. Performing display buffer cache updates in the background allows scrolling control to return to the user as soon as the update is initiated. This improves the system's response time that is perceived by the user. Once control is returned to the user, more scrolling increments can be performed immediately even if the earlier update is not completed. The system designer may select a number of design characteristics to optimize system operation. A designer may select the size of the display buffer cache 102 and how “close” the edge of display buffer 204 has to be to the edge of data in the display buffer cache 102 before an update is to be started. Other characteristics that may be selected in design include how much of the display buffer cache 102 is updated and which part of the display buffer cache 102 is to be updated first. The system designer can minimize the occurrence of the display buffer 204 reaching the edge of the buffered data before an update is completed through proper selection of design characteristics. This would ensure a smooth image scrolling experience for the user.
The example embodiments of the present invention incorporate a change in the display buffer memory addressing utilized by a single buffer implementation. The example embodiments of the present invention are similar to a single buffer implementation. Differences in these embodiments lie in the size of the display buffer cache 102, how the display buffer cache 102 is addressed, and how the display buffer cache 102 is maintained. The display buffer cache 102 in the example embodiments of the present invention contains only a portion of the image and is therefore smaller than the single buffer implementation, which stores the entire image. The example embodiments address the display buffer cache 102 by implementing a form of circularity and those display buffer caches 102 occasionally require updating in response to scrolling. The single buffer implementation does not use circular addressing and does not need to be updated. Moreover, example embodiments of the present invention are compatible with prior art single buffer implementations because they may be operated in a mode that behaves like those systems.
The example embodiments of the present invention use circular addressing techniques to accommodate display buffer caches 102 that are smaller than the entire 2D graphics object which forms a complete set of digital image data. The circular addressing used by the example embodiments result in scrolling operations that are seamless to the user and, to a certain extent, to the programmer.
An example rectangular 2D graphics object 256 of width W pixels and height H pixels is stored in system memory 252. It will occupy a contiguous memory space from a base address A to address A+W*H−1. Pixel P of coordinates (x, y) relative to the top-left corner of the 2D graphics object will be located at byte address:
A(P)=A+x+y*W (1)
An example rectangular region 204 within this entire 2D graphics object 256 is characterized by an upper left corner at coordinates (X1,Y1), a width of W1 pixels and a height of H1 pixels. According to formula (1), this rectangular region starts at address A1=A+X1+Y1*W in system memory, but does not occupy a contiguous memory space. A pixel P1 of relative coordinates (xi,yi) inside the rectangular region will have an address:
A(P1)=A+(X1+x1)+(Y1+y1)*W (2)
or,
A(P1)=A1+x1+y1*W (3)
The similarity of formulas (1) and (3) allows the use of the same address generating hardware to access a whole 2D graphics object occupying a contiguous memory space, or only a rectangular portion of this object that occupies a non contiguous memory space.
The size of the display buffer cache 102 is independent of the size of the entire 2D graphics object that forms the complete set of digital image data 256. This allows objects of arbitrary size to be viewed using an embodiment of the present invention. The size of the display buffer cache 102 is determined in part by system considerations. It can be determined strictly by the amount of memory available in the system, or it can be determined by the response time required by the system. More memory generally improves the response time because display buffer cache updates can be anticipated earlier.
In exemplary embodiments of the present invention, there is no wasted memory because pixels are not duplicated in the linear buffer memory. The single display buffer cache 102 can be smaller that the two buffers used in a double buffering technique, it can be the same size or it can be even larger for better performance. This technique therefore gives the system designer several design choice trade-offs to balance cost and performance.
Another advantage of the example embodiments of the present invention is that pixels that are present in successive scenes are written into the display buffer cache 102 only once. This results in significantly reduced power dissipation over a double buffering technique. System performance is also improved because writing to fewer memory locations reduces memory bandwidth requirements. Another advantage is that scrolling response time is immediate because the pixels for the next scene are already in the display buffer cache 102 due to background display buffer cache updating.
In the circular buffering utilized by an embodiment of the present invention, a pixel P(x, y) of a complete set of cached image data 256 is mapped into the display buffer cache 102 according to the following formula:
Ac(P)=A+(x+y*Wc) mod Sc (4)
Where A is the base address of the display buffer cache 102 in system memory, Wc is the width of the display buffer cache 102 in bytes, and Sc the size of the display buffer cache 102 in bytes.
The address of a pixel P1(X1+x1,Y1+y1) within the display buffer cache 102 of the exemplary embodiment, Where (X1,Y1) are the absolute coordinates of the top-left pixel of the display buffer 204, and (x1,y1) are the relative coordinates of P1 in the display buffer 204, is therefore:
Ac(P1)=A+((X1+x1)+(Y1+y1)*Wc)mod Sc
Ac(P1)=A+((X1+Y1*Wc)+x1+y1*Wc)mod Sc
Ac(P1)=A+(A1+x1+y1*Wc)mod Sc (5)
Where
A1=X1+Y1*Wc (5a)
Formula (5) is also equivalent to:
Ac(P1)=A+((A1 mod Sc)+x1+y1*Wc)mod Sc (6)
Rewritten for short
Ac(P1)=A+A0 mod Sc (6)
The result of equation (6) is advantageously used by the exemplary embodiment because (A1 mod Sc) requires fewer data bits than A1 when A1>Sc. It also has the advantage of simplifying the modulo operator hardware as explained below. Because the display buffer 204 of the exemplary embodiments is smaller than the display buffer cache 102, the following expression is always true:
x1+y1*Wc<Sc
and since:
(A1 mod Sc)<Sc
we have:
A0=(A1 mod Sc)+x1+y1*Wc<2Sc (7)
Formula (7) leads to an implementation of the modulo operation that is illustrated in
if A0<Sc,(A0 mod Sc)=A0, else, (A0 mod Sc)=A0−Sc (8)
It is to be noted that the modulo function referred to in the above discussion have the function of reducing the magnitude of the term in front of the “mod” function by the value of the term after the “mod” function if the magnitude of the term in front of the “mod” function is greater than the term after the “mod” function.
The above descriptions describe the processing performed by the exemplary embodiment, which uses a buffer base address to which positive offsets are added to determine a particular pixel address. Further embodiments of the present invention have a buffer structure whereby a pixel address is determined by essentially subtracting an offset from the buffer base address. This subtraction can occur, for example, by performing the equivalent of adding negative offsets to the buffer base address. The operation of these further embodiments is clear in light of the present discussion.
Processing then continues by entering the user scrolling interaction loop. The control program of the example embodiment then monitors, in step 406, the user scrolling input, which is input by a user input device 110 in an example embodiment. In response to user scrolling input, the display buffer 204 scrolls (is moved) within the display buffer cache 102 in step 408. The “scrolling” is implemented in this example embodiment by changing the starting location of the display buffer 204 location in the linear buffer memory. Processing then continues to step 410 to determine if the data in the display buffer cache 102 is required to be updated. At the beginning of operations, no display update is generally necessary because there is enough data in the display buffer cache 102 to guarantee a correct operation for some amount of time. If no update is required, the processing loop continues with step 406 where user scrolling input is again sampled.
As the display buffer 204 is scrolled, however, the edge of the display buffer 204 approaches an edge of the cached image data 206 stored in the display buffer cache 102. The processing thereby anticipates that data not yet present in the display buffer cache 102 will be needed. As the distance between the edge of the display buffer 204 and the data in the display buffer cache 102 decreases below a threshold, the processing of step 410 determines that a display buffer cache 102 update is required. Processing continues with step 412 to begin background processing of the display buffer cache updating. Because the edge of the display buffer 204 has not yet reached the edge of the display buffer cache 102, there is generally still enough data in the display buffer cache 102 to continue a correct scrolling operation. Processing then continues with step 406 to process further user scrolling commands. The threshold distance below which an update must be started is dependent upon the size of the display buffer cache 102 and upon the time the update takes. The proper threshold below which an update to the display buffer cache 102 should be initiated should optimally be established for each system and application.
One way to determine the distance to the edge (De) below which an update must be started is to consider that the time to update the buffer must be smaller than the time for the user to reach the edge of the buffered data by scrolling. This is represented by the following inequation:
Ku.Su<Ks.De, where
De is the critical distance between the edge of the display buffer 204 and the edge of the cached image data 206 display buffer cache 102, in pixels,
Ks is an application dependant constant characterizing the maximum scrolling speed, in pixels/second, and Ks.De is therefore the shortest time the user will take to scroll to the edge of the data currently stored in the display buffer cache,
Su is the size of the updated zone in bytes,
Ku is a system dependant constant in bytes/second, characterizing the speed at which the system can transfer data in the display cache buffer, and Ku.Su is therefore the time the system will take to update the display buffer cache
A register block 702 that contains several registers that may be configured by external components and which control the operation of the processor 700.
A register A 704 that holds and outputs the base address 730 within system memory of the display buffer cache 102.
A register A1 706 whose contents and output value 732 correspond to the position of the top-left corner of the display buffer 204 according to formula (5a) modulo Sc, where Sc is the size of the display buffer cache 102.
A register Wc 708, whose value 734 corresponds to the width in bytes of the cached image data 206.
A register Sc, 701 whose value corresponds to the size in bytes of the display buffer cache 102, which is also the size of the cached image data 206, Sc=Hc*Wc.
A first accumulator 714 used to calculate an offset value (y*Wc) 738 for each new display line. The first accumulator is reset to zero at the beginning of each new display frame and performs a new calculation at the beginning of each display line. First accumulator in this example embodiment uses a first delay element 718 to store the prior output of the accumulator 714 in order to compile a running sum of prior outputs and Wc and display line lengths Wc.
A second accumulator 716 that calculates a pixel row position 740, which is a number of pixels past the start of the displayed line of the beginning of the burst data to be retrieved. The value of the second accumulator 716 is reset to zero at the beginning of each new display line and performs a new calculation for each new burst, by accumulating successive burst lengths. The length of burst data read is provided by display controller 712 and corresponds to the amount of data loaded into the FIFO buffer within the display controller 712.
A first 3-input adder 722 used to compute a sum of the contents of register A1 730, the contents of the first accumulator 714 and the second accumulator 716. The first 3-input adder has an output A0 742.
A modulus calculating block comprising difference operator 724 and mux (data multiplexer) 726. The inputs of the modulus calculating block are driven by the output of the first 3-input adder 722 and the value contained in register Sc 710. The modulus calculating block 724 computes (A0 mod Sc), according to formula (8) and produces output 748.
A final 2-input adder 728 that adds the contents of register A 704 to the output 748 of the modulus operator.
The above describes one particular implementation of a circular addressing scheme as described by formula (4). Other formulas can be used and will lead to slightly different implementations of the address generation. One such formula is the following:
Ac(P)=A+(x mod Wc)+(y mod Hc)*Wc
The processor 700 is initialized after the display buffer cache 102 has been allocated in system memory. The processor is configured to properly process the data in the display buffer cache 102 by having the parameters of the display buffer cache 102 programmed into control registers 702. The display buffer cache base address is loaded into register A 704, The cached image data width is loaded into register Wc 708, and the display buffer cache size is loaded into register Sc 701.
Processing then continues by downloading a portion of a 2D graphical object into the display buffer cache 102. Register A1706 is loaded with a value corresponding to the memory address of the top-left corner pixel of the display buffer 204. Operation of the display controller is then started, and scrolling input from the user is processed as is illustrated in
The example embodiments have the advantage that the complex details of the display buffer addressing are hidden from the application program. The application processes image data of the 2D graphics object using coordinates of that object. The address to which image data is written into the display buffer 102 by the application program is simply the modulus of the address which would be used if the object was entirely mapped in system memory and the size of the cached image data 206.
Alternative embodiments of the present invention may include a block move (or 2D DMA) processing component. This component allows the control program with a single command, to move efficiently rectangular areas of a 2D image from one part of memory to another. In this context it would be used to update the display buffer cache 102. That block move processing component uses the same addressing technique to write to the display buffer cache, thereby allowing the application to issue block move commands in coordinate space of the 2D graphics object. Further, although mathematically manipulations of rows are shown for the linear buffer, it is within the true scope and spirit of the present invention, as understood to those of average skill in the art to use columns or other linear segments instead of rows, and/or using a base address for the row or column and a positive or negative index for addressing into the buffer. Further embodiments of the present invention utilize a base address and negative indexes that are created by, for example defining the row length to be negative.
A further advantage of the example processor 700 is that the same processor could be utilized within a prior art single buffer system by setting registers A1 and Sc to 0. This feature is particularly beneficial for implementations using, for example, a single or a small number of integrated circuits that could be used to implement the present invention or to implement prior art systems.
The present invention can also be used in a system where scrolling occurs not over the entire display screen, but only within a window covering a portion of the display screen. The present invention may also be employed in a system wherein the entire screen is scrolled except for some overlay graphics objects which appear within a fixed region of the screen. In that case, the display buffer must be defined outside of the display buffer cache. The display buffer cache is still managed and updated as described above, but additional steps are required to compose the display buffer, each time a change occurs, from the display buffer cache and from the additional data required to compose the final displayed image. In particular, scrolling is realized by moving the appropriate data from the display buffer cache to the display buffer by one or more block move operations.
The present invention may be utilized in a wide variety of products. Example products include a digital camera which digitally stores a captured image with a display that allows the user to zoom into the image. The display of the digital camera will only display a portion of the entire image stored within the camera, and the present invention may be used to more efficiently scroll the image on the display. Further examples include video movie camera, personal computers, wireless communications devices or any communications device. A communications device could receive a digital image for any purpose and allow the user to scroll the image on a display.
The present invention can be realized in hardware, software, or a combination of hardware and software. A system according to a preferred embodiment of the present invention can be realized in a centralized fashion in one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system—or other apparatus adapted for carrying out the methods described herein—is suited. A typical combination of hardware and software could be a general purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
The present invention can also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which—when loaded in a computer system—is able to carry out these methods. Computer program means or computer program in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following a) conversion to another language, code or, notation; and b) reproduction in a different material form.
Each computer system may include, inter alia, one or more computers and at least a computer readable medium allowing a computer to read data, instructions, messages or message packets, and other computer readable information from the computer readable medium. The computer readable medium may include non-volatile memory, such as ROM, Flash memory, Disk drive memory, CD-ROM, and other permanent storage. Additionally, a computer medium may include, for example, volatile storage such as RAM, buffers, cache memory, and network circuits. Furthermore, the computer readable medium may comprise computer readable information in a transitory state medium such as a network link and/or a network interface, including a wired network or a wireless network, that allow a computer to read such computer readable information.
Although specific embodiments of the invention have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the invention. The scope of the invention is not to be restricted, therefore, to the specific embodiments, and it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present invention.
This application is a continuation-in-part application of, and claims priority from application Ser. No. 09/920,026, filed Aug. 1, 2001, now U.S. Pat. No. 6,801,219. The entire disclosure of application Ser. No. 09/920,026 is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4442495 | Sukonick | Apr 1984 | A |
4445114 | Stubben | Apr 1984 | A |
4794386 | Bedrij et al. | Dec 1988 | A |
4829493 | Bailey | May 1989 | A |
5006837 | Bowers | Apr 1991 | A |
5032907 | Isnardi | Jul 1991 | A |
5138460 | Egawa | Aug 1992 | A |
5200738 | Fumoto et al. | Apr 1993 | A |
5255366 | Chia et al. | Oct 1993 | A |
5278966 | Parks et al. | Jan 1994 | A |
5589850 | Lin et al. | Dec 1996 | A |
5682197 | Moghadam et al. | Oct 1997 | A |
5745739 | Wang et al. | Apr 1998 | A |
5774108 | Michiyoshi | Jun 1998 | A |
5798749 | Minematsu et al. | Aug 1998 | A |
5929927 | Rumreich et al. | Jul 1999 | A |
5940641 | McIntyre et al. | Aug 1999 | A |
6072507 | Balatsos et al. | Jun 2000 | A |
6078306 | Lewis | Jun 2000 | A |
6229544 | Cragun | May 2001 | B1 |
6366295 | Kurashina | Apr 2002 | B1 |
20020126126 | Baldwin | Sep 2002 | A1 |
20020140829 | Colavin et al. | Oct 2002 | A1 |
20020163512 | Staudacher | Nov 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050001848 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09920026 | Aug 2001 | US |
Child | 10909817 | US |