Lancing devices are known in the medical health-care products industry for piercing the skin to produce blood for analysis. Typically, a drop of blood for this type of analysis is obtained by making a small incision in the fingertip, creating a small wound, which generates a small blood droplet on the surface of the skin.
Early methods of lancing included piercing or slicing the skin with a needle or razor. Current methods utilize lancing devices that contain a multitude of spring, cam and mass actuators to drive the lancet. These include cantilever springs, diaphragms, coil springs, as well as gravity plumbs used to drive the lancet. The device may be held against the skin and mechanically triggered to ballistically launch the lancet. Unfortunately, the pain associated with each lancing event using known technology discourages patients from testing. In addition to vibratory stimulation of the skin as the driver impacts the end of a launcher stop, known spring based devices have the possibility of firing lancets that harmonically oscillate against the patient tissue, causing multiple strikes due to recoil. This recoil and multiple strikes of the lancet is one major impediment to patient compliance with a structured glucose monitoring regime.
Another impediment to patient compliance is the lack of spontaneous blood flow generated by known lancing technology. In addition to the pain as discussed above, a patient may need more than one lancing event to obtain a blood sample since spontaneous blood generation is unreliable using known lancing technology. Thus the pain is multiplied by the number of attempts required by a patient to successfully generate spontaneous blood flow. Different skin thickness may yield different results in terms of pain perception, blood yield and success rate of obtaining blood between different users of the lancing device. Known devices poorly account for these skin thickness variations.
A still further impediment to improved compliance with glucose monitoring are the many steps and inconvenience associated with each lancing event. Many diabetic patients that are insulin dependent may need to self-test for blood glucose levels five to six times daily. The large number of steps required in traditional methods of glucose testing, ranging from lancing, to milking of blood, applying blood to a test strip, and getting the measurements from the test strip, discourages many diabetic patients from testing their blood glucose levels as often as recommended. Older patients and those with deteriorating motor skills encounter difficulty loading lancets into launcher devices, transferring blood onto a test strip, or inserting thin test strips into slots on glucose measurement meters. Additionally, the wound channel left on the patient by known systems may also be of a size that discourages those who are active with their hands or who are worried about healing of those wound channels from testing their glucose levels. Still further, the inconvenience of having to carry around a large number of individual test strips encumbers the users of conventional test equipment.
The present invention provides solutions for at least some of the drawbacks discussed above. Specifically, some embodiments of the present invention provide a multiple lancet solution to measuring analyte levels in the body. The invention may use a high density design, with regards to the number of penetrating members in a cartridge or number of analyte detecting members on a cartridge. The present invention may provide optical techniques for measuring analyte levels. The present invention may provide manufacturing techniques for such optical analyte detecting members. At least some of these and other objectives described herein will be met by embodiments of the present invention.
In one embodiment, a device is provided for use with a metering device or tissue penetrating device for measuring analyte levels. The device comprises a cartridge and a plurality of analyte detecting members mounted on the cartridge. The cartridge may have a radial disc shape. The cartridge may also be sized to fit within the metering device. The analyte detecting members may be optical system using fluorescence lifetime to determine analyte levels. In one embodiment, the device may also include a fluid spreader positioned over at least a portion of the analyte detecting member to urge fluid toward one of the detecting members. A plurality of analyte detecting members may be used. Each analyte detecting member may be a low volume device.
A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.
The present invention provides a multiple analyte detecting member solution for body fluid sampling. Specifically, some embodiments of the present invention provide a multiple analyte detecting member and multiple lancet solution to measuring analyte levels in the body. The invention may use a high density design. It may use lancets of smaller size, such as but not limited to diameter or length, than known lancets. The device may be used for multiple lancing events without having to remove a disposable from the device. The invention may provide improved sensing capabilities. At least some of these and other objectives described herein will be met by embodiments of the present invention.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It may be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a chamber” may include multiple chambers, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification.
In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:
“Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for analyzing a blood sample, this means that the analysis feature may or may not be present, and, thus, the description includes structures wherein a device possesses the analysis feature and structures wherein the analysis feature is not present.
“Analyte detecting member” refers to any use, singly or in combination, of chemical test reagents and methods, electrical test circuits and methods, physical test components and methods, optical test components and methods, and biological test reagents and methods to yield information about a blood sample. Some of these methods are well known in the art and may be based on teachings of, e.g. Tietz Textbook of Clinical Chemistry, 3d Ed., Sec. V, pp. 776-78 (Burtis & Ashwood, Eds., W.B. Saunders Company, Philadelphia, 1999); U.S. Pat. No. 5,997,817 to Chrismore et al. (Dec. 7, 1999); U.S. Pat. No. 5,059,394 to Phillips et al. (Oct. 22, 1991); U.S. Pat. No. 5,001,054 to Wagner et al. (Mar. 19, 1991); and U.S. Pat. No. 4,392,933 to Nakamura et al. (Jul. 12, 1983), the teachings of which are hereby incorporated by reference, as well as others. Analyte detecting member may include tests in the sample test chamber that test electrochemical properties of the blood, or they may include optical means for sensing optical properties of the blood (e.g. oxygen saturation level), or they may include biochemical reagents (e.g. antibodies) to sense properties (e.g. presence of antigens) of the blood. The analyte detecting member may comprise biosensing or reagent material that will react with an analyte in blood (e.g. glucose) or other body fluid so that an appropriate signal correlating with the presence of the analyte is generated and can be read by the reader apparatus. By way of example and not limitation, analyte detecting member may be “associated with”, “mounted within”, or “coupled to” a chamber or other structure when the analyte detecting member participates in the function of providing an appropriate signal about the blood sample to the reader device. Analyte detecting member may also include nanowire analyte detecting members as described herein. Analyte detecting member may use any, singly or in combination, potentiometric, coulometric, or other method useful for detection of analyte levels.
Referring jointly to
In the present embodiment, each penetrating member 18 has an elongated body 26 and a sharpened distal end 27 having a sharp tip 30. The penetrating member 18 may have a circular cross-section with a diameter in this embodiment of about 0.315 mm. All outer surfaces of the penetrating member 18 may have the same coefficient of friction. The penetrating member may be, but is not necessarily, a bare lancet. The lancet is “bare”, in the sense that no raised formations or molded parts are formed thereon that are complementarily engageable with another structure. Traditional lancets include large plastic molded parts that are used to facilitate engagement. Unfortunately, such attachments add size and cost. In the most basic sense, a bare lancet or bare penetrating member is an elongate wire having sharpened end. If it is of sufficiently small diameter, the tip may be penetrating without having to be sharpened. A bare lancet may be bent and still be considered a bare lancet. The bare lancet in one embodiment may be made of one material.
In the present embodiment, each penetrating member 18 is located in a respective one of the grooves 24. The penetrating members 18 have their sharpened distal ends 27 pointed radially out from the center point of the cartridge 12. A proximal end of each penetrating member 15 may engage in an interference fit with opposing sides of a respective groove 24 as shown in
The cartridge 12 may further include a sterilization barrier 28 attached to the upper surface 26. The sterilization barrier 28 is located over the penetrating members 18 and serves to insulate the penetrating members 18 from external contaminants. The sterilization barrier 28 is made of a material that can easily be broken when an edge of a device applies a force thereto. The sterilization barrier 28 alone or in combination with other barriers may be used to create a sterile environment about at least the tip of the penetrating member prior to lancing or actuation. The sterilization barrier 28 may be made of a variety of materials such as but not limited to metallic foil, aluminum foil, paper, polymeric material, or laminates combining any of the above. Other details of the sterilization barrier are detailed herein.
In the present embodiment, the apparatus 14 may include a housing 30, an initiator button 32, a penetrating member movement subassembly 34, a cartridge advance subassembly 36, batteries 38, a capacitor 40, a microprocessor controller 42, and switches 44. The housing 30 may have a lower portion 46 and a lid 48. The lid 48 is secured to the lower portion 46 with a hinge 50. The lower portion 46 may have a recess 52. A circular opening 54 in the lower portion 46 defines an outer boundary of the recess 52 and a level platform 56 of the lower portion 46 defines a base of the recess 52.
In use, the lid 48 of the present embodiment is pivoted into a position as shown in
Referring to the embodiment shown in
Referring to
The user then releases pressure from the button, as shown in
Referring to
A bearing 91 is secured to the lever and the penetrating member accelerator 64 has a slot 92 over the bearing 91. The slot 92 allows for the movement of the penetrating member accelerator 64 in the direction 88 relative to the lever 62, so that the force created on the slug moves the penetrating member accelerator 64 in the direction 88.
The spring 68 is not entirely relaxed, so that the spring 68, through the lever 62, biases the penetrating member accelerator 64 against the lower side surface of the penetrating member 18 with a force F1. The penetrating member 18 rests against a base 88 of the cartridge 12. An equal and opposing force F2 is created by the base 88 on an upper side surface of the penetrating member 18.
The edge 82 of the penetrating member accelerator 64 has a much higher coefficient of friction than the base 88 of the cartridge 12. The higher coefficient of friction of the edge contributes to a relatively high friction force F3 on the lower side surface of the penetrating member 18. The relatively low coefficient of friction of the base 88 creates a relatively small friction force F4 on the upper side surface of the penetrating member 18. A difference between the force F3 and F4 is a resultant force that accelerates the penetrating member in the direction 88 relative to the cartridge 12. The penetrating member is moved out of the interference fit illustrated in
Reference is now made to
Subsequent depression of the button as shown in
Referring now to
Driving force as indicated by arrow 207 is applied to surface 201 perpendicular to normal force 206. The sum of the forces acting horizontally on surface 201 is the sum of driving force 207 and the friction force developed at the interface of surface 201 and penetrating member 202, which acts in opposition to driving force 207. Since the coefficient of friction between surface 203 and penetrating member 202 is less than the coefficient of friction between surface 201 and penetrating member 202, penetrating member 202 and surface 201 will remain stationary with respect to each other and can be considered to behave as one piece when driving force 207 just exceeds the maximum frictional force that can be supported by the interface between surface 203 and penetrating member 202. Surface 201 and penetrating member 202 can be considered one piece because the coefficient of friction between surface 201 and penetrating member 202 is high enough to prevent relative motion between the two.
In one embodiment, the coefficient of friction between surface 201 and penetrating member 202 is approximately 0.8 corresponding to the coefficient of friction between two surfaces of stainless steel, while the coefficient of friction between surface 203 and penetrating member 202 is approximately 0.04, corresponding to the coefficient of friction between a surface of stainless steel and one of polytetrafluoroethylene. Normal force 206 has a value of 202 Newtons. Using these values, the maximum frictional force that the interface between surface 201 and penetrating member 202 can support is 1.6 Newtons, while the maximum frictional force that the interface between surface 203 and penetrating member 202 can support is 0.08 Newtons. If driving force 207 exceeds 0.08 Newtons, surface 201 and penetrating member 202 will begin to accelerate together with respect to surface 203. Likewise, if driving force 207 exceeds 1.6 Newtons and penetrating member 202 encounters a rigid barrier, surface 201 would move relative to penetrating member 202.
Another condition, for example, for surface 201 to move relative to penetrating member 202 would be in the case of extreme acceleration. In an embodiment, penetrating member 202 has a mass of 8.24×10−6 kg. An acceleration of 194,174 m/s2 of penetrating member 202 would therefore be required to exceed the frictional force between penetrating member 202 and surface 201, corresponding to approximately 19,800 g's. Without being bound to any particular embodiment or theory of operation, other methods of applying friction base coupling may also be used. For example, the penetrating member 202 may be engaged by a coupler using a interference fit to create the frictional engagement with the member.
The shapes and configurations of surface 201 and surface 102 could be some form other than shown in
Referring to
Embodiments of the penetrating member 222 can have an outer transverse dimension or diameter of about 200 to about 400 microns, specifically, about 275 to about 325 microns. Embodiments of penetrating member 222 can have a length of about 10 to about 30 millimeters, specifically, about 15 to about 25 millimeters. Penetrating member 222 can be made from any suitable high strength alloy such as but not limited to stainless steel or the like.
Referring again to
Referring to
Referring again to
Referring to
Referring now to
As can be seen in
Referring now to
Referring now to
As previously discussed, each cavity on the cartridge may be individually sealed with a foil cover or other sterile enclosure material to maintain sterility until or just before the time of use. In the present embodiment, penetrating members are released from their sterile environments just prior to actuation and are loaded onto a launcher mechanism for use. Releasing the penetrating member from the sterile environment prior to launch allows the penetrating member in the present embodiment to be actuated without having to pierce any sterile enclosure material which may dull the tip of the penetrating member or place contaminants on the member as it travels towards a target tissue. A variety of methods may be used accomplish this goal.
Referring now to
In some embodiments, the gripper 530 may cut into the sides of the penetrating member. The penetrating member in one embodiment may be about 300 microns wide. The grooves that form in the side of the penetrating member by the knife edges are on the order of about 5-10 microns deep and are quite small. In this particular embodiment, the knife edges allow the apparatus to use a small insertion force to get the gripper onto the penetrating member, compared to the force to remove the penetrating member from the gripper the longitudinal axis of an elongate penetrating member. Thus, the risk of a penetrating member being detached during actuation are reduced. The gripper 530 may be made of a variety of materials such as, but not limited to high strength carbon steel that is heat treated to increased hardness, ceramic, substrates with diamond coating, composite reinforced plastic, elastomer, polymer, and sintered metals. Additionally, the steel may be surface treated. The gripper 130 may have high gripping force with low friction drag on solenoid or other driver.
As seen in
Referring now to
At this point as seen in
Referring now to
It should be understood of course, that variations can be added to the above embodiment without departing from the spirit of the invention. For example, the penetrating member 541 may be placed in a parked position in the cartridge 500 prior to launch. As seen in
Referring now to
Referring now to
Referring now to
In another embodiment of the cartridge device, a mechanical feature may be included on the cartridge so that there is only one way to load it into the apparatus. As a nonlimiting example, in one embodiment holding 50 penetrating members, the cartridge may have 51 pockets or cavities. The 51.sup.st pocket will go into the firing position when the device is loaded, thus providing a location for the gripper to rest in the cartridge without releasing a penetrating member from a sterile environment. The gripper 530 in that zeroth position is inside the pocket or cavity and that is the reason why one of the pockets may be empty. Of course, some embodiments may have the gripper 530 positioned to grip a penetrating member as the cartridge 500 is loaded into the device, with the patient lancing themselves soon afterwards so that the penetrating member is not contaminated due to prolonged exposure outside the sterile enclosure. That zeroth position may be the start and finish position. The cartridge may also be notched to engaged a protrusion on the apparatus, thus also providing a method for allowing the penetrating member to loaded or unloaded only in one orientation. Essentially, the cartridge 500 may be keyed or slotted in association with the apparatus so that the cartridge 500 can only be inserted or removed at one orientation. For example as seen in
Referring now to
Referring now to
Referring now to
The coupler 624 may come in a variety of configurations. For example,
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In this embodiment as shown in
As seen in
Referring now to
Referring now to
As seen in
Referring now to
Referring now to
Referring now to
As seen in
As seen in
Referring now to
The blood may be filled in the lumen that the penetrating member was in or the module may have separately defined sample chambers to the side of the penetrating member lumen. The analyte detecting member may also be placed right at the immediate vicinity or slightly setback from the module opening receiving blood so that low blood volumes will still reach the analyte detecting member. In some embodiments, the analyte sensing device and a visual display or other interface may be on board the apparatus and thus provide a readout of analyte levels without need to plug apparatus or a test strip into a separate reader device. As seen in
In another embodiment as seen in
Referring now to
Each penetrating member 802 may be contained in a cavity 806 in the cartridge 800 with the penetrating member's sharpened end facing radially outward and may be in the same plane as that of the cartridge. The cavity 806 may be molded, pressed, forged, or otherwise formed in the cartridge. Although not limited in this manner, the ends of the cavities 806 may be divided into individual fingers (such as one for each cavity) on the outer periphery of the disc. The particular shape of each cavity 806 may be designed to suit the size or shape of the penetrating member therein or the amount of space desired for placement of the analyte detecting members 808. For example and not limitation, the cavity 806 may have a V-shaped cross-section, a U-shaped cross-section, C-shaped cross-section, a multi-level cross section or the other cross-sections. The opening 810 through which a penetrating member 802 may exit to penetrate tissue may also have a variety of shapes, such as but not limited to, a circular opening, a square or rectangular opening, a U-shaped opening, a narrow opening that only allows the penetrating member to pass, an opening with more clearance on the sides, a slit, a configuration as shown in
In this embodiment, after actuation, the penetrating member 802 is returned into the cartridge and may be held within the cartridge 800 in a manner so that it is not able to be used again. By way of example and not limitation, a used penetrating member may be returned into the cartridge and held by the launcher in position until the next lancing event. At the time of the next lancing, the launcher may disengage the used penetrating member with the cartridge 800 turned or indexed to the next clean penetrating member such that the cavity holding the used penetrating member is position so that it is not accessible to the user (i.e. turn away from a penetrating member exit opening). In some embodiments, the tip of a used penetrating member may be driven into a protective stop that hold the penetrating member in place after use. The cartridge 800 is replaceable with a new cartridge 800 once all the penetrating members have been used or at such other time or condition as deemed desirable by the user.
Referring still to the embodiment in
Depending on the orientation of the cartridge 800 in the penetrating member driver apparatus, the seal layer 820 may be on the top surface, side surface, bottom surface, or other positioned surface. For ease of illustration and discussion of the embodiment of
In a still further feature of
The use of the seal layer 820 and substrate or analyte detecting member layer 822 may facilitate the manufacture of these cartridges 10. For example, a single seal layer 820 may be adhered, attached, or otherwise coupled to the cartridge 800 as indicated by arrows 824 to seal many of the cavities 806 at one time. A sheet 822 of analyte detecting members may also be adhered, attached, or otherwise coupled to the cartridge 800 as indicated by arrows 825 to provide many analyte detecting members on the cartridge at one time. During manufacturing of one embodiment of the present invention, the cartridge 800 may be loaded with penetrating members 802, sealed with layer 820 and a temporary layer (not shown) on the bottom where substrate 822 would later go, to provide a sealed environment for the penetrating members. This assembly with the temporary bottom layer is then taken to be sterilized. After sterilization, the assembly is taken to a clean room (or it may already be in a clear room or equivalent environment) where the temporary bottom layer is removed and the substrate 822 with analyte detecting members is coupled to the cartridge as shown in
In some embodiments, more than one seal layer 820 may be used to seal the cavities 806. As examples of some embodiments, multiple layers may be placed over each cavity 806, half or some selected portion of the cavities may be sealed with one layer with the other half or selected portion of the cavities sealed with another sheet or layer, different shaped cavities may use different seal layer, or the like. The seal layer 820 may have different physical properties, such as those covering the penetrating members 802 near the end of the cartridge may have a different color such as but not limited to red to indicate to the user (if visually inspectable) that the user is down to say 10, 5, or other number of penetrating members before the cartridge should be changed out.
Referring now to
As seen in
Referring now to
As mentioned above, the analyte detecting members 808 may also be placed right at the immediate vicinity or slightly setback from the module opening receiving blood so that low blood volumes will still reach the analyte detecting member. The analyte detecting members 808 may be used with low volumes such as less than about 1 microliter of sample, preferably less than about 0.6 microliter, more preferably less than about 0.3 microliter, and most preferably less than about 0.1 microliter of sample. Analyte detecting members 808 may also be directly printed or formed on the bottom of the penetrating member cartridge 800. In one embodiment, a multiplicity of miniaturized analyte detecting member fields may be placed on the floor of the radial cavity or on the microfluidic module to allow many tests on a single analyte form a single drop of blood to improve accuracy and precision of measurement. Although not limited in this manner, additional analyte detecting member fields or regions may also be included for calibration or other purposes.
Referring now to
Referring now to
A suitable method and apparatus for loading penetrating members has been described previously in commonly assigned, copending U.S. patent applications 60/393,706, filed Jul. 12, 2002 and 60/393,707, filed Jul. 1, 2002 are included here by reference for all purposes. Suitable devices for engaging the penetrating members and for removing protective materials associated with the penetrating member cavity are described in commonly assigned, copending U.S. patent applications 60/422,988, filed Nov. 1, 2002 and 60/424,429filed Nov. 6, 2002 are included here by reference for all purposes. For example in the embodiment of
Referring now to
Referring now to
Each penetrating member (or penetrating member and analyte detecting member, as the case may be) may have a packing density, or occupied volume, in cartridge 500. In various embodiments, the packing density or occupied volume of each penetrating member in cartridge 500 may be no more than about 0.66 cm.sup.3, 0.05 cm.sup.3, 0.4 cm.sup.3, 0.3 cm.sup.3, 0.2 cm.sup.3, 0.1 cm.sup.3, 0.075 cm.sup.3, 0.05 cm.sup.3, 0.025 cm.sup.3, 0.01 cm.sup.3, 0.090 cm.sup.3, 0.080 cm.sup.3, and the like. These numbers applicable to volumes for penetrating members alone, for combined penetrating members and analyte detecting members, and/or just analyte detecting members. In other words, the volume required for each penetrating member does not exceed 0.66 cm.sup.3/penetrating member, 0.05 cm.sup.3/penetrating member, 0.4 cm3/penetrating member, 0.3 cm.sup.3/penetrating member, 0.2 cm.sup.3/penetrating member, 0.1 cm.sup.3/penetrating member, 0.075 cm.sup.3/penetrating member, 0.05 cm.sup.3/penetrating member, 0.025 cm.sup.3/penetrating member, 0.01 cm.sup.3/penetrating member, 0.090 cm.sup.3/penetrating member and the like. So, if the total package volume of the cartridge is defined as X and the cartridge includes Y number of penetrating members, penetrating members and test area, or other unit 395, the volume for each unit does not exceed 0.66 cm.sup.3, 0.05 cm.sup.3, 0.4 cm.sup.3, 0.3 cm.sup.3, 0.2 cm.sup.3, 0.1 cm.sup.3, 0.075 cm.sup.3, 0.05 cm.sup.3, 0.025 cm.sup.3, 0.01 cm.sup.3, 0.090 cm.sup.3, 0.080 cm.sup.3, and the like.
Referring now to
Referring now to
Referring now to
Referring still to the embodiment of
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The tissue penetrating device 1000 may also include memory 1008. The memory 1008 can also include digitally encoded information associated with the tissue penetrating systems and its use. Examples of the digitally encoded information include but are not limited to number of penetrating members used, number of target tissue penetrating events, time and date of the last selected number of target tissue penetrating events, time interval between alarm and target tissue penetrating event, stratum corneum thickness, time of day, energy consumed by a penetrating member driver to drive a penetrating member into the target tissue, depth of penetrating member penetration, velocity of the penetrating member, desired velocity profile, velocity of the penetrating member into the target tissue, velocity of the penetrating member out of the target tissue, dwell time of the penetrating member in the target tissue, a target tissue relaxation parameter, force delivered on the target tissue, dwell time of the penetrating member, battery status, system status, consumed energy, speed profile of the penetrating member as the penetrating penetrates and advances through the target tissue, a tissue target tissue relaxation parameter, information relative to contact of a penetrating member with target tissue before penetration by the penetrating member, information relative to a change of speed of a penetrating member as in travels in the target tissue, type of electrochemical analyte detecting member used, the kind of test the analyte detecting member will be measuring, information relative to consumed sensors and/or information relative to consumed penetrating members. These features may also be included on a device without a lancing capability. Such a device may function mainly as an analyte detecting meter and may be designed to hold a cartridge that can be used for multiple measurement events. The digitally encoded information may be read via the user interface. It should be understood that bar coding and other techniques for relating information may also be used with the present invention.
Referring now to
As seen in
As described above, the tissue penetrating device such as but not limited to device 1000 may use photodetector arrays for fluorescence lifetime imaging to determine analyte levels. In one embodiment of the present invention, CMOS detector arrays are utilized to measure fluorescence lifetimes of the analyte detecting members. In one embodiment, each pixel in the array has a plurality of charge/voltage storage locations. A sample of the correct pixel light level can be stored at one or more of these storage locations, as illustrated in
Referring now to
Referring now to
In one embodiment, custom diffractive optical elements, including but not limited to kinoforms, illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
By way of illustration, and without limitation, glucose oxidase can be in one channel and Ru in an adjacent one. Oxygen is depleted from the glucose oxidase and the Ru then senses the depletion of the oxygen in the body fluid. It will be appreciated that this equilibrium bases measurement method and system can be used for any number of different chemistries and analytes.
In a still further embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with spectral encoding of well positions will now be described. In this embodiment of the present invention, one or more detectors or imagers are provided. In one embodiment, the detector is a plurality of discrete detectors.
Spectral encoding may be used in one embodiment of the invention to spectrally slice the fluorescence spectrum of multiple wells. Imaging homogenization may be used, along with complementary spectral filtering in the filter plane, to separate out the light from the wells. This makes the image position insensitive to the well positions. A processor in the device 1000 may include logic for handling the spectral encoding. A spectrofluorometer may be used to detect the signal. In one embodiment, the well may contain a plurality of beads and it may be possible to spectrally encode the beads used in wells.
In a still further embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with cylindrical optics to reduce image position sensitivity will now be described.
In one embodiment of the present invention, cylindrical optics are included. The cylindrical optics provide an afocal imaging system such that a point image from a well associated with a sensor is transformed to a line image. The line image overfills a linear detector array in a direction that is perpendicular to a scan of the array. This desensitizes an image position relative to a radical position of the well. In some embodiments, the cylindrical optics have a longitudinal axis orthogonal to the direction of the light reflected from the object. In other embodiments, the cylindrical optics have their longitudinal axis substantially parallel to the light from the object.
In a still further embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with detent placements will now be described. Detents may be positioned close to the penetrating members and/or the wells. The detents, or other equivalent structures, are utilized to reduce effects of position tolerances that can occur during manufacturing and alignment. These effects can be the direct result of maintaining mechanical tolerances. The detents can be utilized to hold the penetrating members in a plane of various optical components of the system.
In a still further embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with CMOS imager for multiple well sensors will now be described.
In one embodiment, an image integrated circuit is utilized with a plurality of disconnected areas. One or more CMOS imagers are utilized. This enables circuitry to be positioned around each image patch of the sensor wells. Parallel read-outs are produced. This embodiment also provides more correction of imperfections in the wells, including but not limited to well off-set. Issues relating to use of a regular array of pixels can be resolved.
In a still further embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with corrected importations in imager arrays for fluorescence lifetime measurement will now be described.
In one embodiment of the present invention, the performance of imager arrays, is improved for fluorescence lifetime or other optical measurements Means are provided for correcting, or adjusting, gains of individual pixels, or groups of pixels, in am imager array. The offsets can be corrected by injecting correction signals, into suitable correction circuits, using DAC's. An importation process is utilized to compute digital conversion values that are input into the DAC's. Suitable importation processes include, but are not limited, measuring offsets with no incident light, measuring gains using a fixed incident light level, and the like.
Referring now to
In one embodiment, the performance and multi-functionality of an optical imager array associated with the wells is improved. In one embodiment, the optical imager array is a CMOS. The optical imager can include one or more groups of pixels. By way of illustration, and without limitation, a mixture of pixel sizes and geometries for a task group is utilized. This reduces, and can minimize, the number of pixels and associated circuitry, and/or optimize the signal-to-noise ratio (SNR) of different pixels for different optical measurement functions for analytes in response to the analyte detecting members.
It should be understood that a variety of fluorescence lifetime measurement modalities may be used (ie pulse, phase, square wave) with any of the embodiments of the present invention. A CMOS array may have the following advantages:
It can increase the mechanical tolerances in the metering device. One implementation would be that the CMOS chip takes a full frame picture of the illuminated chemical wells, determines which pixels are looking at which wells, then proceeds to readout only the illuminated pixels. Any mechanical movement is compensated for in software. Excitation light over-flooding may be compensated for as provided by various embodiments discussed herein.
In one embodiment, a CMOS array can provide focus compensation (at the expense of collection the same amount of light from more pixels and perhaps reducing the SNR). A CMOS detector, in this nonlimiting example, can decrease cost by using 1 detector instead of 6 (assuming 6 chemical well). A CMOS detector decreases cost by allowing integration of detectors, pre-amp, and adc on same chip. The CMOS detector can centralize dc offset and gain drift to a single point, allows for automatic adjustment of offset and gain, decreases the cost by allowing other signal processing functions on the same chip.
As a nonlimiting example, a CMOS detector may make it easy to change chemical well geometry, referencing, etc. without redesign of the optical system. This may turn out to be one of the more important advantages of using CMOS arrays. Any change in chemical well geometry with discrete detectors, will require substantial changes in the optics. With sufficient pixel density and count, the addition of more wells, changes in well geometry, or changes in well spacing could be easily handled via software changes to the processor in a device such as but not limited to that of device 1000.
A CMOS detector provides the ability to read encoded data on cartridges such as bar codes. A separate system for reading data encoded into cartridges would be needed if discrete detectors are used. The CMOS detector also has the ability to determine the start time for the measurement by looking at the fluid front.
The present invention also compensates for disadvantages of known CMOS detectors. In some CMOS detectors, frame rate may be low. Frame rate is the time it takes to sample one image, move the signal from the pixels to ADC, digitize, then process that signal if needed. Each time sample for lifetime imaging may take one frame. Generally, pixel data is read out serially and the frame rate is dominated by this serialization. In one embodiment, fluorescent lifetimes are estimated by taking many frames and averaging the signals. For a given measurement interval (say 1 second), the more frames measured, the better the SNR. In some embodiments, individual detectors may be used where the signals are read out in parallel and the effective frame rate is very fast (limited by the modulation rate of the fluorescence). Fill factor of 40% is typical with current active pixel sensors. In the present invention, 98% is attainable with specialized buried structures and 98% is attainable with linear arrays.
In one embodiment of the present invention, fixed pattern noise (FPN) in detectors may be compensated for in the processor. Individual pixels have different gain and dark currents. This creates a noise signal which appears as a fixed pattern in the image. It does not always average out. Some CMOS designs, such as active column sensing, significantly reduce FPN. Compensation for FPN may also be accomplished using processor cycles. This can reduce frame rates. In addition, if the array is used to compensate for mechanical misalignment, then for a given chemical well position, different sets of pixels, with different FPN's will be used to detect signal each time the cartridge is moved.
It should be understood that over-flooding LED illumination may decrease signal levels. Compensation for misalignment may have the imaged area at the chemical well plane larger than the wells or measurement area alone. In order to see all possible positions of those chemical wells within the imaged area, all of the imaged area may be illuminated. That is, the spot of light from the LED would overfill the measurement area. Only a fraction of the illuminating photons would then go towards generating fluorescence.
In some embodiments, the frame rate is one of the primary specifications used in determining a given imaging array's applicability to measuring lifetimes. This is because frame-rate times pixel-count determines the pixel readout rate. The pixel readout rate sets the sampling rate used to estimate the fluorescent lifetime. Since multiple frames may be averaged to estimate lifetimes, the SNR will increase with increasing frame rate. The maximum frame rate is limited not only by the chip bandwidth, but also the maximum rate one can modulate Ruthenium fluorescence.
In one embodiment, to estimate a fluorescence lifetime, several samples or frames of the fluorescent signal may be taken at differing times. This does not include averaging used to achieve a certain SNR. For example, the number of frames required for phase and square wave modes are:
(1) for phase, assuming quadrature sampling=4 frames per modulation period (2 minimum, 4 needed to remove dc term)
(2) for square wave modulation=2 to 4 frames per modulation period (2 minimum, more needed to remove dc term)
(3) Assuming one sample per frame, the Ruthenium lifetime provides a fundamental limit to the frame rate one needs. Minimum Ruthenium lifetimes are approximately t=2 usec, implying maximum modulation rates f of: f≅1/2πτ=80 khz
square wave f≅1/6τ=83 khz(assuming 3τ to decay)
In one embodiment of the present invention, 10 nanowatts of fluorescence emission power was seen at the detector plane from a single chemical well of 200×200 microns. This gives a fluorescence emission intensity: I=250 milliwatts/meter2 (at the detector plane). Optical magnification was equal to 1, actual chemical well dimension was about 100×100 micron. The emission wavelength for this embodiment was approximately 650 nm. Each frame comprises one component of a multi-component lifetime determination. For example for phase: one frame for I, then one frame for Q; or for pulse excitation: one frame for the integral of the first half of the fluorescence decay, and one frame for the second half. All SNR estimates are for the one of these components (e.g. I or Q, ect.). The SNR for the estimate of T will be different. See section B. Ruthenium lifetime=2 usec, sample integration time=2 usec, max excitation modulation rate=80 Khz (limited by Ru response time). Read noise scales as square root of pixel area (due to KTC noise):
1. Averaging multiple frames improves the SNR by {square root over (number of frames)}
where
Awell=area of the image of the chemical well at the detector plane
Apix=area of a single pixel
It was determined that source leakage (that is light from the excitation signal directly reaching the detector) was not an issue for square wave or pulse method.
Software may allow the detector to be driven in three modes such as but not limited to: pulse, phase, or amplitude. The frame rate, pixel rate, number of pixels, integration time, and sampling parameters for each of the measurement modes is changeable by the user. Timing diagrams for the three modes of operation are shown in Appendix C.
In one embodiment of the present invention, a circuit was designed and built which simulates Ruthenium fluorescence. In one embodiment, it can generate fluorescence decay profiles similar to that seen by either pulsed or sinusoidal excitation. For pulse excitation, a TTL input pulse is put through a first order exponential filter which then drives an LED, giving a light output with a first order exponential decay. The lifetime is adjustable from 2 to 5 microseconds. A red 650 nm LED is used to simulated Ruthenium emission fluorescence. For sinusoidal excitation, a second input accepts continuous TTL pulse trains of frequency equivalent to a sinusoidal excitation one would use in a phase type system. The output is a sinusoidal emission which is phase shifted by a first order exponential function. The circuit is shown in Appendix D.
Referring now to
Processing may be done on or off chip. The time slices may be generated to select out the required time samples of the fluorescent signal. These time slices may be taken as fast as possible to maximize SNR. The resultant high bandwidths have two major implications: First, the electronics, both on chip and off chip will require an added level of care and simulation in order to function properly with minimal excess noise impact. Second, the power consumption of this device and its associated ADC and signal processing could be significant. This should be kept in mind when designing the battery operated handheld version.
In another embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with improved storage stability will now be described. In this embodiment, penetrating members and their associated sample chambers are in a controlled environment during storage. A resealable septum, or other suitable device, is provided for the penetrating members, penetrating members and their associated sample chambers with analyte detecting members. The resealable septum can be utilized with multiple tissue penetrating members, and their associated multiple sample chambers with analyte detecting members. This improves the pre-use shelf-life and post-use storage.
The chemistry of the materials used for fluorescence detection of analytes will now be described.
Referring now to
As a nonlimiting example, the analyte detecting member may be a sensor layer of a single material that is deposited in one step. The sensor layer is a combination of everything that is deposited in a well 1100. This is achieved by forming an emulsion of a Ru sensing phase within a group of oxidase sensing materials. This emulsion is then deposited as a single step on the surface of the structure that houses all of the wells. A plurality of separators 1104 may be attached to the substrate 1106 as indicated by arrows 1108 to keep fluid from one area from flowing to wells in another area. In one embodiment, the separators 1104 may connected to have a hub-and-spoke configuration.
In another embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with multi-analyte sensing will now be described. It should be understood that any of the compounds described herein may be adapted for use with a cartridge 500 or with the embodiments show in
For other embodiments, the possible embodiments of the emulsion include 1) Use of emulsifiers with liquid silicone/hydrogel system, 2) Use of emulsifiers with x-linked silicone/hydrogel system, 4) Siloxane sol-gel/hydrogel system, and 5) Solid-supported O2 sensor/hydrogel. Candidate supports include silicas and zeolites. In one embodiment, hydrophile-lipophile balance (HLB) considerations are used to select candidate emulsifiers. Using simple, lab-available mixer, series of emulsions and dispersions varying, relative ratios of silicone/hydrogel, amount of emulsifier or dispersant, technique of addition (e.g. silicone/water pre-emulsion or direct emulsification into hydrogel solution), extent and degree of mixing, etc. are prepared.
The advantages of an emulsion system are its one-step application of the polymer system and an expectation that the increased interfacial area it provides will be desirable to achieve adequate signal sensitivity as the size of the polymer sensor system is progressively reduced. Interestingly, there is a hint that this dispersed configuration might be better than a two-layer configuration. O, S. Wolfbeis, I. Oehme, N. Papkovskaya and I. Klimant, Biosensors and Bioelectronics, 15, 69 (2000), provide a little limited data suggesting the dispersed approach gives longer operational stability (longer lifetime of product) than a two-layer approach.
On aspect of the present invention comprises identifying emulsifier candidates. In one embodiment, the desired HLB for polydimethylsiloxane (PDMS) silicone oil is 9-11. Paraffinic mineral oil has a similar required HLB of 10, more polar fluids have higher required HLBs (e.g. toluene is 15). This similar desired HLB for PDMS and aliphatic hydrocarbons is the reason why conventional hydrocarbon emulsifiers developed for hydrocarbon-in-water emulsions work well for silicone-in-water emulsions. The principal intermolecular interactions between PDMS molecules are the London forces between the methyl groups. The more polar siloxane backbone is shielded by the pendent methyl groups and has minor impact, causing the silicone to behave much like an aliphatic hydrocarbon in this respect. Consequently, it is not necessary to use silicone-based emulsifiers. Although they are available they are more expensive and can be obtained only in a more restricted range of HLBs than organic emulsifiers. The starting point for obtaining good emulsions is to match the required HLB of the oil to the HLB number of the emulsifier. Often two or more emulsifiers with a net average HLB of the required value is better than a single emulsifier. The conventional explanation of this is that the lower HLB component will usually be of smaller size and is likely to depress the interfacial tension more rapidly thereby aiding in emulsion formation. The higher HLB component will be bulkier and can bring steric repulsion factors that contribute to emulsion stability. The likelihood that a variety of low HLB/high HLB combinations will be tried is a good reason to focus on organic emulsifiers first and move to silicone-based emulsifiers only if the research direction requires it.
In one embodiment, TERGITOL TMN series of emulsifiers produced by Union Carbide Corporation (now a part of Dow Chemical) are used. They are the only line of organic emulsifiers specifically marketed as silicone-in-water emulsifiers. They are based on the trimethylnonyl hydrophobe (hence the TMN designation) and the poly(ethylene oxide) (EO) hydrophile. Their structure is (CH3)3 C(CH2)8 (EO)n. TMN-6 (n=6) has HLB 11.7. TMN-3 (HLB 8.1) and TMN-10 (HLB 16.1) are also available. Various mixtures will be tried starting with 50/25/25 TMN-6/TMN-3/TMN-10.
The well-known SPANS (sorbitan fatty acid esters) and TWEENS (ethoxylated adducts) are widely used in the pharmaceutical industry and known to be useful in emulsifying silicones, see, for example, German patent DE 19844262, Mar. 30, 2000 assigned to Beirsdorf A G or D-Y. Lee, C-N. Jung, K-D. Su, H-K. Choi and Y-H. Park, Kongop. Hwahak. 6, 1124 (1995). Several companies, including ICI, produce these materials under the SPAN, TWEEN and other trade names (e.g. ICI's ARLACEL). For example, TWEEN 85 is an ethoxylate sorbitan trioleate with a total of 21 ethylene oxide units and an HLB of 11.0. Many combinations for achieving this value are also possible. A TWEEN 60/SPAN 60 mixture will be amongst those tried initially. TWEEN 60 is POE (20) sorbitan monostearate with HLB 14.9; SPAN 60 is unethoxylated sorbitan monostearate with HLB 4.7. One attraction of these sorbitan-based emulsifiers is their compatibility with proteins (hence their pharmaceutical use) however, compatibility with the glucose oxidase chemistry might be an issue.
Alkylphenyl ethoxylates, e.g. the NONOXYNOLS based on nonylphenoxy(EO).sub.n and OCTOXYNOLS based on octylphenoxy have also been used to stabilize silicone emulsions. For example, a mixture of OCTOXYNOL-3 (n=3), HLB 8, and OCTOXYNOL-13 (n=13) is used in a Dow Corning patent, JP 61230734, Oct. 15, 1986. See also B. A. Saadevandi and J. L. Zakin, Chem. Eng. Comm. 156, 227 (1997) where NONOXYNOL-6 of HLB 10.8 is used, supplied by Rhodia under the trade name IGEPAL CO-530.30.
Note also that there are a number of silicone-polyether surfactants with HLBs in the 9 to 11 range. These include materials from GE, Th. Goldschmidt A G, and Dow Corning. However, most silicone-based emulsifiers are of much lower HLB and formulated as water-in-oil (inverse) emulsifiers and specialty wetting agents.
Based on the above, HEMA partitioned into trimethylsilylmethylmethacrylate in all cases within the examined range of water content. HEMA also partitioned into water in all combinations with acryloxypropyltris-(trimethylsiloxy)silane within the examined range of water content. However, this silane does not dissolve the Ru-complex.
HEMA also partitioned into water in all combinations with methacryloxypropyl-pentamethyldisiloxane and within the examined range of water content. However, trace amount of HEMA were also found in the siloxane monomer phase, and this amount did not seem to be water/HEMA content dependent. Importantly, Ru-complex is soluble in this disiloxane and for this reason it is presently the monomer of choice for emulsification studies with HEMA and water.
Additionally, seven different silicon-containing hydrophobic monomers and some dual mixtures of these monomers were evaluated for Ru complex solubility, ability to form emulsions, emulsion stability, and sensor properties of the resulting emulsions. Several different preparative procedures were developed (
Formulation: Hydrophobic phase:hydrophilic phase=1:2 (v/v); In hydrophobic phase; Monomer 5:Monomer 1=4:1 (w/w); Surfactant: 1 wt. % of total monomers, Tergitol 15-S series (as indicated in the insert) with various HLB values; Excluded: GOX, Ru complex, benzoin ethyl ether (BEE) initiator.
Orange samples: Examples of stable emulsions containing Monomer 5, BEE, Ru complex, PEGDA, PEGMA, water, GOX and emulsifier Tergitol-15-S-15. Milky white samples: examples of separated unstable emulsion (these samples did not contain Ru complex). It should be understood that emulsions based on mixtures of Monomers 5 and 1 have shown improved sensor properties over the layer coating approach
Of the stable emulsions prepared, some of the best combinations of desired properties were obtained from those containing 4:1 (w/w) mixtures of 1,3-bis(3-methacryloxypro-pyl)tetramethyldisiloxane (Monomer 5) and trimethylsilylmethylmethacrylate (Monomer 1) in the hydrophobioc phase. These emulsions were prepared with various GOX concentrations (ranging from 1 to 21 mg/mL) and phase ratios (ranging from 1:1.5 to 1:4 hydrophobic:hydrophilic phase). Test results indicated the following improvements over the layered coating approach, including but not limited to, better reproducibility from well to well, significantly higher fluorescence intensity that may enable size reduction of the 2nd generation sensors to only 1/20 of the size of the 1st generation, improved mechanical robustness of emulsion coatings compared to hydrogel layers which significantly reduces or completely avoids leakage of GOX; and high GOX formulations showed very fast responses (less than 10 seconds).
One favorable emulsion formulation is an emulsion containing 1:2 (v/v) hydrophobic/hydrophilic phases, 4:1 (w/w) Monomer 5:Monomer 1 mixture for the hydrophobic phase and 1 mg/mL GOX content in the hydrophilic phase.
The obtained results confirm that emulsion approach offers better reproducibility, faster responsiveness and a higher signal output than the layer approach, but the dynamic range of florescence-life-time (FLT) can be improved. It will be possible to overcome this deficiency, which is a property of the hydrophobic monomer(s) used, by utilizing new, tailor-made monomers.
Even emulsions from the most-difficult-to-emulsify Monomer 1 can now be made adequately stable with life-times between 22 and 24 hours. Monomer 1 represented a problem from the beginning of this work: while it has very desirable oxygen quench properties, it is also very difficult to emulsify. This monomer's emulsions, however, can remain stable for at least 22 hours by using the phase inversion emulsification technique. For this reason, the phase inversion approach can be combined with utilization of mixed surfactants with higher and lower HLB values. This will prolong the life-time of Monomer 1 emulsions to as much as 3 days.
It should be understood that in some embodiments, emulsion formulations may be crosslinked. An emulsion curing approach has been developed using benzoin ethyl ether (BEE) a UV sensitive free radical initiator in the hydrophobic phase, and water-soluble (2,2-dimethoxy-2-phenyl acetophenone (Irgacure 651) in the hydrophilic phase. Upon exposure to UV light, these initiators effectively crosslink (cure) emulsions in an adequately short time (minutes).
Some nonlimiting examples of monomers that show better combinations of Ru complex solubility, oxygen quenching, emulsion lifetime stability, and synthetic reproducibility include but are not limited to: 1) End-capping one methacrylate end of Monomer 5 with SiR3 groups in order to improve its FLT dynamic range (i.e. oxygen quench property) while retaining highly favorable emulsification ability:
2) preparing an analog of Monomer 1, such as CH2=CMeCOOCH(SiMe3)2 to improve emulsification ability while retaining good oxygen quench properties of Monomer 1:
While remaining within the realm of micro-emulsions, the hydrophilic to hydrophobic phase ratio can be increased while retaining very good film robustness even without chemical crosslinking of the phases. This can be achieved by utilizing hydrophilic-hydrophobic block copolymers where mechanical integrity is provided by physical crosslinks between the constitutive blocks resulting from their microphase separation. Appropriate selection of the respective blocks may provide systems that can successfully contain well above 80% (w) water.
In one embodiment of the present invention, a tissue penetrating device and/or an analyte detecting meter with high sensitivity optical biosensor will now be described.
In one embodiment of the present invention, the natural pyrolloquiniline quinone (PQQ) containing enzyme is isolated from, by way of example, Acinetobacter calcoaceticus or preferably the more stable form obtained by cloning into Esherichia coli, and is used in conjunction with an autooxidisable electron acceptor. Suitable autooxidisable electron acceptors include but are not limited to phenazine methosulphate (PMS) or phenazine ethosulphate (PES). The combination produces a biochemical system which consumes oxygen in the presence of glucose. This is converted into the analyte detecting member by combining the system with an optical oxygen sensor that is based on fluorescence. The advantage is much higher turnover than alternatives, including but not limited to glucose oxidase (approximately 100 fold), and lower molecular weight. This facilitates smaller sensing areas in a miniaturized array type of device with higher sensitivity at low concentrations of glucose. In another embodiment, sensitive is further enhanced by adding a second enzyme, such as glucose oxidase, to recycle the products of GDH.
The present invention provides an analyte detecting member, that includes PQQ GDF or other PQQ enzymes in combination with an electron acceptor, which readily reacts with oxygen, immobilized in the vicinity of an optical (fluorescence-based) oxygen sensing system to form an optical biosensor where the PQQ enzyme's substrate is the analyte.
In one embodiment of the present invention, a method of creating virtual multi-sensors for a tissue penetrating system will now be described.
In one embodiment of the present invention, a single analyte detecting member is utilized. The chemistry is varied within each analyte detecting member. In one embodiment, a gradient is utilized for each analyte detecting member in a well. A continual gradient is created across the analyte detecting member, which increases the dynamic range of the analyte detecting member. By way of illustration, and without limitation, two separate drops of different concentrations are deposited into a well. As they diffuse, a gradient is created. In another embodiment, a gel is deposited in a well. A solution is then deposited, with the gel creating the gradient.
In yet another embodiment of the present invention, a method of manufacturing analyte detecting members of a tissue penetrating system will now be described.
In one embodiment, a platform is provided with multiple micro-channels. The platform is positioned above and in contact with the structure that contains the wells which will house the analyte detecting member. A liquid form of chemistry, to be immobilized in the wells, is introduced from the micro-channels into the wells. The platform is then removed. The top of the wells is scraped away, in order to level the amount of analyte detecting member in each well.
In one embodiment of the present invention, a method of sterilizing penetrating members of a tissue penetrating system will now be described.
In one embodiment the penetrating members and the analyte detecting members in the wells are sterilized at the same time. Gamma is used in combination with chemical treatments. In another embodiment, chemical treatments are used with the gamma. Examples of chemical treatments include but are not limited to glutaraldehyde, alcohol, peroxide, and the like.
Referring now to
In one embodiment, analyte detecting member is in the form of a micro-bead. The use of micro-beads eases manufacturing challenges. By way of illustration, and without limitation, a Ru bead can be coated with glucose oxidase. The handling of the chemistries is simplified to minimize wetting issues that can occur with the wells 1122. Use of the micro-beads also removes the need for highly controlled volume deposition when the analyte detecting member is integrated with the wells.
Referring now to
As seen in
The reaction platform components may be designed in a manner that allows the analyte detecting member chemistries to be deposited in excess onto certain platform components. Specifically at Step 1, certain platform components include wells 1130, as well as potentially “inverse wells” and holes that expose features of other platform components that are layered on top of these platform components. Other platform components include channels, as well as potentially holes that when aligned with the inverse wells of other platform components effectively become wells themselves. Emulsion or other material are deposited in Step 2. The wells and effective wells created from inverse wells are designed so that that platform material between the analyte detecting member and the detector may be of the same thickness. The method of the present invention desires that the detector have a depth of field that is adequate for the difference in distance between the wells and the effective wells created from the inverse wells. The analyte detecting member chemistry that does not rest in the wells is scraped away from the platform at Step 3. The analyte detecting member chemistry is then set at Step 4, resulting in a solid or semi-solid phase. Step 5 shows that a top layer may be added to provide microfluidics to guide fluid to the wells 1130.
Referring now to
Referring now to
In another embodiment of the present invention, improved emulsion systems are described. One problems imagined was a possible difficulty with water loss from the continuous hydrophilic phase. In one embodiment, a block copolymer of hydrophobic and hydrophilic polymers such as polydimethylsiloxane (PDMS) and poly(ethylene oxide) (PEO) may be used. The technical field relates to block copolymers. The idea is based on the common, mutual insolubility of different polymers. If covalently bonded together they phase separate into domains. If an ABA type polymer or (AB)n polymer is used where A is the hydrophobic PDMS chain and B is the hydrophilic PBO chain, one A segment might be in one separated hydrophobic domain and the other A segment might be in another hydrophobic domain or droplet. Thus the hydrophobic domains might be chained together (held at their ends by covalent bonds with the hydrophilic chains, yet separated and unable to coalesce because of the mutual insolubility of PEO and PDMS chains. In some embodiments, a cross-linking of the PEO chains with each other may be desirable.
The present embodiments of the invention envisions block copolymers of hydrophiobic, oxygen permeable, Ru complex soluble, polymers such as PDMS with hydrophilic, water-soluble, GOX compatible, polymers such as PEO or polyacrylamide. Additional cross-linking in the hydrophilic phase may be desirable in the presence of water or blood as well.
In yet another embodiment of the present invention, improved emulsion systems are provided that make an emulsion particle size sufficiently small that it is geometrically impossible for a GOX molecule to fit inside it. One embodiment of the invention comprises a microemulsion of our preferred hydrophobic and hydrophilic phases.
The technical field relates to the field of so-called microemulsions. Ordinary emulsions are, in fact, dispersions on the micro-scale. Microemulsions are dispersions on the nano-scale. Thus a particle size in the 10 to 50 nm range, which is possible for certain microemulsions, could ensure that GOX molecules are excluded (assuming GOX is a typical, large protein of at least 100 nm in size).
Microemulsions are thermodynamically stable isotropic solutions containing hydrophobic oils, water and emulsifiers. In one embodiment, our hydrophobic oil is a silicone acrylate and contains Ru complex. Our water contains GOX and hydrogel materials. Nothing is known about how these extra additives will affect micremulsifiability. Several structural types of microemulsion are possible: nanodroplets, cylindrical structure, and bicontinuous. I suspect the nanodroplet type would be best for us as it minimizes the interfacial area which will already be very large (minimum area means minimum possibility of Brownian motion fluctuations causing GOX/Ru complex collisions and interaction). Certainly the bicontinuous arrangement where the two phases form interpenetrating networks separated by a layer of emulsifier would be the least desirable as it seems more a recipe for keeping the phases adjacent to each other than keeping them apart).
Phase diagrams were constructed at various compositions of emulsifier surfactant, hydrophilic phase and hydrophobic phase. Since much smaller dispersion sizes require much greater amounts of emulsifyer, it is desirable to have an emulsifier concentration at least 10× higher than the 1-2% region currently utilized for our conventional, macroemulsions. Compositions in the 20 to 45% emulsifier region may be prepared. The one property of microemulsions that we can most easily exploit is their transparency which results from their particle size being significantly less than the wavelength of light. Thus it is possible to make a variety of compositions and map out the phase diagram area between transparency and opaqueness. Microemulsions are thermodynamically stable and should not separate into two phases at all. Monitoring of this type of stability as we already do for our conventional emulsions will also be a useful indicator.
Referring now to
With any of the embodiments herein, fluid channels leading to the analyte detecting members may be configured to hold at least about 1.5 μl, 1.4 μl, 1.3 μl, 1.2 μl, 1.1 μl, 1.0 μl, 0.9 μl, 0.8 μl, 0.7 μl, 0.6 μl, 0.5 μl, 0.4 μl, 0.3 μl, 0.2 μl, 0.1 μl, 0.05 μl, or 0.01 μl. As another nonlimiting example, the fluid channels may also be viewed as holding no more than about 1.5 μl, 1.4 μl, 1.3 μl, 1.2 μl, 1.1 μl, 1.0 μl, 0.9 μl, 0.8 μl, 0.7 μl, 0.6 μl, 0.5 μl, 0.4 μl, 0.3 μl, 0.2 μl, 0.1 μl, 0.05 μl, or 0.01 μl, prior to the fluid entering the area 1130. In a still further embodiment, the chamber with the analyte detecting member may hold about 1.5 μl, 1.4 μl, 1.3 μl, 1.2 μl, 1.1 μl, 1.0 μl, 0.9 μl, 0.8 μl, 0.7 μl, 0.6 μl, 0.5 μl, 0.4 μl, 0.3 μl, 0.2 μl, 0.1 μl, 0.05 μl, or 0.01 μl. In some embodiments, the area 1130 is designed to hold a volume slightly less than the amount of that can be held in the channel prior to the fluid reaching the chamber.
As a nonlimiting example, the analyte detecting member used in the present embodiment can provide its analysis using no more than about 1.0 .mu.l, 0.9 .mu.l, 0.8 .mu.l, 0.7 .mu.l, 0.6 .mu.l, 0.5 .mu.l, 0.4 .mu.l, 0.3 .mu.l, 0.2 .mu.l, 0.1 .mu.l, 0.05 .mu.l, or 0.01 .mu.l of fluid. In some embodiments, the amount of fluid used by all analyte members associated with each sample chamber 1150 can provide its analysis using no more than about 1.0 .mu.l, 0.9 .mu.l, 0.8 .mu.l, 0.7 .mu.l, 0.6 .mu.l, 0.5 .mu.l, 0.4 .mu.l. 0.3 .mu.l, 0.2 .mu.l, 0.1 .mu.l, 0.05 .mu.l, or 0.01 .mu.l of fluid.
While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, with any of the above embodiments, the location of the penetrating member drive device may be varied, relative to the penetrating members or the cartridge. With any of the above embodiments, the penetrating member tips may be uncovered during actuation (i.e. penetrating members do not pierce the penetrating member enclosure or protective foil during launch). With any of the above embodiments, the penetrating members may be a bare penetrating member during launch. With any of the above embodiments, the penetrating members may be bare penetrating members prior to launch as this may allow for significantly tighter densities of penetrating members. In some embodiments, the penetrating members may be bent, curved, textured, shaped, or otherwise treated at a proximal end or area to facilitate handling by an actuator. The penetrating member may be configured to have a notch or groove to facilitate coupling to a gripper. The notch or groove may be formed along an elongate portion of the penetrating member. With any of the above embodiments, the cavity may be on the bottom or the top of the cartridge, with the gripper on the other side. In some embodiments, analyte detecting members may be printed on the top, bottom, or side of the cavities. The front end of the cartridge may be in contact with a user during lancing. The same driver may be used for advancing and retraction of the penetrating member. The penetrating member may have a diameters and length suitable for obtaining the blood volumes described herein. The penetrating member driver may also be in substantially the same plane as the cartridge. The driver may use a through hole or other opening to engage a proximal end of a penetrating member to actuate the penetrating member along a path into and out of the tissue.
Any of the features described in this application or any reference disclosed herein may be adapted for use with any embodiment of the present invention. For example, the devices of the present invention may also be combined for use with injection penetrating members or needles as described in commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002. An analyte detecting member to detect the presence of foil may also be included in the lancing apparatus. For example, if a cavity has been used before, the foil or sterility barrier will be punched. The analyte detecting member can detect if the cavity is fresh or not based on the status of the barrier. It should be understood that in optional embodiments, the sterility barrier may be designed to pierce a sterility barrier of thickness that does not dull a tip of the penetrating member. The lancing apparatus may also use improved drive mechanisms. For example, a solenoid force generator may be improved to try to increase the amount of force the solenoid can generate for a given current. A solenoid for use with the present invention may have five coils and in the present embodiment the slug is roughly the size of two coils. One change is to increase the thickness of the outer metal shell or windings surround the coils. By increasing the thickness, the flux will also be increased. The slug may be split; two smaller slugs may also be used and offset by ½ of a coil pitch. This allows more slugs to be approaching a coil where it could be accelerated. This creates more events where a slug is approaching a coil, creating a more efficient system.
In another optional alternative embodiment, a gripper in the inner end of the protective cavity may hold the penetrating member during shipment and after use, eliminating the feature of using the foil, protective end, or other part to retain the used penetrating member. Some other advantages of the disclosed embodiments and features of additional embodiments include: same mechanism for transferring the used penetrating members to a storage area; a high number of penetrating members such as but not limited to 25, 50, 75, 100, 500, or more penetrating members may be put on a disk or cartridge; molded body about a lancet becomes unnecessary; manufacturing of multiple penetrating member devices is simplified through the use of cartridges; handling is possible of bare rods metal wires, without any additional structural features, to actuate them into tissue; maintaining extreme (better than 50 micron—lateral—and better than 20 micron vertical) precision in guiding; and storage system for new and used penetrating members, with individual cavities/slots is provided. The housing of the lancing device may also be sized to be ergonomically pleasing. In one embodiment, the device has a width of about 56 mm, a length of about 105 mm and a thickness of about 15 mm. Additionally, some embodiments of the present invention may be used with non-electrical force generators or drive mechanism. For example, the punch device and methods for releasing the penetrating members from sterile enclosures could be adapted for use with spring based launchers. The gripper using a frictional coupling may also be adapted for use with other drive technologies.
Still further optional features may be included with the present invention. For example, with any of the above embodiments, the location of the penetrating member drive device may be varied, relative to the penetrating members or the cartridge. With any of the above embodiments, the penetrating member tips may be uncovered during actuation (i.e. penetrating members do not pierce the penetrating member enclosure or protective foil during launch). The penetrating members may be a bare penetrating member during launch. The same driver may be used for advancing and retraction of the penetrating member. Different analyte detecting members detecting different ranges of glucose concentration, different analytes, or the like may be combined for use with each penetrating member. Non-potentiometric measurement techniques may also be used for analyte detection. For example, direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode may be used to measure glucose levels. In some embodiments, the analyte detecting members may formed to flush with the cartridge so that a “well” is not formed. In some other embodiments, the analyte detecting members may formed to be substantially flush (within 200 microns or 100 microns) with the cartridge surfaces. In all methods, nanoscopic wire growth can be carried out via chemical vapor deposition (CVD) or other vapor deposition. In all of the embodiments of the invention, nanoscopic wires may be nanotubes. Any method useful for depositing a glucose oxidase or other analyte detection material on a nanowire or nanotube may be used with the present invention. Additionally, for some embodiments, any of the cartridge shown above may be configured without any of the penetrating members, so that the cartridge is simply an analyte detecting device. Still further, the indexing of the cartridge may be such that adjacent cavities may not necessarily be used serially or sequentially. As a nonlimiting example, every second cavity may be used sequentially, which means that the cartridge will go through two rotations before every or substantially all of the cavities are used. As another nonlimiting example, a cavity that is 3 cavities away, 4 cavities away, or N cavities away may be the next one used. This may allow for greater separation between cavities containing penetrating members that were just used and a fresh penetrating member to be used next. It should be understood that nanowires may be used with any embodiment of the cartridges described herein. The size and diameters of the radial cartridges described herein may also vary and are not limited to the sizes shown herein.
In some embodiments, in analyzing fluorescence lift times, frame rates in detectors are slow because of the time it takes to serialize many pixels, thus it is desirable to minimize the number of pixels. It may be desirable to select sub-arrays within the chip which have areas of interest (such as a chemical well fluorescent image). Parallel binning may also be desirable as it involves combining the charge on pixels before reading. This lowers the effective number of pixels to be read. These improvements may be achieved through the use of improved processors in a device similar to that of device 1000.
This application cross-references commonly assigned copending U.S. patent application Ser. No. 10/323,622 filed Dec. 18, 2002; commonly assigned copending U.S. patent application Ser. No. 10/323/623 filed Dec. 18, 2002; and commonly assigned copending U.S. patent application Ser. No. 10/324,053 filed Dec. 18, 2002. The present application is related to commonly assigned, co-pending U.S. patent application Ser. Nos. 10/335,215; 10/335,258; 10/335,099; 10/335,219; 10/335,052; 10/335,073; 10/335,220; 10/335,252; 10/335,218; 10/335,211; 10/335,257; 10/335,217; 10/335,212; 10/335,241; 10/335,183; 10/335,082; 10/335,240; 10/335,259; 10/335,182; filed Dec. 31, 2002. This application is related to commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002 and commonly assigned, copending U.S. patent application Ser. No. 10/237,261 filed Sep. 5, 2002. All applications listed above are fully incorporated herein by reference for all purposes. The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited.
Expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.
This application is a continuation of U.S. application Ser. No. 10/541,124 filed Mar. 31, 2006 now U.S. Pat. No. 8,574,895 which is a §3.71 filing of PCT/US2003/014702 filed Dec. 30, 2003, which application claims the benefit of priority to U.S. Provisional Application Ser. No. 60/437,184 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,185 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,186 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,191 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,192 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,312 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,323 filed Dec. 31, 2002, U.S. Provisional Application Ser. No. 60/437,333 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,334 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,335 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,336 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,337 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,340 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,341 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,342 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,343 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,345 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,346 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,347 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,386 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,454 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,455 filed Dec. 30, 2002, U.S. Provisional Application Ser. No. 60/437,510 filed Dec. 30, 2002, and U.S. Provisional Application Ser. No. 60/437,514 filed Dec. 30, 2002. The applications listed in this paragraph are fully incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2061 | Osdel | Apr 1841 | A |
55620 | Capewell | Jun 1866 | A |
1135465 | Pollock | Apr 1915 | A |
1733847 | Wilmot | Oct 1929 | A |
2258857 | McCann | Oct 1941 | A |
2628319 | Vang | Feb 1953 | A |
2714890 | Alfred | Aug 1955 | A |
2763935 | Whaley | Sep 1956 | A |
2801633 | Ehrlich | Aug 1957 | A |
2880876 | Dujardin | Apr 1959 | A |
3046987 | Ehrlich | Jul 1962 | A |
3030959 | Grunert | Sep 1962 | A |
3063451 | Kowalk | Nov 1962 | A |
3086288 | Balamuth | Apr 1963 | A |
3090384 | Baldwin et al. | May 1963 | A |
3208452 | Stern | Sep 1965 | A |
3358689 | Higgins | Dec 1967 | A |
3412729 | Smith, Jr. | Nov 1968 | A |
3424154 | Kinsley | Jan 1969 | A |
3448307 | Rudolph | Jun 1969 | A |
3494358 | Grossenbacher | Feb 1970 | A |
3607097 | Auphan et al. | Sep 1971 | A |
3620209 | Kravitz | Nov 1971 | A |
3626929 | Sanz | Dec 1971 | A |
3628026 | Cronin | Dec 1971 | A |
3665672 | Speelman | May 1972 | A |
3673475 | Britton | Jun 1972 | A |
3712292 | Mielke, Jr. | Jan 1973 | A |
3712293 | Mielke, Jr. | Jan 1973 | A |
3734812 | Yazawa | May 1973 | A |
3742954 | Strickland | Jul 1973 | A |
3780960 | Tokuno | Dec 1973 | A |
3832776 | Sawyer | Sep 1974 | A |
3836148 | Manning | Sep 1974 | A |
3851543 | Krom | Dec 1974 | A |
3853010 | Christen | Dec 1974 | A |
3924818 | Pfeifle | Dec 1975 | A |
3938526 | Anderson | Feb 1976 | A |
3953172 | Shapiro | Apr 1976 | A |
3971365 | Smith | Jul 1976 | A |
4057394 | Genshaw | Nov 1977 | A |
4077406 | Sandhage | Mar 1978 | A |
4109655 | Chacornac | Aug 1978 | A |
4139011 | Benoit | Feb 1979 | A |
4154228 | Feldstein | May 1979 | A |
4168130 | Barth | Sep 1979 | A |
4184486 | Papa | Jan 1980 | A |
4190420 | Covington | Feb 1980 | A |
4191193 | Seo | Mar 1980 | A |
4193690 | Levenson | Mar 1980 | A |
4203446 | Hofert | May 1980 | A |
4207870 | Eldridge | Jun 1980 | A |
4223674 | Fluent | Sep 1980 | A |
4224125 | Nakamura | Sep 1980 | A |
4224949 | Scott | Sep 1980 | A |
4230118 | Holman et al. | Oct 1980 | A |
4240439 | Abe | Dec 1980 | A |
4254083 | Columbus | Mar 1981 | A |
4258001 | Pierce | Mar 1981 | A |
4259653 | McGonigal | Mar 1981 | A |
4299230 | Kubota | Nov 1981 | A |
4301412 | Hill | Nov 1981 | A |
4321397 | Nix | Mar 1982 | A |
4338174 | Tamura | Jul 1982 | A |
4340669 | Bauer | Jul 1982 | A |
4350762 | De Luca | Sep 1982 | A |
4353984 | Yamada | Oct 1982 | A |
4356826 | Kubota | Nov 1982 | A |
4360016 | Sarrine | Nov 1982 | A |
4388922 | Telang | Jun 1983 | A |
4391905 | Bauer | Jul 1983 | A |
4391906 | Bauer | Jul 1983 | A |
4392933 | Nakamura | Jul 1983 | A |
4394512 | Batz | Jul 1983 | A |
4397556 | Muller | Aug 1983 | A |
4407008 | Schmidt | Sep 1983 | A |
4411266 | Cosman | Oct 1983 | A |
4414975 | Ryder | Nov 1983 | A |
4418037 | Katsuyama | Nov 1983 | A |
4420564 | Tsuji | Dec 1983 | A |
4425039 | Grant | Jan 1984 | A |
4426451 | Columbus | Jan 1984 | A |
4426884 | Polchaninoff | Jan 1984 | A |
4440301 | Intengan | Apr 1984 | A |
4442836 | Meinecke | Apr 1984 | A |
4442972 | Sahay | Apr 1984 | A |
4449529 | Burns | May 1984 | A |
4462405 | Ehrlich | Jul 1984 | A |
4469110 | Slama | Sep 1984 | A |
4490139 | Huizenga et al. | Dec 1984 | A |
4517978 | Levin | May 1985 | A |
4518384 | Tarello | May 1985 | A |
4523994 | Shono | Jun 1985 | A |
4525164 | Loeb et al. | Jun 1985 | A |
4535769 | Burns | Aug 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4537197 | Hulka | Aug 1985 | A |
4539988 | Shirley | Sep 1985 | A |
4545382 | Higgins | Oct 1985 | A |
4553541 | Burns | Nov 1985 | A |
4561445 | Berke | Dec 1985 | A |
4577630 | Nitzsche | Mar 1986 | A |
4580564 | Andersen | Apr 1986 | A |
4580565 | Cornell | Apr 1986 | A |
4586819 | Tochigi | May 1986 | A |
4586926 | Osborne | May 1986 | A |
4590411 | Kelly | May 1986 | A |
4595479 | Kimura | Jun 1986 | A |
4600014 | Beraha | Jul 1986 | A |
4603209 | Tsien | Jul 1986 | A |
4608997 | Conway | Sep 1986 | A |
4615340 | Cronenberg | Oct 1986 | A |
4616649 | Burns | Oct 1986 | A |
4619754 | Niki | Oct 1986 | A |
4622974 | Coleman | Nov 1986 | A |
4624253 | Burns | Nov 1986 | A |
4627445 | Garcia | Dec 1986 | A |
4637393 | Ray | Jan 1987 | A |
4637403 | Garcia | Jan 1987 | A |
4643189 | Mintz | Feb 1987 | A |
4648408 | Hutcheson | Mar 1987 | A |
4648714 | Benner | Mar 1987 | A |
4653511 | Goch | Mar 1987 | A |
4653513 | Dombrowski | Mar 1987 | A |
4655225 | Dahne | Apr 1987 | A |
4661768 | Carusillo | Apr 1987 | A |
4666438 | Raulerson | May 1987 | A |
4676244 | Enstrom | Jun 1987 | A |
4677979 | Burns | Jul 1987 | A |
4678277 | Delhaye | Jul 1987 | A |
4682892 | Chawla | Jul 1987 | A |
4695273 | Brown | Sep 1987 | A |
4702594 | Grant | Oct 1987 | A |
4711245 | Higgins | Dec 1987 | A |
4712460 | Allen | Dec 1987 | A |
4712548 | Enstrom | Dec 1987 | A |
4714462 | DiDomenico | Dec 1987 | A |
4715374 | Maggio | Dec 1987 | A |
4731330 | Hill | Mar 1988 | A |
4731726 | Allen, III | Mar 1988 | A |
4734360 | Phillips | Mar 1988 | A |
4735203 | Ryder | Apr 1988 | A |
4737458 | Batz | Apr 1988 | A |
4750489 | Berkman | Jun 1988 | A |
4753776 | Hillman | Jun 1988 | A |
4756884 | Hillman | Jul 1988 | A |
4757022 | Shults | Jul 1988 | A |
4758323 | Davis | Jul 1988 | A |
4774192 | Terminiello | Sep 1988 | A |
4784486 | Van Wagenen | Nov 1988 | A |
4787398 | Garcia | Nov 1988 | A |
4790979 | Terminiello | Dec 1988 | A |
4794926 | Munsch et al. | Jan 1989 | A |
4797283 | Allen | Jan 1989 | A |
4814142 | Gleisner | Mar 1989 | A |
4814661 | Ratzlaff | Mar 1989 | A |
4817603 | Turner | Apr 1989 | A |
4818493 | Coville | Apr 1989 | A |
4820010 | Scifres | Apr 1989 | A |
4820399 | Senda | Apr 1989 | A |
4823806 | Bajada | Apr 1989 | A |
4824639 | Hildenbrand | Apr 1989 | A |
RE32922 | Levin et al. | May 1989 | E |
4825711 | Jensen | May 1989 | A |
4827763 | Bourland | May 1989 | A |
4829011 | Gibbons | May 1989 | A |
4830959 | McNeil | May 1989 | A |
4836904 | Armstron | Jun 1989 | A |
4840893 | Hill | Jun 1989 | A |
4844095 | Chiodo | Jul 1989 | A |
4845392 | Mumbower | Jul 1989 | A |
4850973 | Jordan | Jul 1989 | A |
4857274 | Simon | Aug 1989 | A |
4868129 | Gibbons | Sep 1989 | A |
4869249 | Crossman | Sep 1989 | A |
4869265 | McEwen | Sep 1989 | A |
4873993 | Meserol | Oct 1989 | A |
4877026 | de Laforcade | Oct 1989 | A |
4882013 | Turner | Nov 1989 | A |
4883055 | Merrick | Nov 1989 | A |
4883068 | Dechow | Nov 1989 | A |
4886499 | Cirelli | Dec 1989 | A |
4889529 | Haindl | Dec 1989 | A |
4892097 | Ranalletta | Jan 1990 | A |
4895147 | Bodicky | Jan 1990 | A |
4895156 | Schulze | Jan 1990 | A |
4897173 | Nankai | Jan 1990 | A |
4900424 | Birch | Feb 1990 | A |
4900666 | Phillips | Feb 1990 | A |
4911794 | Parce | Mar 1990 | A |
4920977 | Haynes | May 1990 | A |
4924879 | O'brien | May 1990 | A |
4935346 | Phillips | Jun 1990 | A |
4938218 | Goodman | Jul 1990 | A |
4940468 | Petillo | Jul 1990 | A |
4944304 | Nishina | Jul 1990 | A |
4945045 | Forrest | Jul 1990 | A |
4946795 | Gibbons | Aug 1990 | A |
4948727 | Cass | Aug 1990 | A |
4948961 | Hillman | Aug 1990 | A |
4952373 | Sugarman | Aug 1990 | A |
4952515 | Gleisner | Aug 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4953976 | Adler-Golden | Sep 1990 | A |
4963498 | Hillman | Oct 1990 | A |
4966581 | Landau | Oct 1990 | A |
4966646 | Zdeblick | Oct 1990 | A |
4966671 | Nylander | Oct 1990 | A |
4975581 | Robinson | Dec 1990 | A |
4976724 | Nieto | Dec 1990 | A |
4977910 | Miyahara | Dec 1990 | A |
4983178 | Schnell | Jan 1991 | A |
4984085 | Landowski | Jan 1991 | A |
4990154 | Brown | Feb 1991 | A |
4995402 | Smith | Feb 1991 | A |
4999582 | Parks | Mar 1991 | A |
5001054 | Wagner | Mar 1991 | A |
5001873 | Rufin | Mar 1991 | A |
5004923 | Hillman | Apr 1991 | A |
5010772 | Bourland | Apr 1991 | A |
5010774 | Kikuo | Apr 1991 | A |
5014718 | Mitchen | May 1991 | A |
5019974 | Beckers | May 1991 | A |
5026388 | Ingalz | Jun 1991 | A |
D318331 | Phillips | Jul 1991 | S |
5028142 | Ostoich et al. | Jul 1991 | A |
5029583 | Meserol | Jul 1991 | A |
5035704 | Lambert | Jul 1991 | A |
5039617 | McDonald | Aug 1991 | A |
5043143 | Shaw | Aug 1991 | A |
5046496 | Betts | Sep 1991 | A |
5047044 | Smith | Sep 1991 | A |
5049487 | Phillips | Sep 1991 | A |
5049673 | Tsien | Sep 1991 | A |
5054487 | Clarke | Oct 1991 | A |
5054499 | Swierczek | Oct 1991 | A |
5057082 | Burchette, Jr. | Oct 1991 | A |
5057277 | Mauze | Oct 1991 | A |
5059394 | Phillips | Oct 1991 | A |
5059789 | Salcudean | Oct 1991 | A |
5060174 | Gross | Oct 1991 | A |
5062898 | McDermott | Nov 1991 | A |
5064411 | Gordon, III | Nov 1991 | A |
5070874 | Barnes | Dec 1991 | A |
5070886 | Mitchen | Dec 1991 | A |
5073500 | Saito et al. | Dec 1991 | A |
5074872 | Brown | Dec 1991 | A |
5077017 | Gorin | Dec 1991 | A |
5077199 | Basagni | Dec 1991 | A |
5080865 | Leiner | Jan 1992 | A |
5086229 | Rosenthal | Feb 1992 | A |
5089112 | Skotheim | Feb 1992 | A |
5092842 | Bechtold | Mar 1992 | A |
5094943 | Siedel | Mar 1992 | A |
5096669 | Lauks | Mar 1992 | A |
5097810 | Fishman | Mar 1992 | A |
5100427 | Crossman | Mar 1992 | A |
5100428 | Mumford | Mar 1992 | A |
5104380 | Holman | Apr 1992 | A |
5104382 | Brinkerhoff et al. | Apr 1992 | A |
5104619 | Castro | Apr 1992 | A |
5104813 | Besemer | Apr 1992 | A |
5107764 | Gasparrini | Apr 1992 | A |
5108564 | Szuminsky | Apr 1992 | A |
5108889 | Smith | Apr 1992 | A |
5116759 | Klainer | May 1992 | A |
5120420 | Nankai | Jun 1992 | A |
5122244 | Hoenes | Jun 1992 | A |
5126034 | Carter | Jun 1992 | A |
5128015 | Szuminsky | Jul 1992 | A |
5128171 | Gleisner | Jul 1992 | A |
5132801 | Yamano | Jul 1992 | A |
5133730 | Biro | Jul 1992 | A |
5135719 | Hillman | Aug 1992 | A |
5139685 | Castro | Aug 1992 | A |
5140161 | Hillman | Aug 1992 | A |
5141868 | Shanks | Aug 1992 | A |
5144139 | Hillman | Sep 1992 | A |
5145565 | Kater | Sep 1992 | A |
5146091 | Knudson | Sep 1992 | A |
5152296 | Simons | Oct 1992 | A |
5152775 | Ruppert | Oct 1992 | A |
5153671 | Miles | Oct 1992 | A |
5156611 | Haynes | Oct 1992 | A |
5162525 | Masilamani | Nov 1992 | A |
5163442 | Ono | Nov 1992 | A |
5164598 | Hillman | Nov 1992 | A |
5167619 | Wuchinich | Dec 1992 | A |
5170364 | Gross | Dec 1992 | A |
5174726 | Findlay | Dec 1992 | A |
D332490 | Brown | Jan 1993 | S |
5178142 | Harjunmaa | Jan 1993 | A |
5179005 | Phillips | Jan 1993 | A |
5181910 | Scanlon | Jan 1993 | A |
5181914 | Zook | Jan 1993 | A |
5183042 | Harjunmaa | Feb 1993 | A |
5185256 | Nankai | Feb 1993 | A |
5187100 | Matzinger | Feb 1993 | A |
5188118 | Terwilliger | Feb 1993 | A |
5189751 | Giuliani | Mar 1993 | A |
5192415 | Yoshioka | Mar 1993 | A |
5194391 | Nauze | Mar 1993 | A |
5196025 | Ranalletta | Mar 1993 | A |
5201324 | Swierczek | Apr 1993 | A |
5205920 | Oyama | Apr 1993 | A |
5208163 | Charlton et al. | May 1993 | A |
5209028 | McDermott | May 1993 | A |
5211652 | Derbyshire | May 1993 | A |
5212879 | Biro | May 1993 | A |
5215587 | McConnellogue | Jun 1993 | A |
5216597 | Beckers | Jun 1993 | A |
5217476 | Wishinsky | Jun 1993 | A |
5217480 | Haber | Jun 1993 | A |
5218966 | Yamasawa | Jun 1993 | A |
5222504 | Solomon | Jun 1993 | A |
5228972 | Osaka | Jul 1993 | A |
5229282 | Yoshioka | Jul 1993 | A |
5230866 | Shartle | Jul 1993 | A |
5231993 | Haber et al. | Aug 1993 | A |
5241969 | Carson | Sep 1993 | A |
5247932 | Chung | Sep 1993 | A |
5249583 | Mallaby | Oct 1993 | A |
5250066 | Lambert | Oct 1993 | A |
5251126 | Kahn | Oct 1993 | A |
5253656 | Rincoe | Oct 1993 | A |
5256998 | Becker | Oct 1993 | A |
5264103 | Yoshioka | Nov 1993 | A |
5264105 | Gregg | Nov 1993 | A |
5264106 | McAleer | Nov 1993 | A |
5266179 | Nankai | Nov 1993 | A |
5266359 | Spielvogel | Nov 1993 | A |
D342573 | Cerola | Dec 1993 | S |
5267974 | Lambert | Dec 1993 | A |
5272087 | El Murr | Dec 1993 | A |
5277181 | Mendelson | Jan 1994 | A |
5279294 | Anderson | Jan 1994 | A |
5279791 | Aldrich | Jan 1994 | A |
5282822 | Macors | Feb 1994 | A |
5286362 | Hoenes | Feb 1994 | A |
5286364 | Yacynych | Feb 1994 | A |
5288636 | Pollmann | Feb 1994 | A |
5294261 | McDermott | Mar 1994 | A |
5296378 | Sakata | Mar 1994 | A |
5300779 | Hillman | Apr 1994 | A |
5304192 | Crouse | Apr 1994 | A |
5304193 | Zhadanov | Apr 1994 | A |
5304347 | Mann | Apr 1994 | A |
5304468 | Phillips | Apr 1994 | A |
5306623 | Kiser | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5312590 | Gunasingham | May 1994 | A |
5314441 | Cusack | May 1994 | A |
5314442 | Morita | May 1994 | A |
5315793 | Peterson | May 1994 | A |
5316012 | Siegal | May 1994 | A |
5318583 | Rabenau | Jun 1994 | A |
5318584 | Lange | Jun 1994 | A |
5320607 | Ishibashi | Jun 1994 | A |
5320808 | Holen | Jun 1994 | A |
5324302 | Crouse | Jun 1994 | A |
5324303 | Strong | Jun 1994 | A |
5330634 | Wong | Jul 1994 | A |
5332479 | Uenoyama | Jul 1994 | A |
5341206 | Pittaro | Aug 1994 | A |
5342382 | Brinkerhoff | Aug 1994 | A |
5344703 | Kovar | Sep 1994 | A |
5350392 | Purcell | Sep 1994 | A |
5352351 | White | Oct 1994 | A |
5354287 | Wacks | Oct 1994 | A |
5354447 | Uenoyama | Oct 1994 | A |
5356420 | Czernecki | Oct 1994 | A |
5360410 | Wacks | Nov 1994 | A |
5365699 | Armstrong | Nov 1994 | A |
5366469 | Steg | Nov 1994 | A |
5366470 | Ramel | Nov 1994 | A |
5366609 | White | Nov 1994 | A |
5368047 | Suzuki | Nov 1994 | A |
5370509 | Golding | Dec 1994 | A |
5371687 | Holmes | Dec 1994 | A |
5372135 | Mendelson | Dec 1994 | A |
5375397 | Ferrand | Dec 1994 | A |
5378628 | Gratzel | Jan 1995 | A |
5382346 | Uenoyama | Jan 1995 | A |
5383885 | Bland | Jan 1995 | A |
5389534 | Gentzkow | Feb 1995 | A |
5390450 | Goenka | Feb 1995 | A |
5393903 | Gratzel | Feb 1995 | A |
5395339 | Talonn | Mar 1995 | A |
5395387 | Burns | Mar 1995 | A |
5397334 | Schenk | Mar 1995 | A |
5401376 | Foos | Mar 1995 | A |
5402798 | Swierczek | Apr 1995 | A |
5405283 | Goenka | Apr 1995 | A |
5405510 | Betts | Apr 1995 | A |
5405511 | White | Apr 1995 | A |
5407545 | Hirose | Apr 1995 | A |
5407554 | Saurer | Apr 1995 | A |
5407818 | Gentzkow | Apr 1995 | A |
5409583 | Yoshioka | Apr 1995 | A |
5409664 | Allen | Apr 1995 | A |
5410059 | Fraser | Apr 1995 | A |
5410474 | Fox | Apr 1995 | A |
5415169 | Siczek | May 1995 | A |
5418142 | Kiser | May 1995 | A |
5423847 | Strong et al. | Jun 1995 | A |
5424545 | Block | Jun 1995 | A |
5426032 | Phillips | Jun 1995 | A |
5436161 | Bergstrom | Jul 1995 | A |
5437999 | Diebold | Aug 1995 | A |
5438271 | White | Aug 1995 | A |
5443701 | Willner | Aug 1995 | A |
5445920 | Saito | Aug 1995 | A |
D362719 | Kaplan | Sep 1995 | S |
5453360 | Yu | Sep 1995 | A |
5454828 | Schraga | Oct 1995 | A |
5456875 | Lambert | Oct 1995 | A |
5459325 | Hueton | Oct 1995 | A |
5460182 | Goodman | Oct 1995 | A |
5462533 | Daugherty | Oct 1995 | A |
5464418 | Schraga | Nov 1995 | A |
5465722 | Fort | Nov 1995 | A |
5471102 | Becker | Nov 1995 | A |
5472427 | Rammler | Dec 1995 | A |
5474084 | Cunniff | Dec 1995 | A |
5476474 | Davis | Dec 1995 | A |
5480387 | Gabriel | Jan 1996 | A |
5487748 | Marshall | Jan 1996 | A |
D367109 | Ryner | Feb 1996 | S |
5490505 | Diab | Feb 1996 | A |
5496274 | Graves | Mar 1996 | A |
5496453 | Uenoyama | Mar 1996 | A |
5498542 | Corey | Mar 1996 | A |
5501836 | Myerson | Mar 1996 | A |
5501893 | Laermer | Mar 1996 | A |
5507288 | Bocker | Apr 1996 | A |
5507629 | Jarvik | Apr 1996 | A |
5508171 | Walling | Apr 1996 | A |
5509410 | Hill | Apr 1996 | A |
5510266 | Bonner et al. | Apr 1996 | A |
5512159 | Yoshioka | Apr 1996 | A |
5514152 | Smith | May 1996 | A |
5515170 | Matzinger | May 1996 | A |
5518006 | Mawhirt | May 1996 | A |
D371198 | Savage | Jun 1996 | S |
5524636 | Sarvazyan | Jun 1996 | A |
5525511 | D'Costa | Jun 1996 | A |
5525518 | Lundsgaard | Jun 1996 | A |
5526120 | Jina | Jun 1996 | A |
5527333 | Nikkels | Jun 1996 | A |
5527334 | Kanner | Jun 1996 | A |
5529074 | Greenfield | Jun 1996 | A |
5540676 | Freiberg | Jul 1996 | A |
5540709 | Ramel | Jul 1996 | A |
5543326 | Heller | Aug 1996 | A |
5545174 | Schenk | Aug 1996 | A |
5545291 | Smith | Aug 1996 | A |
5547702 | Gleisner | Aug 1996 | A |
D373419 | Muramatsu | Sep 1996 | S |
5554153 | Costello | Sep 1996 | A |
5554166 | Lange | Sep 1996 | A |
5558834 | Chu | Sep 1996 | A |
5562384 | Alvite | Oct 1996 | A |
5562696 | Nobles | Oct 1996 | A |
5563031 | Yu | Oct 1996 | A |
5563042 | Phillips | Oct 1996 | A |
5569286 | Peckham | Oct 1996 | A |
5569287 | Tezuka | Oct 1996 | A |
5571132 | Mawhirt | Nov 1996 | A |
5575284 | Athan | Nov 1996 | A |
5575403 | Charlton | Nov 1996 | A |
5575895 | Ikeda | Nov 1996 | A |
5582697 | Ikeda | Dec 1996 | A |
5584846 | Mawhirt | Dec 1996 | A |
5591139 | Lin | Jan 1997 | A |
5593852 | Heller | Jan 1997 | A |
5599501 | Carey | Feb 1997 | A |
5605837 | Karimi | Feb 1997 | A |
D378612 | Clark | Mar 1997 | S |
5608006 | Myerson | Mar 1997 | A |
5609749 | Yamauchi | Mar 1997 | A |
5611809 | Marshall | Mar 1997 | A |
5611810 | Arnold | Mar 1997 | A |
5613978 | Harding | Mar 1997 | A |
5616135 | Thorne | Apr 1997 | A |
5617851 | Lipkovker | Apr 1997 | A |
5618297 | Hart | Apr 1997 | A |
5620579 | Genshaw | Apr 1997 | A |
5620863 | Tomasco | Apr 1997 | A |
5624458 | Lipscher | Apr 1997 | A |
5624459 | Kortenbach | Apr 1997 | A |
5624537 | Turner | Apr 1997 | A |
D379516 | Rutter | May 1997 | S |
5628764 | Schraga | May 1997 | A |
5628765 | Morita | May 1997 | A |
5628890 | Carter | May 1997 | A |
5628961 | Davis | May 1997 | A |
5630828 | Mawhirt | May 1997 | A |
5630986 | Charlton | May 1997 | A |
5632410 | Moulton | May 1997 | A |
5640954 | Pfeiffer | Jun 1997 | A |
D381591 | Rice | Jul 1997 | S |
5643306 | Schraga | Jul 1997 | A |
5643308 | Markman | Jul 1997 | A |
5645555 | Davis | Jul 1997 | A |
5647851 | Pokras | Jul 1997 | A |
5650062 | Ikeda | Jul 1997 | A |
5653863 | Genshaw | Aug 1997 | A |
5657760 | Ying | Aug 1997 | A |
5658444 | Black | Aug 1997 | A |
5660791 | Brenneman | Aug 1997 | A |
D383550 | Larson | Sep 1997 | S |
5662127 | De Vaughn | Sep 1997 | A |
5662672 | Pambianchi | Sep 1997 | A |
5666966 | Horie | Sep 1997 | A |
5676143 | Simonsen | Oct 1997 | A |
5678306 | Bozeman | Oct 1997 | A |
5680858 | Hansen et al. | Oct 1997 | A |
5680872 | Sesekura | Oct 1997 | A |
5682233 | Brinda | Oct 1997 | A |
5682884 | Hill | Nov 1997 | A |
5683562 | Schaffar | Nov 1997 | A |
5691898 | Rosenberg | Nov 1997 | A |
5692514 | Bowman | Dec 1997 | A |
5695947 | Guo | Dec 1997 | A |
5700695 | Yassinzadeh | Dec 1997 | A |
5705045 | Park | Jan 1998 | A |
5707384 | Kim | Jan 1998 | A |
5708247 | McAleer | Jan 1998 | A |
5709668 | Wacks | Jan 1998 | A |
5709699 | Warner | Jan 1998 | A |
5710011 | Forrow | Jan 1998 | A |
5714123 | Sohrab | Feb 1998 | A |
5714390 | Hallowitz | Feb 1998 | A |
5719034 | Kiser | Feb 1998 | A |
5720862 | Hamamoto | Feb 1998 | A |
5720924 | Eikmeier | Feb 1998 | A |
D392391 | Douglas | Mar 1998 | S |
D392740 | Yung | Mar 1998 | S |
5723284 | Ye | Mar 1998 | A |
5727548 | Hill | Mar 1998 | A |
5729905 | Mathiasmeier | Mar 1998 | A |
5730753 | Morita | Mar 1998 | A |
5733085 | Shida | Mar 1998 | A |
5733300 | Pambianchi | Mar 1998 | A |
D393716 | Brenneman | Apr 1998 | S |
D393717 | Brenneman | Apr 1998 | S |
5735868 | Lee | Apr 1998 | A |
5736103 | Pugh | Apr 1998 | A |
5738244 | Charlton | Apr 1998 | A |
5741228 | Lambrecht | Apr 1998 | A |
5741634 | Nozoe | Apr 1998 | A |
RE35803 | Lange | May 1998 | E |
5746217 | Erickson | May 1998 | A |
5746761 | Turchin | May 1998 | A |
5746898 | Preidel | May 1998 | A |
5753429 | Pugh | May 1998 | A |
5753452 | Smith | May 1998 | A |
5755228 | Wilson | May 1998 | A |
5755733 | Morita | May 1998 | A |
5758643 | Wong | Jun 1998 | A |
5759364 | Charlton | Jun 1998 | A |
5762770 | Pritchard | Jun 1998 | A |
5770086 | Indriksons | Jun 1998 | A |
5770369 | Meade | Jun 1998 | A |
5772586 | Heinonen | Jun 1998 | A |
5772677 | Mawhirt | Jun 1998 | A |
5773270 | D'Orazio | Jun 1998 | A |
5776157 | Thorne | Jul 1998 | A |
5776719 | Douglas | Jul 1998 | A |
5779365 | Takaki | Jul 1998 | A |
5780304 | Matzinger | Jul 1998 | A |
5782770 | Mooradian | Jul 1998 | A |
5782852 | Foggia | Jul 1998 | A |
5788651 | Weilandt | Aug 1998 | A |
5788652 | Rahn | Aug 1998 | A |
5789255 | Yu | Aug 1998 | A |
5794219 | Brown | Aug 1998 | A |
5795725 | Buechler | Aug 1998 | A |
5795774 | Matsumoto | Aug 1998 | A |
5797940 | Mawhirt | Aug 1998 | A |
5797942 | Schraga | Aug 1998 | A |
5798030 | Raguse | Aug 1998 | A |
5798031 | Charlton | Aug 1998 | A |
5800781 | Gavin | Sep 1998 | A |
5801057 | Smart | Sep 1998 | A |
5807375 | Gross | Sep 1998 | A |
5810199 | Charlton | Sep 1998 | A |
D399566 | Sohrab | Oct 1998 | S |
5820551 | Hill | Oct 1998 | A |
5822715 | Worthington | Oct 1998 | A |
5823973 | Racchini | Oct 1998 | A |
5824491 | Priest | Oct 1998 | A |
5827181 | Dias | Oct 1998 | A |
5828943 | Brown | Oct 1998 | A |
5829589 | Nguyen | Nov 1998 | A |
5830219 | Bird | Nov 1998 | A |
5832448 | Brown | Nov 1998 | A |
5840020 | Heinonen | Nov 1998 | A |
5840171 | Birch | Nov 1998 | A |
5843691 | Douglas | Dec 1998 | A |
5843692 | Phillips | Dec 1998 | A |
5846216 | Gonzales | Dec 1998 | A |
5846486 | Pugh | Dec 1998 | A |
5846490 | Yokota | Dec 1998 | A |
5849174 | Sanghera | Dec 1998 | A |
5853373 | Griffith | Dec 1998 | A |
5854074 | Charlton | Dec 1998 | A |
D403975 | Douglas | Jan 1999 | S |
5855377 | Murphy | Jan 1999 | A |
5855801 | Lin | Jan 1999 | A |
5856174 | Lipshutz | Jan 1999 | A |
5856195 | Charlton | Jan 1999 | A |
5857967 | Frid | Jan 1999 | A |
5857983 | Douglas | Jan 1999 | A |
5858804 | Zanzucchi | Jan 1999 | A |
5860922 | Gordon et al. | Jan 1999 | A |
5863800 | Eikmeier | Jan 1999 | A |
5866353 | Berneth | Feb 1999 | A |
5868135 | Kaufman | Feb 1999 | A |
5868772 | LeVaughn | Feb 1999 | A |
5869972 | Birch | Feb 1999 | A |
5871494 | Simons | Feb 1999 | A |
5872713 | Douglas | Feb 1999 | A |
5873856 | Hjertman et al. | Feb 1999 | A |
5873887 | King | Feb 1999 | A |
5876351 | Rohde | Mar 1999 | A |
5876957 | Douglas | Mar 1999 | A |
5879163 | Brown | Mar 1999 | A |
5879310 | Sopp | Mar 1999 | A |
5879311 | Duchon | Mar 1999 | A |
5879373 | Roper | Mar 1999 | A |
5880829 | Kauhaniemi | Mar 1999 | A |
5882494 | van Antwerp | Mar 1999 | A |
5885211 | Eppstein | Mar 1999 | A |
5886056 | Hershkowitz | Mar 1999 | A |
5887133 | Brown | Mar 1999 | A |
5890128 | Diaz | Mar 1999 | A |
RE36191 | Solomon | Apr 1999 | E |
5891053 | Sesekura | Apr 1999 | A |
5892569 | Van de Velde | Apr 1999 | A |
5893848 | Negus | Apr 1999 | A |
5893870 | Talen | Apr 1999 | A |
5897493 | Brown | Apr 1999 | A |
5897569 | Kellogg | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5899915 | Saadat | May 1999 | A |
5900130 | Benvegnu | May 1999 | A |
5902731 | Ouyang | May 1999 | A |
5906921 | Ikeda | May 1999 | A |
D411619 | Duchon | Jun 1999 | S |
5908416 | Costello | Jun 1999 | A |
5911937 | Hekal | Jun 1999 | A |
5912134 | Shartle | Jun 1999 | A |
5913310 | Brown | Jun 1999 | A |
5916156 | Hildenbrand | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5916230 | Brenneman | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5919711 | Boyd | Jul 1999 | A |
5921963 | Erez | Jul 1999 | A |
5922188 | Ikeda | Jul 1999 | A |
5922530 | Yu | Jul 1999 | A |
5922591 | Anderson | Jul 1999 | A |
RE36268 | Szuminsky | Aug 1999 | E |
5931794 | Pitesky | Aug 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5938635 | Kuhle | Aug 1999 | A |
5938679 | Freeman | Aug 1999 | A |
5940153 | Castaneda | Aug 1999 | A |
5942102 | Hodges | Aug 1999 | A |
5942189 | Wolfbeis | Aug 1999 | A |
5947957 | Morris | Sep 1999 | A |
5951300 | Brown | Sep 1999 | A |
5951492 | Douglas | Sep 1999 | A |
5951493 | Douglas | Sep 1999 | A |
5951582 | Thorne | Sep 1999 | A |
5951836 | McAleer | Sep 1999 | A |
5954738 | LeVaughn | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5957846 | Chiang | Sep 1999 | A |
5958199 | Miyamoto | Sep 1999 | A |
5959098 | Goldberg | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5961451 | Reber | Oct 1999 | A |
5964718 | Duchon | Oct 1999 | A |
5965380 | Heller | Oct 1999 | A |
5968063 | Chu | Oct 1999 | A |
5968760 | Phillips | Oct 1999 | A |
5968836 | Matzinger | Oct 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5972199 | Heller | Oct 1999 | A |
5972294 | Smith | Oct 1999 | A |
5972715 | Celentano | Oct 1999 | A |
5974124 | Schlueter | Oct 1999 | A |
5976085 | Kimball | Nov 1999 | A |
5983193 | Heinonen | Nov 1999 | A |
5985116 | Ikeda | Nov 1999 | A |
5985559 | Brown | Nov 1999 | A |
5986754 | Harding | Nov 1999 | A |
5993400 | Rincoe | Nov 1999 | A |
5993434 | Dev | Nov 1999 | A |
D417504 | Love | Dec 1999 | S |
5997476 | Brown | Dec 1999 | A |
5997509 | Rosengart et al. | Dec 1999 | A |
5997561 | Bocker | Dec 1999 | A |
5997817 | Crismore | Dec 1999 | A |
5997818 | Hacker | Dec 1999 | A |
6001067 | Shults | Dec 1999 | A |
6007497 | Huitema | Dec 1999 | A |
D418602 | Prokop | Jan 2000 | S |
6014577 | Henning | Jan 2000 | A |
6015392 | Douglas | Jan 2000 | A |
6018289 | Sekura | Jan 2000 | A |
6020110 | Williams | Feb 2000 | A |
6022324 | Skinner | Feb 2000 | A |
6022366 | Schraga | Feb 2000 | A |
6022748 | Charych | Feb 2000 | A |
6023629 | Tamada | Feb 2000 | A |
6023686 | Brown | Feb 2000 | A |
6027459 | Shain | Feb 2000 | A |
6030399 | Ignotz | Feb 2000 | A |
6030827 | Davis | Feb 2000 | A |
6030967 | Marui | Feb 2000 | A |
6032059 | Henning | Feb 2000 | A |
6032119 | Brown | Feb 2000 | A |
6033421 | Theiss | Mar 2000 | A |
6033866 | Guo | Mar 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6037178 | Leiner | Mar 2000 | A |
6041253 | Kost | Mar 2000 | A |
6045567 | Taylor | Apr 2000 | A |
6046055 | Wolfbeis | Apr 2000 | A |
6048352 | Douglas | Apr 2000 | A |
D424696 | Ray | May 2000 | S |
6056701 | Duchon | May 2000 | A |
6059815 | Lee | May 2000 | A |
6060327 | Keen | May 2000 | A |
6061128 | Zweig | May 2000 | A |
6063039 | Cunningham | May 2000 | A |
6066103 | Duchon | May 2000 | A |
6066243 | Anderson | May 2000 | A |
6066296 | Brady | May 2000 | A |
6067463 | Jeng | May 2000 | A |
6068615 | Brown | May 2000 | A |
D426638 | Ray | Jun 2000 | S |
6070761 | Bloom | Jun 2000 | A |
6071249 | Cunningham | Jun 2000 | A |
6071250 | Douglas | Jun 2000 | A |
6071251 | Cunningham | Jun 2000 | A |
6071294 | Simons | Jun 2000 | A |
6071391 | Gotoh | Jun 2000 | A |
6074360 | Haar et al. | Jun 2000 | A |
6077408 | Miyamoto | Jun 2000 | A |
6080106 | Lloyd | Jun 2000 | A |
6080172 | Fujiwara | Jun 2000 | A |
D428150 | Ruf | Jul 2000 | S |
6083196 | Trautman | Jul 2000 | A |
6083710 | Heller | Jul 2000 | A |
6084660 | Shartle | Jul 2000 | A |
6085576 | Sunshine | Jul 2000 | A |
6086544 | Hibner | Jul 2000 | A |
6086545 | Roe | Jul 2000 | A |
6086562 | Jacobsen | Jul 2000 | A |
6090078 | Erskine | Jul 2000 | A |
6091975 | Daddona | Jul 2000 | A |
6093146 | Filangeri | Jul 2000 | A |
6093156 | Cunningham | Jul 2000 | A |
D428993 | Lubs | Aug 2000 | S |
6099484 | Douglas | Aug 2000 | A |
6099802 | Pugh | Aug 2000 | A |
6100107 | Lei | Aug 2000 | A |
6101478 | Brown | Aug 2000 | A |
6102933 | Lee | Aug 2000 | A |
6103033 | Say | Aug 2000 | A |
6103509 | Sode | Aug 2000 | A |
6104940 | Watanabe | Aug 2000 | A |
6106751 | Talbot | Aug 2000 | A |
6107083 | Collins | Aug 2000 | A |
6113578 | Brown | Sep 2000 | A |
6117155 | Lee | Sep 2000 | A |
6117630 | Reber | Sep 2000 | A |
6118126 | Zanzucchi | Sep 2000 | A |
6119033 | Spigelman | Sep 2000 | A |
6120462 | Hibner | Sep 2000 | A |
6120676 | Heller | Sep 2000 | A |
6121009 | Heller | Sep 2000 | A |
6122536 | Sun | Sep 2000 | A |
6126804 | Andresen | Oct 2000 | A |
6126899 | Woudenberg | Oct 2000 | A |
6129823 | Hughes | Oct 2000 | A |
6132449 | Lum | Oct 2000 | A |
6133837 | Riley | Oct 2000 | A |
6134461 | Say | Oct 2000 | A |
6136013 | Marshall | Oct 2000 | A |
6139562 | Mauze | Oct 2000 | A |
6143164 | Heller | Nov 2000 | A |
6144837 | Quy | Nov 2000 | A |
6144976 | Silva et al. | Nov 2000 | A |
6149203 | Hanlon | Nov 2000 | A |
6151586 | Brown | Nov 2000 | A |
6152875 | Hakamata | Nov 2000 | A |
6152942 | Brenneman | Nov 2000 | A |
6153069 | Pottgen | Nov 2000 | A |
RE36991 | Yamamoto | Dec 2000 | E |
6155267 | Nelson | Dec 2000 | A |
6155992 | Henning et al. | Dec 2000 | A |
6156051 | Schraga | Dec 2000 | A |
6157442 | Raskas | Dec 2000 | A |
6159147 | Lichter | Dec 2000 | A |
6159424 | Kauhaniemi | Dec 2000 | A |
6161095 | Brown | Dec 2000 | A |
6162397 | Jurik | Dec 2000 | A |
6162611 | Heller | Dec 2000 | A |
6167362 | Brown | Dec 2000 | A |
6167386 | Brown | Dec 2000 | A |
6168563 | Brown | Jan 2001 | B1 |
6168957 | Matzinger | Jan 2001 | B1 |
6171325 | Mauze | Jan 2001 | B1 |
6172743 | Kley et al. | Jan 2001 | B1 |
6175752 | Say | Jan 2001 | B1 |
6176847 | Humphreys | Jan 2001 | B1 |
6176865 | Mauze | Jan 2001 | B1 |
6177000 | Peterson | Jan 2001 | B1 |
6177931 | Alexander | Jan 2001 | B1 |
6183489 | Douglas | Feb 2001 | B1 |
6186145 | Brown | Feb 2001 | B1 |
6190612 | Berger | Feb 2001 | B1 |
6191852 | Paffhausen | Feb 2001 | B1 |
6192891 | Gravel | Feb 2001 | B1 |
6193673 | Viola | Feb 2001 | B1 |
6193873 | Ohara | Feb 2001 | B1 |
6194900 | Freeman | Feb 2001 | B1 |
6197040 | LeVaughn | Mar 2001 | B1 |
6197257 | Raskas | Mar 2001 | B1 |
6200289 | Hochman et al. | Mar 2001 | B1 |
6200773 | Ouyang | Mar 2001 | B1 |
6203504 | Latterell | Mar 2001 | B1 |
6206841 | Cunningham et al. | Mar 2001 | B1 |
6210133 | Aboul-Hosn | Apr 2001 | B1 |
6210272 | Brown | Apr 2001 | B1 |
6210369 | Wilmot | Apr 2001 | B1 |
6210420 | Mauze | Apr 2001 | B1 |
6210421 | Bocker | Apr 2001 | B1 |
6212417 | Ikeda | Apr 2001 | B1 |
6214626 | Meller | Apr 2001 | B1 |
6214804 | Felgner | Apr 2001 | B1 |
6218571 | Zheng | Apr 2001 | B1 |
6219574 | Cormier | Apr 2001 | B1 |
6221023 | Matsuba | Apr 2001 | B1 |
6221238 | Grundig | Apr 2001 | B1 |
6224617 | Saadat et al. | May 2001 | B1 |
6225078 | Ikeda | May 2001 | B1 |
6228100 | Schraga | May 2001 | B1 |
6230051 | Cormier | May 2001 | B1 |
6230501 | Bailey | May 2001 | B1 |
6231531 | Lum | May 2001 | B1 |
6233471 | Berner | May 2001 | B1 |
6233539 | Brown | May 2001 | B1 |
6234772 | Wampler | May 2001 | B1 |
6240393 | Brown | May 2001 | B1 |
D444235 | Roberts | Jun 2001 | S |
6241862 | McAleer | Jun 2001 | B1 |
6242207 | Douglas | Jun 2001 | B1 |
6245060 | Loomis | Jun 2001 | B1 |
6245215 | Douglas | Jun 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248065 | Brown | Jun 2001 | B1 |
6251083 | Yum | Jun 2001 | B1 |
6251121 | Saadat | Jun 2001 | B1 |
6251260 | Heller | Jun 2001 | B1 |
6251344 | Goldstein | Jun 2001 | B1 |
D444557 | Levaughn | Jul 2001 | S |
6254831 | Barnard | Jul 2001 | B1 |
6256533 | Vuzhakov | Jul 2001 | B1 |
6258111 | Ross | Jul 2001 | B1 |
6258229 | Winarta | Jul 2001 | B1 |
6258254 | Miyamoto | Jul 2001 | B1 |
6261241 | Burbank | Jul 2001 | B1 |
6261245 | Kawai | Jul 2001 | B1 |
6261519 | Harding | Jul 2001 | B1 |
6264635 | Wampler | Jul 2001 | B1 |
6268161 | Han | Jul 2001 | B1 |
6268162 | Phillips | Jul 2001 | B1 |
6269314 | Iitawaki | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6270637 | Crismore | Aug 2001 | B1 |
6272359 | Kivela | Aug 2001 | B1 |
6272364 | Kurnik | Aug 2001 | B1 |
6275717 | Gross | Aug 2001 | B1 |
6280254 | Wu | Aug 2001 | B1 |
6281006 | Heller | Aug 2001 | B1 |
6283926 | Cunningham | Sep 2001 | B1 |
6283982 | Levaughn | Sep 2001 | B1 |
6284478 | Heller | Sep 2001 | B1 |
6285448 | Kuenstner | Sep 2001 | B1 |
6285454 | Douglas | Sep 2001 | B1 |
6289254 | Shimizu | Sep 2001 | B1 |
6290683 | Erez | Sep 2001 | B1 |
6294897 | Champlin | Sep 2001 | B1 |
6295506 | Heinonen | Sep 2001 | B1 |
6299578 | Kurnik | Oct 2001 | B1 |
6299596 | Ding | Oct 2001 | B1 |
6299757 | Feldman | Oct 2001 | B1 |
6302844 | Walker | Oct 2001 | B1 |
6302855 | Lav | Oct 2001 | B1 |
6305804 | Rice | Oct 2001 | B1 |
6306104 | Cunningham | Oct 2001 | B1 |
6306152 | Verdonk | Oct 2001 | B1 |
6306347 | Mason | Oct 2001 | B1 |
6309351 | Kurnik | Oct 2001 | B1 |
6309370 | Haim et al. | Oct 2001 | B1 |
6309535 | Williams | Oct 2001 | B1 |
6312612 | Sherman | Nov 2001 | B1 |
6315738 | Nishikawa | Nov 2001 | B1 |
6318970 | Backhouse | Nov 2001 | B1 |
6319210 | Douglas | Nov 2001 | B1 |
6322574 | Lloyd | Nov 2001 | B1 |
6322808 | Trautman | Nov 2001 | B1 |
6322963 | Bauer | Nov 2001 | B1 |
6329161 | Heller | Dec 2001 | B1 |
6330426 | Brown | Dec 2001 | B2 |
6331163 | Kaplan | Dec 2001 | B1 |
6332871 | Douglas | Dec 2001 | B1 |
6334363 | Testud | Jan 2002 | B1 |
6334778 | Brown | Jan 2002 | B1 |
6334856 | Allen | Jan 2002 | B1 |
6335203 | Patel | Jan 2002 | B1 |
6336900 | Alleckson | Jan 2002 | B1 |
6338790 | Feldman | Jan 2002 | B1 |
6346120 | Yamazaki | Feb 2002 | B1 |
6349229 | Watanabe | Feb 2002 | B1 |
6350273 | Minagawa | Feb 2002 | B1 |
6350451 | Horn | Feb 2002 | B1 |
6352514 | Douglas | Mar 2002 | B1 |
6352523 | Brown | Mar 2002 | B1 |
6353753 | Flock | Mar 2002 | B1 |
6358196 | Rayman | Mar 2002 | B1 |
6364889 | Kheiri | Apr 2002 | B1 |
6364890 | Lum | Apr 2002 | B1 |
6368273 | Brown | Apr 2002 | B1 |
6375469 | Brown | Apr 2002 | B1 |
6375626 | Allen et al. | Apr 2002 | B1 |
6375627 | Mauze | Apr 2002 | B1 |
6379301 | Worthington | Apr 2002 | B1 |
6379317 | Kintzig | Apr 2002 | B1 |
6379324 | Gartstein | Apr 2002 | B1 |
6379969 | Mauze | Apr 2002 | B1 |
6381577 | Brown | Apr 2002 | B1 |
D456910 | Clark | May 2002 | S |
6387709 | Mason | May 2002 | B1 |
6391005 | Lum | May 2002 | B1 |
6395227 | Kiser | May 2002 | B1 |
6398522 | Skill | Jun 2002 | B2 |
6398562 | Butler | Jun 2002 | B1 |
6399394 | Dahm | Jun 2002 | B1 |
6402701 | Kaplan | Jun 2002 | B1 |
6402704 | Mcmorrow | Jun 2002 | B1 |
6409740 | Kuhr | Jun 2002 | B1 |
6413410 | Hodges | Jul 2002 | B1 |
6413411 | Pottgen | Jul 2002 | B1 |
6415821 | Kamholz | Jul 2002 | B2 |
6419661 | Kuhr et al. | Jul 2002 | B1 |
6420128 | Ouyang | Jul 2002 | B1 |
6421633 | Heinonen | Jul 2002 | B1 |
6423014 | Churchill | Jul 2002 | B1 |
6428664 | Bhullar | Aug 2002 | B1 |
6436055 | Roe | Aug 2002 | B1 |
6436256 | Williams | Aug 2002 | B1 |
6436721 | Kuo | Aug 2002 | B1 |
6440645 | Yon-Hin | Aug 2002 | B1 |
6444115 | Hodges | Sep 2002 | B1 |
6447119 | Stewart et al. | Sep 2002 | B1 |
6447265 | Antaki | Sep 2002 | B1 |
6451040 | Purcell | Sep 2002 | B1 |
6453810 | Rossmeisl | Sep 2002 | B1 |
6458258 | Taniike | Oct 2002 | B2 |
6461496 | Feldman | Oct 2002 | B1 |
6462162 | van Antwerp | Oct 2002 | B2 |
6464649 | Duchon | Oct 2002 | B1 |
6471903 | Sherman | Oct 2002 | B2 |
6472220 | Simons | Oct 2002 | B1 |
6475360 | Hodges | Nov 2002 | B1 |
6475372 | Ohara | Nov 2002 | B1 |
6475436 | Schabbach | Nov 2002 | B1 |
6475750 | Han | Nov 2002 | B1 |
6477394 | Rice | Nov 2002 | B2 |
6477424 | Thompson | Nov 2002 | B1 |
6484046 | Say | Nov 2002 | B1 |
6485439 | Roe | Nov 2002 | B1 |
6485461 | Mason | Nov 2002 | B1 |
6485923 | Yani | Nov 2002 | B1 |
6488827 | Shartle | Dec 2002 | B1 |
6488872 | Beebe et al. | Dec 2002 | B1 |
6488891 | Mason | Dec 2002 | B2 |
6489133 | Phillips | Dec 2002 | B2 |
6491709 | Sharma | Dec 2002 | B2 |
6491870 | Patel | Dec 2002 | B2 |
6494830 | Wessel | Dec 2002 | B1 |
6497845 | Sacherer | Dec 2002 | B1 |
6501404 | Walker | Dec 2002 | B2 |
6501976 | Sohrab | Dec 2002 | B1 |
6503210 | Hirao | Jan 2003 | B1 |
6503231 | Prausnitz | Jan 2003 | B1 |
6503290 | Jarosinski | Jan 2003 | B1 |
6503381 | Gotoh | Jan 2003 | B1 |
6506165 | Sweeney | Jan 2003 | B1 |
6506168 | Fathallah | Jan 2003 | B1 |
6506575 | Knappe | Jan 2003 | B1 |
6508785 | Eppstein | Jan 2003 | B1 |
6512986 | Harmon | Jan 2003 | B1 |
6514270 | Schraga | Feb 2003 | B1 |
6514460 | Fendrock | Feb 2003 | B1 |
6519241 | Theimer | Feb 2003 | B1 |
6520326 | McIvor | Feb 2003 | B2 |
6521110 | Hodges | Feb 2003 | B1 |
6521182 | Shartle | Feb 2003 | B1 |
6527521 | Noda | Mar 2003 | B2 |
6527716 | Eppstein | Mar 2003 | B1 |
6527778 | Athanasiou | Mar 2003 | B2 |
6529377 | Nelson | Mar 2003 | B1 |
6530892 | Kelly | Mar 2003 | B1 |
6530937 | Schraga | Mar 2003 | B1 |
6531322 | Jurik | Mar 2003 | B1 |
6533949 | Yeshurun | Mar 2003 | B1 |
6537207 | Rice | Mar 2003 | B1 |
6537242 | Palmer | Mar 2003 | B1 |
6537264 | Cormier et al. | Mar 2003 | B1 |
6537292 | Lee | Mar 2003 | B1 |
6540672 | Simonsen | Apr 2003 | B1 |
6540675 | Aceti | Apr 2003 | B2 |
6540762 | Bertling | Apr 2003 | B1 |
6540891 | Stewart | Apr 2003 | B1 |
6541266 | Modzelewski | Apr 2003 | B2 |
6547954 | Ikeda | Apr 2003 | B2 |
6549796 | Sohrab | Apr 2003 | B2 |
6551494 | Heller | Apr 2003 | B1 |
6553244 | Lesho | Apr 2003 | B2 |
6554381 | Locher | Apr 2003 | B2 |
6555061 | Leong | Apr 2003 | B1 |
D475136 | Taniguchi | May 2003 | S |
6558320 | Causey | May 2003 | B1 |
6558361 | Yeshurun | May 2003 | B1 |
6558402 | Chelak | May 2003 | B1 |
6558528 | Matzinger | May 2003 | B1 |
6560471 | Heller | May 2003 | B1 |
6561978 | Conn | May 2003 | B1 |
6561989 | Whitson | May 2003 | B2 |
6562210 | Bhullar | May 2003 | B1 |
6565509 | Say | May 2003 | B1 |
6565808 | Hudak | May 2003 | B2 |
6569157 | Shain | May 2003 | B1 |
6571651 | Hodges | Jun 2003 | B1 |
6572566 | Effenhauser | Jun 2003 | B2 |
6572822 | Jurik | Jun 2003 | B2 |
6574490 | Abbink | Jun 2003 | B2 |
6575905 | Knobbe | Jun 2003 | B2 |
6576101 | Heller | Jun 2003 | B1 |
6576117 | Iketaki et al. | Jun 2003 | B1 |
6576416 | Haviland | Jun 2003 | B2 |
6579690 | Bonnecaze | Jun 2003 | B1 |
6582573 | Douglas | Jun 2003 | B2 |
6584338 | Van Muiswinkel | Jun 2003 | B1 |
D477670 | Jurik | Jul 2003 | S |
6586199 | Ouyang | Jul 2003 | B2 |
6587705 | Kim | Jul 2003 | B1 |
6589260 | Schmelzeisen-R | Jul 2003 | B1 |
6589261 | Abulhaj | Jul 2003 | B1 |
6591124 | Sherman | Jul 2003 | B2 |
6591125 | Buse | Jul 2003 | B1 |
6592744 | Hodges | Jul 2003 | B1 |
6592745 | Feldman | Jul 2003 | B1 |
6595919 | Berner | Jul 2003 | B2 |
6599281 | Struys et al. | Jul 2003 | B1 |
6599407 | Taniike | Jul 2003 | B2 |
6599693 | Webb | Jul 2003 | B1 |
6599769 | Kondo | Jul 2003 | B2 |
6601534 | Hebrank | Aug 2003 | B2 |
6602205 | Erickson | Aug 2003 | B1 |
6602268 | Kuhr | Aug 2003 | B2 |
6602678 | Kwon | Aug 2003 | B2 |
6604050 | Trippel | Aug 2003 | B2 |
6607362 | Lum | Aug 2003 | B2 |
6607494 | Fowler | Aug 2003 | B1 |
6607658 | Heller | Aug 2003 | B1 |
6612111 | Hodges | Sep 2003 | B1 |
6616616 | Fritz | Sep 2003 | B2 |
6616819 | Liamos | Sep 2003 | B1 |
6618934 | Feldman | Sep 2003 | B1 |
6620112 | Klitmose | Sep 2003 | B2 |
6620310 | Ohara | Sep 2003 | B1 |
6623501 | Heller | Sep 2003 | B2 |
6626851 | Hirao | Sep 2003 | B2 |
6632349 | Hodges | Oct 2003 | B1 |
6635222 | Kent | Oct 2003 | B2 |
6638415 | Hodges | Oct 2003 | B1 |
6638772 | Douglas | Oct 2003 | B1 |
6641533 | Causey | Nov 2003 | B2 |
6645142 | Braig | Nov 2003 | B2 |
6645219 | Roe | Nov 2003 | B2 |
6645368 | Beatty | Nov 2003 | B1 |
6649416 | Kauer | Nov 2003 | B1 |
6650915 | Routt | Nov 2003 | B2 |
6652720 | Mansouri | Nov 2003 | B1 |
6652734 | Hodges | Nov 2003 | B1 |
6652814 | House | Nov 2003 | B1 |
D484600 | Kaar | Dec 2003 | S |
6656428 | Clark et al. | Dec 2003 | B1 |
6656697 | Ouyang | Dec 2003 | B1 |
6656702 | Yugawa | Dec 2003 | B1 |
6659966 | Essenpreis | Dec 2003 | B2 |
6660018 | Lum | Dec 2003 | B2 |
6662439 | Bhullar | Dec 2003 | B1 |
6669669 | Flaherty | Dec 2003 | B2 |
6671527 | Petersson | Dec 2003 | B2 |
D484980 | Hartwein | Jan 2004 | S |
6673617 | Patel | Jan 2004 | B2 |
6676995 | Dick | Jan 2004 | B2 |
6679841 | Bojan | Jan 2004 | B2 |
6679852 | Forster | Jan 2004 | B1 |
6682933 | Patel | Jan 2004 | B2 |
6689411 | Dick | Feb 2004 | B2 |
6706000 | Perez | Mar 2004 | B2 |
6706049 | Moerman | Mar 2004 | B2 |
6706159 | Moerman | Mar 2004 | B2 |
6706232 | Hasegawa | Mar 2004 | B2 |
6709692 | Sudor | Mar 2004 | B2 |
6713660 | Roe | Mar 2004 | B1 |
6716577 | Yu | Apr 2004 | B1 |
6719887 | Hasegawa | Apr 2004 | B2 |
6719923 | Stiene | Apr 2004 | B2 |
6721586 | Kiser | Apr 2004 | B2 |
6723046 | Lichtenstein | Apr 2004 | B2 |
6723111 | Abulhaj | Apr 2004 | B2 |
6723371 | Chih-hui | Apr 2004 | B2 |
6723500 | Yu | Apr 2004 | B2 |
6726818 | Cui et al. | Apr 2004 | B2 |
6729546 | Roustaei | May 2004 | B2 |
6730494 | Toranto | May 2004 | B1 |
6731966 | Spigelman | May 2004 | B1 |
6733493 | Gruzdev | May 2004 | B2 |
6736777 | Kim | May 2004 | B2 |
6738654 | Sohrab | May 2004 | B2 |
6740215 | Nakaminami et al. | May 2004 | B1 |
6743211 | PraUsnitz | Jun 2004 | B1 |
6743597 | Guo | Jun 2004 | B1 |
6743635 | Neel | Jun 2004 | B2 |
6746872 | Zheng | Jun 2004 | B2 |
6749618 | Levaughn | Jun 2004 | B2 |
6749740 | Liamos | Jun 2004 | B2 |
6749792 | Olson | Jun 2004 | B2 |
6749887 | Dick | Jun 2004 | B1 |
6751491 | Lew | Jun 2004 | B2 |
6752817 | Flora | Jun 2004 | B2 |
6753187 | Cizdziel | Jun 2004 | B2 |
6759190 | Lin | Jul 2004 | B2 |
6764496 | Schraga | Jul 2004 | B2 |
6764581 | Forrow | Jul 2004 | B1 |
6767441 | Cai | Jul 2004 | B1 |
6773671 | Lewis | Aug 2004 | B1 |
6776888 | Yamamoto | Aug 2004 | B2 |
6780645 | Hayter | Aug 2004 | B2 |
6780647 | Fujiwara | Aug 2004 | B2 |
6783502 | Orloff | Aug 2004 | B2 |
6783537 | Kuhr | Aug 2004 | B1 |
6784274 | van Antwerp | Aug 2004 | B2 |
6786874 | Grace | Sep 2004 | B2 |
6787013 | Chang | Sep 2004 | B2 |
6787109 | Haar | Sep 2004 | B2 |
6790327 | Ikeda | Sep 2004 | B2 |
6790599 | Madou | Sep 2004 | B1 |
6792791 | Sato | Sep 2004 | B2 |
6793632 | Sohrab | Sep 2004 | B2 |
6793633 | Douglas | Sep 2004 | B2 |
6793802 | Lee | Sep 2004 | B2 |
6797150 | Kermani | Sep 2004 | B2 |
6800488 | Khan | Oct 2004 | B2 |
6801041 | Karinka | Oct 2004 | B2 |
6801804 | Miller | Oct 2004 | B2 |
6802199 | Hilgers | Oct 2004 | B2 |
6802811 | Slepian | Oct 2004 | B1 |
6802957 | Jung | Oct 2004 | B2 |
6805780 | Ryu | Oct 2004 | B1 |
6808499 | Churchill | Oct 2004 | B1 |
6808908 | Yao | Oct 2004 | B2 |
6808937 | Ligler | Oct 2004 | B2 |
6809807 | Erickson | Oct 2004 | B1 |
6811406 | Grube | Nov 2004 | B2 |
6811557 | Schraga | Nov 2004 | B2 |
6811659 | Vachon | Nov 2004 | B2 |
6811753 | Hirao | Nov 2004 | B2 |
6811792 | Roser | Nov 2004 | B2 |
6812031 | Carlsson | Nov 2004 | B1 |
6814843 | Bhullar | Nov 2004 | B1 |
6814844 | Bhullar | Nov 2004 | B2 |
6814845 | Wilson | Nov 2004 | B2 |
6815186 | Clark | Nov 2004 | B2 |
6816742 | Kim | Nov 2004 | B2 |
6818180 | Douglas | Nov 2004 | B2 |
6821483 | Phillips | Nov 2004 | B2 |
6823750 | Hodges | Nov 2004 | B2 |
6825047 | Woudenberg | Nov 2004 | B1 |
6827250 | Uhland | Dec 2004 | B2 |
6827829 | Kawanaka | Dec 2004 | B2 |
6829507 | Lidman | Dec 2004 | B1 |
6830551 | Uchigaki | Dec 2004 | B1 |
6830668 | Musho | Dec 2004 | B2 |
6830669 | Miyazaki | Dec 2004 | B2 |
6830934 | Harding | Dec 2004 | B1 |
6833540 | MacKenzie | Dec 2004 | B2 |
6835184 | Sage | Dec 2004 | B1 |
6835553 | Han | Dec 2004 | B2 |
6835570 | Patel | Dec 2004 | B2 |
6837858 | Cunningham | Jan 2005 | B2 |
6837976 | Cai | Jan 2005 | B2 |
6837988 | Leong | Jan 2005 | B2 |
6840912 | Kloepfer | Jan 2005 | B2 |
6841052 | Musho | Jan 2005 | B2 |
6843254 | Tapper | Jan 2005 | B2 |
6843902 | Penner | Jan 2005 | B1 |
6844149 | Goldman | Jan 2005 | B2 |
6847451 | Pugh | Jan 2005 | B2 |
6849052 | Uchigaki | Feb 2005 | B2 |
6849168 | Crumly | Feb 2005 | B2 |
6849216 | Rappin | Feb 2005 | B2 |
6849456 | Patel | Feb 2005 | B2 |
6850790 | Berner | Feb 2005 | B2 |
6852119 | Abulhaj | Feb 2005 | B1 |
6852212 | Maxwell | Feb 2005 | B2 |
6852500 | Hoss | Feb 2005 | B1 |
6853854 | Proniewicz | Feb 2005 | B1 |
6855243 | Khan | Feb 2005 | B2 |
6856125 | Kermani | Feb 2005 | B2 |
6856928 | Harmon | Feb 2005 | B2 |
6858015 | List | Feb 2005 | B2 |
6858401 | Phillips | Feb 2005 | B2 |
6859738 | Bush | Feb 2005 | B2 |
6862466 | Ackerman | Mar 2005 | B2 |
6862534 | Sterling | Mar 2005 | B2 |
6863800 | Karinka | Mar 2005 | B2 |
6863801 | Hodges | Mar 2005 | B2 |
6865408 | Abbink | Mar 2005 | B1 |
6866641 | Marshall | Mar 2005 | B2 |
6866675 | Perez | Mar 2005 | B2 |
6866758 | Bhullar | Mar 2005 | B2 |
6866822 | House | Mar 2005 | B1 |
6869418 | Marano-Ford | Mar 2005 | B2 |
6872200 | Mann | Mar 2005 | B2 |
6872297 | Mansouri | Mar 2005 | B2 |
6872298 | Kermani | Mar 2005 | B2 |
6872299 | Kermani | Mar 2005 | B2 |
6872358 | Hagen | Mar 2005 | B2 |
6875208 | Santini | Apr 2005 | B2 |
6875223 | Argauer | Apr 2005 | B2 |
6875327 | Miyazaki | Apr 2005 | B1 |
6875613 | Shartle | Apr 2005 | B2 |
6878120 | Roe | Apr 2005 | B2 |
6878251 | Hodges | Apr 2005 | B2 |
6878255 | Wang | Apr 2005 | B1 |
6878262 | Taniike | Apr 2005 | B2 |
6880968 | Haar | Apr 2005 | B1 |
6881203 | Delmore | Apr 2005 | B2 |
6881322 | Tokunaga | Apr 2005 | B2 |
6881378 | Zimmer | Apr 2005 | B1 |
6881541 | Petersen | Apr 2005 | B2 |
6881550 | Phillips | Apr 2005 | B2 |
6881551 | Heller | Apr 2005 | B2 |
6881578 | Otake | Apr 2005 | B2 |
6882940 | Potts | Apr 2005 | B2 |
6884592 | Matzinger | Apr 2005 | B2 |
6885196 | Taniike | Apr 2005 | B2 |
6885883 | Parris | Apr 2005 | B2 |
6887202 | Currie | May 2005 | B2 |
6887239 | Elstrom | May 2005 | B2 |
6887253 | Schraga | May 2005 | B2 |
6887254 | Curie | May 2005 | B1 |
6887426 | Phillips | May 2005 | B2 |
6887709 | Leong | May 2005 | B2 |
6889069 | Routt | May 2005 | B2 |
6890319 | Crocker | May 2005 | B1 |
6890421 | Ohara | May 2005 | B2 |
6890484 | Bautista | May 2005 | B2 |
6891936 | Kai | May 2005 | B2 |
6892085 | McIvor | May 2005 | B2 |
6893396 | Schulze | May 2005 | B2 |
6893545 | Gotoh | May 2005 | B2 |
6893552 | Wang | May 2005 | B1 |
6895263 | Shin | May 2005 | B2 |
6895264 | Rice | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6896793 | Erdosy | May 2005 | B2 |
6897788 | Khair | May 2005 | B2 |
6902905 | Burson | Jun 2005 | B2 |
6904301 | Raskas | Jun 2005 | B2 |
6905733 | Russel | Jun 2005 | B2 |
6908008 | Pugh | Jun 2005 | B2 |
6908535 | Rankin | Jun 2005 | B2 |
6908591 | MacPhee | Jun 2005 | B2 |
6908593 | Shartle | Jun 2005 | B1 |
6911130 | Brenneman | Jun 2005 | B2 |
6911131 | Miyazaki | Jun 2005 | B2 |
6911621 | Bhullar | Jun 2005 | B2 |
6911937 | Sparrow | Jun 2005 | B1 |
6913210 | Baasch | Jul 2005 | B2 |
6913668 | Matzinger | Jul 2005 | B2 |
6916410 | Katsuki | Jul 2005 | B2 |
6918874 | Hatch | Jul 2005 | B1 |
6918901 | Theeuwes | Jul 2005 | B1 |
6918918 | Schraga | Jul 2005 | B1 |
6922576 | Raskas | Jul 2005 | B2 |
6922578 | Eppstein | Jul 2005 | B2 |
6923764 | Aceti | Aug 2005 | B2 |
6923894 | Huang | Aug 2005 | B2 |
6923936 | Swanson | Aug 2005 | B2 |
6924093 | Haviland | Aug 2005 | B2 |
6925317 | Samuels | Aug 2005 | B1 |
6925393 | Kalatz | Aug 2005 | B1 |
6929631 | Brugger | Aug 2005 | B1 |
6929649 | Pugh | Aug 2005 | B2 |
6929650 | Fukuzawa | Aug 2005 | B2 |
6931327 | Goode | Aug 2005 | B2 |
6931328 | Braig | Aug 2005 | B2 |
RE38803 | Rodgers, Jr. | Sep 2005 | E |
6939310 | Matzinger | Sep 2005 | B2 |
6939312 | Hodges | Sep 2005 | B2 |
6939450 | Karinka | Sep 2005 | B2 |
6939685 | Ouyang | Sep 2005 | B2 |
6940591 | Sopp | Sep 2005 | B2 |
6942518 | Liamos | Sep 2005 | B2 |
6942769 | Cheng | Sep 2005 | B2 |
6942770 | Cai | Sep 2005 | B2 |
6944486 | Braig | Sep 2005 | B2 |
6945943 | Pugh | Sep 2005 | B2 |
6946067 | Hodges | Sep 2005 | B2 |
6946098 | Miekka | Sep 2005 | B2 |
6946299 | Neel | Sep 2005 | B2 |
6949111 | Schraga | Sep 2005 | B2 |
6949221 | Kiser | Sep 2005 | B2 |
6951631 | Catt | Oct 2005 | B1 |
6951728 | Qian | Oct 2005 | B2 |
6952603 | Gerber | Oct 2005 | B2 |
6952604 | DeNuzzio | Oct 2005 | B2 |
6953693 | Neel | Oct 2005 | B2 |
6954662 | Freger | Oct 2005 | B2 |
6958072 | Schraga | Oct 2005 | B2 |
6958129 | Galen | Oct 2005 | B2 |
6958809 | Sterling | Oct 2005 | B2 |
6959211 | Rule | Oct 2005 | B2 |
6959247 | Neel | Oct 2005 | B2 |
6960287 | Charlton | Nov 2005 | B2 |
6960289 | Hodges | Nov 2005 | B2 |
6960323 | Guo | Nov 2005 | B2 |
6964871 | Bell | Nov 2005 | B2 |
6965791 | Hitchcock | Nov 2005 | B1 |
6966880 | Boecker | Nov 2005 | B2 |
6966977 | Hasegawa | Nov 2005 | B2 |
6967105 | Nomura | Nov 2005 | B2 |
6968375 | Brown | Nov 2005 | B1 |
6969359 | Duchon | Nov 2005 | B2 |
6969450 | Taniike | Nov 2005 | B2 |
6969451 | Shin | Nov 2005 | B2 |
6973706 | Say | Dec 2005 | B2 |
6975893 | Say | Dec 2005 | B2 |
6977032 | Hasegawa | Dec 2005 | B2 |
6977722 | Wohlstadter et al. | Dec 2005 | B2 |
6979544 | Keen | Dec 2005 | B2 |
6979571 | Modzelewski | Dec 2005 | B2 |
6982027 | Yagi | Jan 2006 | B2 |
6982431 | Modlin | Jan 2006 | B2 |
6983176 | Gardner | Jan 2006 | B2 |
6983177 | Rule | Jan 2006 | B2 |
6984307 | Zweig | Jan 2006 | B2 |
6986777 | Kim | Jan 2006 | B2 |
6986869 | Tuohy | Jan 2006 | B2 |
6988996 | Roe | Jan 2006 | B2 |
6989243 | Yani | Jan 2006 | B2 |
6989891 | Braig | Jan 2006 | B2 |
6990365 | Parker | Jan 2006 | B1 |
6990366 | Say | Jan 2006 | B2 |
6990367 | Kiser | Jan 2006 | B2 |
6990849 | Bohm | Jan 2006 | B2 |
6991918 | Keith | Jan 2006 | B2 |
6991940 | Carroll | Jan 2006 | B2 |
6994825 | Haviland | Feb 2006 | B2 |
6997317 | Catelli | Feb 2006 | B2 |
6997343 | May | Feb 2006 | B2 |
6997344 | Brown | Feb 2006 | B2 |
6997936 | Marshall | Feb 2006 | B2 |
6998247 | Monfre | Feb 2006 | B2 |
6998248 | Yani | Feb 2006 | B2 |
6999810 | Berner | Feb 2006 | B2 |
7001343 | Erickson | Feb 2006 | B2 |
7001344 | Freeman | Feb 2006 | B2 |
7003337 | Harjunmaa | Feb 2006 | B2 |
7003340 | Say | Feb 2006 | B2 |
7003341 | Say | Feb 2006 | B2 |
7004928 | Aceti | Feb 2006 | B2 |
7005048 | Watanabe | Feb 2006 | B1 |
7005273 | Heller | Feb 2006 | B2 |
7005459 | Hekal | Feb 2006 | B2 |
7005857 | Stiene | Feb 2006 | B2 |
7006857 | Braig | Feb 2006 | B2 |
7006858 | Silver | Feb 2006 | B2 |
7008384 | Tapper | Mar 2006 | B2 |
7010432 | Kermani | Mar 2006 | B2 |
7011630 | Desai | Mar 2006 | B2 |
7011954 | Ouyang | Mar 2006 | B2 |
7014615 | Erickson | Mar 2006 | B2 |
7015262 | Leong | Mar 2006 | B2 |
7016713 | Gardner | Mar 2006 | B2 |
7018568 | Tierney | Mar 2006 | B2 |
7018848 | Douglas | Mar 2006 | B2 |
7022217 | Hodges | Apr 2006 | B2 |
7022218 | Taniike | Apr 2006 | B2 |
7022286 | Lemke | Apr 2006 | B2 |
7024236 | Ford | Apr 2006 | B2 |
7024248 | Penner | Apr 2006 | B2 |
7024399 | Sumner | Apr 2006 | B2 |
7025425 | Kovatchev | Apr 2006 | B2 |
7025774 | Freeman | Apr 2006 | B2 |
7027848 | Robinson | Apr 2006 | B2 |
7029444 | Shin | Apr 2006 | B2 |
7033322 | Silver | Apr 2006 | B2 |
7033371 | Alden | Apr 2006 | B2 |
7039560 | Kawatahara | May 2006 | B2 |
7041057 | Faupel | May 2006 | B1 |
7041063 | Abreu | May 2006 | B2 |
7041068 | Freeman | May 2006 | B2 |
7041210 | Hodges | May 2006 | B2 |
7041254 | Haviland | May 2006 | B2 |
7041468 | Drucker | May 2006 | B2 |
7043287 | Khalil | May 2006 | B1 |
7043821 | Hodges | May 2006 | B2 |
7044911 | Drinan | May 2006 | B2 |
7045046 | Chambers | May 2006 | B2 |
7045054 | Buck | May 2006 | B1 |
7045097 | Kovacs | May 2006 | B2 |
7045310 | Buck | May 2006 | B2 |
7045361 | Heiss | May 2006 | B2 |
7047070 | Wilkinson | May 2006 | B2 |
7047795 | Sato | May 2006 | B2 |
7049087 | Jenny | May 2006 | B2 |
7049130 | Carroll | May 2006 | B2 |
7050843 | Shartle | May 2006 | B2 |
7051495 | Lang | May 2006 | B2 |
7052268 | Powell | May 2006 | B2 |
7052591 | Gao | May 2006 | B2 |
7052652 | Zanzucchi | May 2006 | B2 |
7052864 | Durkop | May 2006 | B2 |
7054682 | Young | May 2006 | B2 |
7054759 | Fukunaga | May 2006 | B2 |
D522656 | Orr | Jun 2006 | S |
D523555 | Loerwald | Jun 2006 | S |
7056425 | Hasegawa | Jun 2006 | B2 |
7056495 | Roser | Jun 2006 | B2 |
7058437 | Buse | Jun 2006 | B2 |
7059352 | Bohm | Jun 2006 | B2 |
7060059 | Keith | Jun 2006 | B2 |
7060168 | Taniike | Jun 2006 | B2 |
7060192 | Yuzhakov | Jun 2006 | B2 |
7061593 | Braig | Jun 2006 | B2 |
7063234 | Giraud | Jun 2006 | B2 |
7063774 | Bhullar | Jun 2006 | B2 |
7063775 | Yamaoka | Jun 2006 | B2 |
7063776 | Huang | Jun 2006 | B2 |
7066884 | Custer | Jun 2006 | B2 |
7066885 | Erickson | Jun 2006 | B2 |
7070564 | Matzinger | Jul 2006 | B2 |
7070680 | Bae | Jul 2006 | B2 |
7073246 | Bhullar | Jul 2006 | B2 |
7074307 | Simpson | Jul 2006 | B2 |
7074308 | Mao | Jul 2006 | B2 |
7077328 | Krishnaswamy | Jul 2006 | B2 |
7077828 | Kuhr | Jul 2006 | B2 |
7078480 | Nagel | Jul 2006 | B2 |
7079252 | Debreczeny | Jul 2006 | B1 |
7081188 | Cho | Jul 2006 | B1 |
7083712 | Morita | Aug 2006 | B2 |
7086277 | Tess | Aug 2006 | B2 |
7087149 | Muguruma | Aug 2006 | B1 |
7090764 | Iyengar | Aug 2006 | B2 |
7096053 | Loeb | Aug 2006 | B2 |
7096124 | Sterling | Aug 2006 | B2 |
7097631 | Trautman | Aug 2006 | B2 |
7098038 | Fukuoka | Aug 2006 | B2 |
7103578 | Beck | Sep 2006 | B2 |
7105066 | Schraga | Sep 2006 | B2 |
7107253 | Sumner | Sep 2006 | B1 |
7108680 | Rohr | Sep 2006 | B2 |
7108778 | Simpson | Sep 2006 | B2 |
7109271 | Liu | Sep 2006 | B2 |
7110112 | Uchida | Sep 2006 | B2 |
7110803 | Shults | Sep 2006 | B2 |
7112265 | McAleer | Sep 2006 | B1 |
7112451 | Takahashi | Sep 2006 | B2 |
7113172 | Hohl | Sep 2006 | B2 |
7115362 | Douglas | Oct 2006 | B2 |
7118351 | Effenhauser | Oct 2006 | B2 |
7118667 | Lee | Oct 2006 | B2 |
7118668 | Edelbrock | Oct 2006 | B1 |
7118916 | Matzinger | Oct 2006 | B2 |
7118919 | Yatscoff | Oct 2006 | B2 |
7120483 | Russell | Oct 2006 | B2 |
7122102 | Wogoman | Oct 2006 | B2 |
7122110 | Deng | Oct 2006 | B2 |
7122111 | Tokunaga | Oct 2006 | B2 |
7125481 | Musho | Oct 2006 | B2 |
7129038 | Gopalan | Oct 2006 | B2 |
RE39390 | Hasegawa | Nov 2006 | E |
D531725 | Loerwald | Nov 2006 | S |
7131342 | Hodges | Nov 2006 | B2 |
7131984 | Sato | Nov 2006 | B2 |
7132041 | Deng | Nov 2006 | B2 |
7133710 | Acosta | Nov 2006 | B2 |
7134550 | Groth | Nov 2006 | B2 |
7134999 | Brauker | Nov 2006 | B2 |
7135100 | Lau | Nov 2006 | B1 |
7137957 | Erickson | Nov 2006 | B2 |
7138041 | Su | Nov 2006 | B2 |
7138089 | Aitken | Nov 2006 | B2 |
7141034 | Eppstein | Nov 2006 | B2 |
7141058 | Briggs | Nov 2006 | B2 |
7144404 | Whitson | Dec 2006 | B2 |
7144485 | Hsu | Dec 2006 | B2 |
7144495 | Teodorczyk | Dec 2006 | B2 |
7144496 | Meserol | Dec 2006 | B2 |
7144709 | Ouyang | Dec 2006 | B2 |
7147825 | Matsuda | Dec 2006 | B2 |
7150755 | Levaughn | Dec 2006 | B2 |
7150975 | Tamada | Dec 2006 | B2 |
7150995 | Xie | Dec 2006 | B2 |
7153696 | Fukuoka | Dec 2006 | B2 |
7155371 | Kawatahara | Dec 2006 | B2 |
7156117 | Bohm | Jan 2007 | B2 |
7156810 | Cho | Jan 2007 | B2 |
7157723 | Colvin | Jan 2007 | B2 |
7160251 | Neel | Jan 2007 | B2 |
7160313 | Galloway | Jan 2007 | B2 |
7160678 | Kayyem | Jan 2007 | B1 |
7162289 | Shah | Jan 2007 | B2 |
7163616 | Vreeke | Jan 2007 | B2 |
7166074 | Reghabi | Jan 2007 | B2 |
7166208 | Zweig | Jan 2007 | B2 |
7167734 | Khalil | Jan 2007 | B2 |
7167735 | Uchida | Jan 2007 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7169116 | Day | Jan 2007 | B2 |
7169117 | Allen | Jan 2007 | B2 |
7169289 | Schulein | Jan 2007 | B2 |
7169600 | Hoss | Jan 2007 | B2 |
7172728 | Otake | Feb 2007 | B2 |
7174199 | Berner | Feb 2007 | B2 |
7175641 | Schraga | Feb 2007 | B1 |
7175642 | Briggs | Feb 2007 | B2 |
7179233 | Chang | Feb 2007 | B2 |
7182910 | Allen | Feb 2007 | B2 |
7183068 | Burson | Feb 2007 | B2 |
7183102 | Kasai | Feb 2007 | B2 |
7188034 | Staib | Mar 2007 | B2 |
7189576 | Fukuoka | Mar 2007 | B2 |
7190988 | Say | Mar 2007 | B2 |
7192405 | DeNuzzio | Mar 2007 | B2 |
7192450 | Brauker | Mar 2007 | B2 |
7195704 | Kermani | Mar 2007 | B2 |
7198606 | Boecker | Apr 2007 | B2 |
7199594 | Kermani | Apr 2007 | B2 |
7202854 | Hohl | Apr 2007 | B2 |
7206620 | Erickson | Apr 2007 | B2 |
7206623 | Blank | Apr 2007 | B2 |
D542681 | Young | May 2007 | S |
7211052 | Roe | May 2007 | B2 |
7211096 | Kuhr | May 2007 | B2 |
7212925 | Genshaw | May 2007 | B2 |
7213720 | Giraud | May 2007 | B2 |
7215982 | Oshima | May 2007 | B2 |
7215983 | Cho | May 2007 | B2 |
7223248 | Erickson | May 2007 | B2 |
7225008 | Ward | May 2007 | B1 |
D543878 | Castillo | Jun 2007 | S |
D545438 | Huang | Jun 2007 | S |
7225535 | Feldman | Jun 2007 | B2 |
7226414 | Ballerstadt | Jun 2007 | B2 |
7226461 | Boecker | Jun 2007 | B2 |
7226978 | Tapsak | Jun 2007 | B2 |
7227156 | Colvin | Jun 2007 | B2 |
7228159 | Petersson | Jun 2007 | B2 |
7228162 | Ward | Jun 2007 | B2 |
7228163 | Ackerman | Jun 2007 | B2 |
7229458 | Freeman | Jun 2007 | B2 |
7232451 | Boecker | Jun 2007 | B2 |
7232510 | Miyazaki | Jun 2007 | B2 |
7233816 | Blank | Jun 2007 | B2 |
7235056 | Duchon | Jun 2007 | B2 |
7235170 | Watanabe | Jun 2007 | B2 |
7235378 | Yonehara | Jun 2007 | B2 |
7236812 | Ballerstadt | Jun 2007 | B1 |
7236814 | Shioi | Jun 2007 | B2 |
D545705 | Voege | Jul 2007 | S |
D546216 | Bolognesi | Jul 2007 | S |
D546218 | Grasso | Jul 2007 | S |
7238192 | List | Jul 2007 | B2 |
7238534 | Zimmer | Jul 2007 | B1 |
7241265 | Cummings | Jul 2007 | B2 |
7244264 | Roe | Jul 2007 | B2 |
7244265 | Freeman | Jul 2007 | B2 |
7244266 | Garthe | Jul 2007 | B2 |
7247138 | Reghabi | Jul 2007 | B2 |
7247144 | Douglas | Jul 2007 | B2 |
7250037 | Shermer | Jul 2007 | B2 |
7250056 | Hamamoto | Jul 2007 | B2 |
7250095 | Black | Jul 2007 | B2 |
7250105 | Davies | Jul 2007 | B1 |
7251513 | Kondoh | Jul 2007 | B2 |
7251514 | Cho | Jul 2007 | B2 |
7251515 | Cho | Jul 2007 | B2 |
7251516 | Walker | Jul 2007 | B2 |
7251517 | Cho | Jul 2007 | B2 |
7251518 | Herrmann | Jul 2007 | B2 |
7252804 | Miyashita | Aug 2007 | B2 |
7254426 | Cho | Aug 2007 | B2 |
7254427 | Cho | Aug 2007 | B2 |
7254428 | Cho | Aug 2007 | B2 |
7254429 | Schurman | Aug 2007 | B2 |
7254430 | Cho | Aug 2007 | B2 |
7254432 | Fine | Aug 2007 | B2 |
7258673 | Racchini | Aug 2007 | B2 |
7258693 | Freeman | Aug 2007 | B2 |
7262061 | Petrich | Aug 2007 | B2 |
7264139 | Brickwood | Sep 2007 | B2 |
7264627 | Perez | Sep 2007 | B2 |
7266400 | Fine | Sep 2007 | B2 |
7267665 | Steil | Sep 2007 | B2 |
7267750 | Watanabe | Sep 2007 | B2 |
7270247 | Charlton | Sep 2007 | B2 |
7271912 | Sterling | Sep 2007 | B2 |
7273484 | Thoes | Sep 2007 | B2 |
7276027 | Haar | Oct 2007 | B2 |
7276029 | Goode | Oct 2007 | B2 |
7276146 | Wilsey | Oct 2007 | B2 |
7276147 | Wilsey | Oct 2007 | B2 |
7276380 | Fukuyama | Oct 2007 | B2 |
7277740 | Rohleder | Oct 2007 | B2 |
7278983 | Ireland | Oct 2007 | B2 |
7279130 | Brown | Oct 2007 | B2 |
7282058 | Levin | Oct 2007 | B2 |
7287318 | Bhullar | Oct 2007 | B2 |
7288073 | Effenhauser | Oct 2007 | B2 |
7288102 | Griffin | Oct 2007 | B2 |
7288174 | Cui | Oct 2007 | B2 |
7289836 | Colvin | Oct 2007 | B2 |
7291117 | Boecker | Nov 2007 | B2 |
7291159 | Schmelzeisen-R | Nov 2007 | B2 |
7291256 | Teodorczyk | Nov 2007 | B2 |
7291497 | Holmes | Nov 2007 | B2 |
7294246 | Gundel | Nov 2007 | B2 |
7295867 | Berner | Nov 2007 | B2 |
7297122 | Boecker | Nov 2007 | B2 |
7297151 | Boecker | Nov 2007 | B2 |
7297152 | Fukuzawa | Nov 2007 | B2 |
7297241 | Kontschieder | Nov 2007 | B2 |
7297248 | Bae | Nov 2007 | B2 |
7297627 | Shah | Nov 2007 | B2 |
7299079 | Rebec | Nov 2007 | B2 |
7299080 | Acosta | Nov 2007 | B2 |
7299081 | Mace | Nov 2007 | B2 |
7299082 | Feldman | Nov 2007 | B2 |
7300402 | Iliff | Nov 2007 | B2 |
7301629 | Bambot | Nov 2007 | B2 |
7303573 | D'Agostino | Dec 2007 | B2 |
7303726 | McAllister | Dec 2007 | B2 |
7303922 | Jeng | Dec 2007 | B2 |
7305896 | Howell | Dec 2007 | B2 |
7306560 | Iliff | Dec 2007 | B2 |
7308164 | Banks | Dec 2007 | B1 |
7308292 | Colvin | Dec 2007 | B2 |
7310542 | Jeon | Dec 2007 | B2 |
7310543 | Smart | Dec 2007 | B2 |
7310544 | Brister | Dec 2007 | B2 |
7311718 | Schraga | Dec 2007 | B2 |
7311812 | Forrow | Dec 2007 | B2 |
7312042 | Petyt | Dec 2007 | B1 |
7313425 | Finarov | Dec 2007 | B2 |
7314453 | Kuo | Jan 2008 | B2 |
7315752 | Kraemer | Jan 2008 | B2 |
7316700 | Alden | Jan 2008 | B2 |
7316766 | Chen | Jan 2008 | B2 |
7316929 | Purcell | Jan 2008 | B2 |
7317938 | Lorenz | Jan 2008 | B2 |
7317939 | Fine | Jan 2008 | B2 |
7322942 | Roe | Jan 2008 | B2 |
7322996 | Taylor | Jan 2008 | B2 |
7322997 | Shi | Jan 2008 | B2 |
7322998 | Kuhr | Jan 2008 | B2 |
7323098 | Miyashita | Jan 2008 | B2 |
7323141 | Kirchhevel | Jan 2008 | B2 |
7323315 | Marfurt | Jan 2008 | B2 |
7324012 | Mann | Jan 2008 | B2 |
7328052 | Samsoondar | Feb 2008 | B2 |
7331931 | Freeman | Feb 2008 | B2 |
7335292 | Hodges | Feb 2008 | B2 |
7335294 | Heller | Feb 2008 | B2 |
7337918 | Fowler | Mar 2008 | B2 |
7338639 | Burke | Mar 2008 | B2 |
7343188 | Sohrab | Mar 2008 | B2 |
7344499 | Prausnitz | Mar 2008 | B1 |
7344500 | Talbot | Mar 2008 | B2 |
7344507 | Briggs | Mar 2008 | B2 |
7344626 | Harding | Mar 2008 | B2 |
7347925 | Hsieh | Mar 2008 | B2 |
7347926 | Morita | Mar 2008 | B2 |
7347973 | Douglas | Mar 2008 | B2 |
RE40198 | Buck | Apr 2008 | E |
7351213 | Wong | Apr 2008 | B2 |
7351323 | Iketaki | Apr 2008 | B2 |
7351375 | Noda | Apr 2008 | B2 |
7351770 | Liu | Apr 2008 | B2 |
7357808 | Kennedy | Apr 2008 | B2 |
7357851 | Reid | Apr 2008 | B2 |
7361182 | Fukuda | Apr 2008 | B2 |
7361307 | Shartle | Apr 2008 | B2 |
7371247 | Boecker | May 2008 | B2 |
7372277 | Diamond | May 2008 | B2 |
7374544 | Freeman | May 2008 | B2 |
7374546 | Roe | May 2008 | B2 |
7378007 | Moerman | May 2008 | B2 |
7378720 | Fu | May 2008 | B2 |
7402616 | Rodgers | Jul 2008 | B2 |
7404815 | Kollias | Jul 2008 | B2 |
7410468 | Freeman | Aug 2008 | B2 |
7429630 | Liu | Sep 2008 | B2 |
7431814 | Hodges | Oct 2008 | B2 |
7431820 | Hodges | Oct 2008 | B2 |
7438694 | Boozer | Oct 2008 | B2 |
D579652 | Lim | Nov 2008 | S |
D579653 | Lim | Nov 2008 | S |
7458956 | Adams | Dec 2008 | B1 |
7462265 | Leach | Dec 2008 | B2 |
7465380 | Rodgers | Dec 2008 | B2 |
7468125 | Kraft | Dec 2008 | B2 |
D585314 | Schvetz | Jan 2009 | S |
7473264 | Allen | Jan 2009 | B2 |
7474390 | Robinson | Jan 2009 | B2 |
7474391 | Baskeyfield | Jan 2009 | B2 |
7481776 | Boecker | Jan 2009 | B2 |
7481818 | Allen | Jan 2009 | B2 |
D586465 | Faulkner | Feb 2009 | S |
D586466 | Smith | Feb 2009 | S |
D586678 | Schvetz | Feb 2009 | S |
D586916 | Faulkner | Feb 2009 | S |
7485128 | Boecker | Feb 2009 | B2 |
7491178 | Boecker | Feb 2009 | B2 |
7498132 | Yu | Mar 2009 | B2 |
7501052 | Iyengar | Mar 2009 | B2 |
7501093 | Demelo | Mar 2009 | B2 |
7521019 | Polak | Apr 2009 | B2 |
7524293 | Freeman | Apr 2009 | B2 |
7537571 | Freeman | May 2009 | B2 |
7547287 | Boecker | Jun 2009 | B2 |
7548772 | Shartle | Jun 2009 | B2 |
7553511 | Hleong | Jun 2009 | B2 |
7563232 | Freeman | Jul 2009 | B2 |
D598126 | Alvarez-Icaza | Aug 2009 | S |
7572356 | Rodgers | Aug 2009 | B2 |
7575558 | Boecker | Aug 2009 | B2 |
D600349 | Bell | Sep 2009 | S |
D600812 | Lei | Sep 2009 | S |
D600813 | Bell | Sep 2009 | S |
D601255 | Schvetz | Sep 2009 | S |
D601258 | Bell | Sep 2009 | S |
7582063 | Wurster | Sep 2009 | B2 |
7582099 | Freeman | Sep 2009 | B2 |
7586590 | Baskeyfield | Sep 2009 | B2 |
7588670 | Rodgers | Sep 2009 | B2 |
7589828 | Robinson | Sep 2009 | B2 |
7592151 | Liu | Sep 2009 | B2 |
7593097 | Robinson | Sep 2009 | B2 |
7604592 | Freeman | Oct 2009 | B2 |
7604722 | Hodges | Oct 2009 | B2 |
7608175 | Hodges | Oct 2009 | B2 |
7618522 | Davies | Nov 2009 | B2 |
7645263 | Angel et al. | Jan 2010 | B2 |
7648468 | Boecker | Jan 2010 | B2 |
7648469 | Boecker | Jan 2010 | B2 |
7653492 | Davies | Jan 2010 | B2 |
7654127 | Krulevitch | Feb 2010 | B2 |
7655119 | Davies | Feb 2010 | B2 |
7665303 | Bohm | Feb 2010 | B2 |
7666287 | Zhao | Feb 2010 | B2 |
D611151 | Lei | Mar 2010 | S |
D611372 | Salter | Mar 2010 | S |
D611489 | Bell | Mar 2010 | S |
D611853 | Salter | Mar 2010 | S |
D612274 | Heidemann | Mar 2010 | S |
D612275 | Salter | Mar 2010 | S |
D612279 | Heidemann | Mar 2010 | S |
7674232 | Boecker | Mar 2010 | B2 |
7682318 | Alden | Mar 2010 | B2 |
7713214 | Freeman et al. | May 2010 | B2 |
7749174 | Alden et al. | Jul 2010 | B2 |
7833172 | Hein et al. | Nov 2010 | B2 |
7879058 | Ikeda | Feb 2011 | B2 |
7901365 | Freeman et al. | Mar 2011 | B2 |
7976778 | Drucker et al. | Jul 2011 | B2 |
8079960 | Briggs et al. | Dec 2011 | B2 |
8162968 | Boozer et al. | Apr 2012 | B2 |
8197421 | Freeman et al. | Jun 2012 | B2 |
8206319 | Freeman et al. | Jun 2012 | B2 |
8231548 | Hoenes | Jul 2012 | B2 |
8251922 | List et al. | Aug 2012 | B2 |
8282576 | Marsot et al. | Oct 2012 | B2 |
8388639 | Nicholls et al. | Mar 2013 | B2 |
8491500 | Briggs et al. | Jul 2013 | B2 |
20010011157 | Latterell | Aug 2001 | A1 |
20010016682 | Berner | Aug 2001 | A1 |
20010017269 | Heller | Aug 2001 | A1 |
20010018353 | Ishigaki | Aug 2001 | A1 |
20010023349 | Van Tassel et al. | Sep 2001 | A1 |
20010027328 | Lum | Oct 2001 | A1 |
20010031931 | Cunningham | Oct 2001 | A1 |
20010037072 | Virtanen | Nov 2001 | A1 |
20010037355 | Britt | Nov 2001 | A1 |
20010042004 | Taub | Nov 2001 | A1 |
20010045355 | Gephart | Nov 2001 | A1 |
20010054319 | Heller | Dec 2001 | A1 |
20020002326 | Causey | Jan 2002 | A1 |
20020002344 | Douglas | Jan 2002 | A1 |
20020004196 | Whitson | Jan 2002 | A1 |
20020016568 | Lebel | Feb 2002 | A1 |
20020016606 | Moerman | Feb 2002 | A1 |
20020016923 | Knaus | Feb 2002 | A1 |
20020019606 | Lebel | Feb 2002 | A1 |
20020019747 | Ware | Feb 2002 | A1 |
20020019748 | Brown | Feb 2002 | A1 |
20020020646 | Groth et al. | Feb 2002 | A1 |
20020025469 | Heller | Feb 2002 | A1 |
20020029058 | Levaughn | Mar 2002 | A1 |
20020040208 | Flaherty | Apr 2002 | A1 |
20020040230 | Kuhr | Apr 2002 | A1 |
20020042090 | Heller | Apr 2002 | A1 |
20020042594 | Lum | Apr 2002 | A1 |
20020044890 | Black | Apr 2002 | A1 |
20020052618 | Haar | May 2002 | A1 |
20020053523 | Liamos | May 2002 | A1 |
20020057993 | Maisey | May 2002 | A1 |
20020058902 | Kollias et al. | May 2002 | A1 |
20020076349 | Aitken | Jun 2002 | A1 |
20020078091 | Vu | Jun 2002 | A1 |
20020081559 | Brown | Jun 2002 | A1 |
20020081588 | Lumley-Woodyear | Jun 2002 | A1 |
20020082543 | Park | Jun 2002 | A1 |
20020084196 | Liamos | Jul 2002 | A1 |
20020087056 | Aceti | Jul 2002 | A1 |
20020092612 | Davies | Jul 2002 | A1 |
20020099308 | Bojan | Jul 2002 | A1 |
20020103499 | Perez | Aug 2002 | A1 |
20020109600 | Mault et al. | Aug 2002 | A1 |
20020111634 | Stoianovici et al. | Aug 2002 | A1 |
20020120216 | Fritz | Aug 2002 | A1 |
20020120261 | Morris | Aug 2002 | A1 |
20020123335 | Luna | Sep 2002 | A1 |
20020130042 | Moerman | Sep 2002 | A1 |
20020133377 | Brown | Sep 2002 | A1 |
20020136667 | Subramanian | Sep 2002 | A1 |
20020136863 | Subramanian | Sep 2002 | A1 |
20020137998 | Smart | Sep 2002 | A1 |
20020138040 | Flora | Sep 2002 | A1 |
20020141032 | Guarr et al. | Oct 2002 | A1 |
20020148739 | Liamos | Oct 2002 | A2 |
20020156355 | Gough | Oct 2002 | A1 |
20020160520 | Orloff | Oct 2002 | A1 |
20020161289 | Hopkins | Oct 2002 | A1 |
20020168290 | Yuzhakov | Nov 2002 | A1 |
20020169393 | Cunningham | Nov 2002 | A1 |
20020169394 | Eppstein | Nov 2002 | A1 |
20020176984 | Smart | Nov 2002 | A1 |
20020177761 | Orloff | Nov 2002 | A1 |
20020177763 | Burns | Nov 2002 | A1 |
20020188224 | Roe | Dec 2002 | A1 |
20030014010 | Carpenter | Jan 2003 | A1 |
20030018282 | Effenhauser | Jan 2003 | A1 |
20030018300 | Duchon | Jan 2003 | A1 |
20030028125 | Yuzhakov | Feb 2003 | A1 |
20030028126 | List | Feb 2003 | A1 |
20030032077 | Itoh | Feb 2003 | A1 |
20030038047 | Sleva | Feb 2003 | A1 |
20030050537 | Wessel | Mar 2003 | A1 |
20030050573 | Kuhr | Mar 2003 | A1 |
20030050656 | Schraga | Mar 2003 | A1 |
20030057391 | Krulevitch | Mar 2003 | A1 |
20030060730 | Perez | Mar 2003 | A1 |
20030069509 | Matzinger et al. | Apr 2003 | A1 |
20030069753 | Brown | Apr 2003 | A1 |
20030072647 | Lum | Apr 2003 | A1 |
20030073089 | Mauze | Apr 2003 | A1 |
20030073229 | Greenstein | Apr 2003 | A1 |
20030073931 | Boecker | Apr 2003 | A1 |
20030083685 | Freeman | May 2003 | A1 |
20030083686 | Freeman | May 2003 | A1 |
20030088160 | Halleck | May 2003 | A1 |
20030088191 | Freeman et al. | May 2003 | A1 |
20030089730 | May | May 2003 | A1 |
20030092982 | Eppstein | May 2003 | A1 |
20030093010 | Essenpreis | May 2003 | A1 |
20030100040 | Bonnecaze | May 2003 | A1 |
20030106810 | Douglas | Jun 2003 | A1 |
20030109777 | Kloepfer | Jun 2003 | A1 |
20030109860 | Black | Jun 2003 | A1 |
20030111357 | Black | Jun 2003 | A1 |
20030113827 | Burkoth | Jun 2003 | A1 |
20030116447 | Surridge | Jun 2003 | A1 |
20030120297 | Beyerlein | Jun 2003 | A1 |
20030135333 | Aceti | Jul 2003 | A1 |
20030136189 | Lauman | Jul 2003 | A1 |
20030139653 | Manser | Jul 2003 | A1 |
20030143113 | Yuzhakov | Jul 2003 | A2 |
20030144608 | Kojima | Jul 2003 | A1 |
20030144609 | Kennedy | Jul 2003 | A1 |
20030146110 | Karinka | Aug 2003 | A1 |
20030149348 | Raskas | Aug 2003 | A1 |
20030149377 | Erickson | Aug 2003 | A1 |
20030150745 | Teodorczyk et al. | Aug 2003 | A1 |
20030153900 | Aceti | Aug 2003 | A1 |
20030159944 | Pottgen | Aug 2003 | A1 |
20030163351 | Brown | Aug 2003 | A1 |
20030178322 | Iyengar | Sep 2003 | A1 |
20030191376 | Samuels | Oct 2003 | A1 |
20030191415 | Moerman | Oct 2003 | A1 |
20030195435 | Williams | Oct 2003 | A1 |
20030195540 | Moerman | Oct 2003 | A1 |
20030199744 | Buse | Oct 2003 | A1 |
20030199789 | Boecker | Oct 2003 | A1 |
20030199790 | Boecker | Oct 2003 | A1 |
20030199791 | Boecker | Oct 2003 | A1 |
20030199891 | Argauer | Oct 2003 | A1 |
20030199893 | Boecker | Oct 2003 | A1 |
20030199894 | Boecker | Oct 2003 | A1 |
20030199895 | Boecker | Oct 2003 | A1 |
20030199896 | Boecker | Oct 2003 | A1 |
20030199897 | Boecker | Oct 2003 | A1 |
20030199898 | Boecker | Oct 2003 | A1 |
20030199899 | Boecker | Oct 2003 | A1 |
20030199900 | Boecker | Oct 2003 | A1 |
20030199901 | Boecker | Oct 2003 | A1 |
20030199902 | Boecker | Oct 2003 | A1 |
20030199903 | Boecker | Oct 2003 | A1 |
20030199904 | Boecker | Oct 2003 | A1 |
20030199905 | Boecker | Oct 2003 | A1 |
20030199906 | Boecker | Oct 2003 | A1 |
20030199907 | Boecker | Oct 2003 | A1 |
20030199908 | Boecker | Oct 2003 | A1 |
20030199909 | Boecker | Oct 2003 | A1 |
20030199910 | Boecker | Oct 2003 | A1 |
20030199911 | Boecker | Oct 2003 | A1 |
20030199912 | Pugh | Oct 2003 | A1 |
20030201194 | Heller | Oct 2003 | A1 |
20030203352 | Haviland | Oct 2003 | A1 |
20030206828 | Bell | Nov 2003 | A1 |
20030208140 | Pugh | Nov 2003 | A1 |
20030210811 | Dubowsky | Nov 2003 | A1 |
20030211619 | Olson et al. | Nov 2003 | A1 |
20030212344 | Yuzhakov | Nov 2003 | A1 |
20030212345 | McAllister | Nov 2003 | A1 |
20030212346 | McAllister | Nov 2003 | A1 |
20030212347 | Sohrab | Nov 2003 | A1 |
20030212379 | Bylund | Nov 2003 | A1 |
20030212423 | Pugh | Nov 2003 | A1 |
20030212424 | Briggs | Nov 2003 | A1 |
20030212579 | Brown | Nov 2003 | A1 |
20030216767 | List | Nov 2003 | A1 |
20030217918 | Davies | Nov 2003 | A1 |
20030220552 | Reghabi | Nov 2003 | A1 |
20030220663 | Fletcher | Nov 2003 | A1 |
20030223906 | McAllister | Dec 2003 | A1 |
20030225317 | Schell | Dec 2003 | A1 |
20030225429 | Garthe | Dec 2003 | A1 |
20030225430 | Schraga | Dec 2003 | A1 |
20030228637 | Wang | Dec 2003 | A1 |
20030229514 | Brown | Dec 2003 | A2 |
20030232370 | Trifiro | Dec 2003 | A1 |
20030233055 | Erickson | Dec 2003 | A1 |
20030233112 | Alden et al. | Dec 2003 | A1 |
20030233113 | Alden et al. | Dec 2003 | A1 |
20040006285 | Douglas | Jan 2004 | A1 |
20040007585 | Griffith | Jan 2004 | A1 |
20040009100 | Simons | Jan 2004 | A1 |
20040010279 | Freeman | Jan 2004 | A1 |
20040015064 | Parsons | Jan 2004 | A1 |
20040019250 | Catelli | Jan 2004 | A1 |
20040019259 | Brown | Jan 2004 | A1 |
20040026243 | Davies | Feb 2004 | A1 |
20040026244 | Hodges | Feb 2004 | A1 |
20040030353 | Schmelzeisen-R | Feb 2004 | A1 |
20040031682 | Wilsey | Feb 2004 | A1 |
20040034318 | Fritz | Feb 2004 | A1 |
20040038045 | Smart | Feb 2004 | A1 |
20040039303 | Wurster | Feb 2004 | A1 |
20040039342 | Eppstein | Feb 2004 | A1 |
20040039407 | Schraga | Feb 2004 | A1 |
20040039408 | Abulhaj | Feb 2004 | A1 |
20040049219 | Briggs | Mar 2004 | A1 |
20040049220 | Boecker et al. | Mar 2004 | A1 |
20040050694 | Yang | Mar 2004 | A1 |
20040054267 | Feldman | Mar 2004 | A1 |
20040055898 | Heller | Mar 2004 | A1 |
20040059256 | Perez | Mar 2004 | A1 |
20040060818 | Feldman | Apr 2004 | A1 |
20040061841 | Black | Apr 2004 | A1 |
20040064068 | DeNuzzio | Apr 2004 | A1 |
20040065669 | Giraud et al. | Apr 2004 | A1 |
20040068093 | Merrigan et al. | Apr 2004 | A1 |
20040068283 | Fukuzawa et al. | Apr 2004 | A1 |
20040069657 | Hodges | Apr 2004 | A1 |
20040087990 | Boecker | May 2004 | A1 |
20040092842 | Boecker | May 2004 | A1 |
20040092994 | Briggs | May 2004 | A1 |
20040092995 | Boecker | May 2004 | A1 |
20040096991 | Zhang | May 2004 | A1 |
20040098009 | Boecker | May 2004 | A1 |
20040098010 | Davison | May 2004 | A1 |
20040102803 | Boecker | May 2004 | A1 |
20040106855 | Brown | Jun 2004 | A1 |
20040106858 | Say | Jun 2004 | A1 |
20040106859 | Say | Jun 2004 | A1 |
20040106860 | Say | Jun 2004 | A1 |
20040106904 | Gonnelli | Jun 2004 | A1 |
20040106941 | Roe | Jun 2004 | A1 |
20040107116 | Brown | Jun 2004 | A1 |
20040115754 | Chang | Jun 2004 | A1 |
20040115831 | Meathrel | Jun 2004 | A1 |
20040116780 | Brown | Jun 2004 | A1 |
20040116829 | Raney | Jun 2004 | A1 |
20040117207 | Brown | Jun 2004 | A1 |
20040117208 | Brown | Jun 2004 | A1 |
20040117209 | Brown | Jun 2004 | A1 |
20040117210 | Brown | Jun 2004 | A1 |
20040122339 | Roe | Jun 2004 | A1 |
20040127818 | Roe | Jul 2004 | A1 |
20040127819 | Roe | Jul 2004 | A1 |
20040127928 | Whitson | Jul 2004 | A1 |
20040127929 | Roe | Jul 2004 | A1 |
20040132167 | Rule | Jul 2004 | A1 |
20040133125 | Miyashita | Jul 2004 | A1 |
20040133127 | Roe | Jul 2004 | A1 |
20040137640 | Hirao | Jul 2004 | A1 |
20040138541 | Ward | Jul 2004 | A1 |
20040138588 | Saikley | Jul 2004 | A1 |
20040138688 | Giraud | Jul 2004 | A1 |
20040146958 | Bae | Jul 2004 | A1 |
20040154932 | Deng | Aug 2004 | A1 |
20040157017 | Mauze | Aug 2004 | A1 |
20040157149 | Hofmann | Aug 2004 | A1 |
20040157319 | Keen | Aug 2004 | A1 |
20040157338 | Burke | Aug 2004 | A1 |
20040157339 | Burke | Aug 2004 | A1 |
20040158137 | Eppstein | Aug 2004 | A1 |
20040158271 | Hamamoto | Aug 2004 | A1 |
20040161737 | Yang | Aug 2004 | A1 |
20040162473 | Sohrab | Aug 2004 | A1 |
20040162474 | Kiser | Aug 2004 | A1 |
20040162506 | Duchon | Aug 2004 | A1 |
20040162573 | Kheiri | Aug 2004 | A1 |
20040167383 | Kim | Aug 2004 | A1 |
20040171057 | Yang | Sep 2004 | A1 |
20040171968 | Katsuki | Sep 2004 | A1 |
20040172000 | Roe | Sep 2004 | A1 |
20040173472 | Jung | Sep 2004 | A1 |
20040173488 | Griffin | Sep 2004 | A1 |
20040176705 | Stevens | Sep 2004 | A1 |
20040176732 | Frazier | Sep 2004 | A1 |
20040178066 | Miyazaki | Sep 2004 | A1 |
20040178067 | Miyazaki | Sep 2004 | A1 |
20040178216 | Brickwood | Sep 2004 | A1 |
20040180379 | van Duyne | Sep 2004 | A1 |
20040182703 | Bell | Sep 2004 | A1 |
20040185568 | Matsumoto | Sep 2004 | A1 |
20040186359 | Beaudoin | Sep 2004 | A1 |
20040186394 | Roe | Sep 2004 | A1 |
20040186500 | Koike | Sep 2004 | A1 |
20040193201 | Kim | Sep 2004 | A1 |
20040193377 | Brown | Sep 2004 | A1 |
20040194302 | Bhullar | Oct 2004 | A1 |
20040197231 | Katsuki | Oct 2004 | A1 |
20040197821 | Bauer | Oct 2004 | A1 |
20040199062 | Petersson | Oct 2004 | A1 |
20040199409 | Brown | Oct 2004 | A1 |
20040200720 | Musho | Oct 2004 | A1 |
20040200721 | Bhullar | Oct 2004 | A1 |
20040202576 | Aceti | Oct 2004 | A1 |
20040204662 | Perez | Oct 2004 | A1 |
20040206625 | Bhullar | Oct 2004 | A1 |
20040206636 | Hodges | Oct 2004 | A1 |
20040206658 | Hammerstedt | Oct 2004 | A1 |
20040209307 | Valkirs | Oct 2004 | A1 |
20040209350 | Sakata | Oct 2004 | A1 |
20040209354 | Mathies | Oct 2004 | A1 |
20040210279 | Gruzdev | Oct 2004 | A1 |
20040211666 | Pamidi | Oct 2004 | A1 |
20040214253 | Paek | Oct 2004 | A1 |
20040215224 | Sakata | Oct 2004 | A1 |
20040215225 | Nakayama | Oct 2004 | A1 |
20040216516 | Sato | Nov 2004 | A1 |
20040217019 | Cai | Nov 2004 | A1 |
20040219500 | Brown | Nov 2004 | A1 |
20040219535 | Bell | Nov 2004 | A1 |
20040220456 | Eppstein | Nov 2004 | A1 |
20040220495 | Cahir | Nov 2004 | A1 |
20040220564 | Ho | Nov 2004 | A1 |
20040220603 | Rutynowski | Nov 2004 | A1 |
20040222092 | Musho | Nov 2004 | A1 |
20040224369 | Cai | Nov 2004 | A1 |
20040225230 | Liamos | Nov 2004 | A1 |
20040225311 | Levaughn | Nov 2004 | A1 |
20040225312 | Orloff | Nov 2004 | A1 |
20040230216 | Levaughn | Nov 2004 | A1 |
20040231983 | Shen | Nov 2004 | A1 |
20040231984 | Lauks | Nov 2004 | A1 |
20040232009 | Okuda | Nov 2004 | A1 |
20040236250 | Hodges | Nov 2004 | A1 |
20040236251 | Roe | Nov 2004 | A1 |
20040236268 | Mitragotri | Nov 2004 | A1 |
20040236362 | Schraga | Nov 2004 | A1 |
20040238357 | Bhullar | Dec 2004 | A1 |
20040238358 | Forrow | Dec 2004 | A1 |
20040238359 | Ikeda | Dec 2004 | A1 |
20040241746 | Adlassnig | Dec 2004 | A1 |
20040242977 | Dosmann | Dec 2004 | A1 |
20040243164 | D'Agostino | Dec 2004 | A1 |
20040243165 | Koike | Dec 2004 | A1 |
20040245101 | Willner | Dec 2004 | A1 |
20040248282 | Sobha | Dec 2004 | A1 |
20040248312 | Vreeke | Dec 2004 | A1 |
20040249254 | Racchini | Dec 2004 | A1 |
20040249310 | Shartle | Dec 2004 | A1 |
20040249311 | Haar | Dec 2004 | A1 |
20040249405 | Watanabe | Dec 2004 | A1 |
20040249406 | Griffin | Dec 2004 | A1 |
20040251131 | Ueno | Dec 2004 | A1 |
20040253634 | Wang | Dec 2004 | A1 |
20040254434 | Goodnow | Dec 2004 | A1 |
20040254599 | Lipoma | Dec 2004 | A1 |
20040256228 | Huang | Dec 2004 | A1 |
20040256248 | Burke | Dec 2004 | A1 |
20040256685 | Chou | Dec 2004 | A1 |
20040258564 | Charlton | Dec 2004 | A1 |
20040260204 | Boecker | Dec 2004 | A1 |
20040260324 | Fukuzawa | Dec 2004 | A1 |
20040260325 | Kuhr | Dec 2004 | A1 |
20040260326 | Lipoma | Dec 2004 | A1 |
20040260511 | Burke | Dec 2004 | A1 |
20040267105 | Monfre | Dec 2004 | A1 |
20040267121 | Sarvazyan et al. | Dec 2004 | A1 |
20040267160 | Perez | Dec 2004 | A9 |
20040267229 | Moerman | Dec 2004 | A1 |
20040267299 | Kuriger | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050000806 | Hsieh | Jan 2005 | A1 |
20050000807 | Wang | Jan 2005 | A1 |
20050000808 | Cui | Jan 2005 | A1 |
20050003470 | Nelson | Jan 2005 | A1 |
20050004437 | Kaufmann | Jan 2005 | A1 |
20050004494 | Perez | Jan 2005 | A1 |
20050008537 | Mosoiu | Jan 2005 | A1 |
20050008851 | Ezoe | Jan 2005 | A1 |
20050009191 | Swenson | Jan 2005 | A1 |
20050010090 | Acosta | Jan 2005 | A1 |
20050010093 | Ford | Jan 2005 | A1 |
20050010134 | Douglas | Jan 2005 | A1 |
20050010137 | Hodges | Jan 2005 | A1 |
20050010198 | Marchitto | Jan 2005 | A1 |
20050011759 | Moerman | Jan 2005 | A1 |
20050013731 | Burke | Jan 2005 | A1 |
20050014997 | Ruchti | Jan 2005 | A1 |
20050015020 | Levaughn | Jan 2005 | A1 |
20050016844 | Burke | Jan 2005 | A1 |
20050019212 | Bhullar | Jan 2005 | A1 |
20050019219 | Oshiman | Jan 2005 | A1 |
20050019805 | Groll | Jan 2005 | A1 |
20050019945 | Groll | Jan 2005 | A1 |
20050019953 | Groll | Jan 2005 | A1 |
20050021066 | Kuhr | Jan 2005 | A1 |
20050027181 | Goode, Jr. | Feb 2005 | A1 |
20050027211 | Kuhr | Feb 2005 | A1 |
20050027562 | Brown | Feb 2005 | A1 |
20050033340 | Lipoma | Feb 2005 | A1 |
20050033341 | Vreeke | Feb 2005 | A1 |
20050034983 | Chambers | Feb 2005 | A1 |
20050036020 | Li | Feb 2005 | A1 |
20050036146 | Braig | Feb 2005 | A1 |
20050036906 | Nakahara et al. | Feb 2005 | A1 |
20050036909 | Erickson | Feb 2005 | A1 |
20050037482 | Braig | Feb 2005 | A1 |
20050038329 | Morris | Feb 2005 | A1 |
20050038330 | Jansen | Feb 2005 | A1 |
20050038463 | Davar | Feb 2005 | A1 |
20050038464 | Shraga | Feb 2005 | A1 |
20050038465 | Shraga | Feb 2005 | A1 |
20050038674 | Braig | Feb 2005 | A1 |
20050042766 | Ohman | Feb 2005 | A1 |
20050043894 | Fernandez | Feb 2005 | A1 |
20050043965 | Heller | Feb 2005 | A1 |
20050045476 | Neel | Mar 2005 | A1 |
20050049472 | Manda | Mar 2005 | A1 |
20050049473 | Desai et al. | Mar 2005 | A1 |
20050050859 | Coppeta | Mar 2005 | A1 |
20050054082 | Pachl | Mar 2005 | A1 |
20050054908 | Blank | Mar 2005 | A1 |
20050059872 | Shartle | Mar 2005 | A1 |
20050059895 | Brown | Mar 2005 | A1 |
20050060194 | Brown | Mar 2005 | A1 |
20050061668 | Brenneman | Mar 2005 | A1 |
20050064528 | Kwon | Mar 2005 | A1 |
20050067280 | Reid | Mar 2005 | A1 |
20050067737 | Rappin | Mar 2005 | A1 |
20050070771 | Rule | Mar 2005 | A1 |
20050070819 | Poux | Mar 2005 | A1 |
20050070945 | Schraga | Mar 2005 | A1 |
20050072670 | Hasegawa | Apr 2005 | A1 |
20050077176 | Hodges | Apr 2005 | A1 |
20050077584 | Uhland | Apr 2005 | A1 |
20050079542 | Cullen | Apr 2005 | A1 |
20050080652 | Brown | Apr 2005 | A1 |
20050085839 | Allen | Apr 2005 | A1 |
20050085840 | Yi | Apr 2005 | A1 |
20050086083 | Brown | Apr 2005 | A1 |
20050090754 | Wolff | Apr 2005 | A1 |
20050090850 | Thoes | Apr 2005 | A1 |
20050096520 | Maekawa | May 2005 | A1 |
20050096565 | Chang | May 2005 | A1 |
20050096586 | Trautman | May 2005 | A1 |
20050096587 | Santini | May 2005 | A1 |
20050096686 | Allen | May 2005 | A1 |
20050098431 | Hodges | May 2005 | A1 |
20050098432 | Gundel | May 2005 | A1 |
20050098433 | Gundel | May 2005 | A1 |
20050098434 | Gundel et al. | May 2005 | A1 |
20050100880 | Chang | May 2005 | A1 |
20050101841 | Kaylor | May 2005 | A9 |
20050101979 | Alden | May 2005 | A1 |
20050101980 | Alden | May 2005 | A1 |
20050101981 | Alden | May 2005 | A1 |
20050103624 | Bhullar | May 2005 | A1 |
20050106713 | Phan | May 2005 | A1 |
20050109637 | Iyengar | May 2005 | A1 |
20050112712 | Ouyang | May 2005 | A1 |
20050112782 | Buechler | May 2005 | A1 |
20050113658 | Jacobson | May 2005 | A1 |
20050113717 | Matzinger | May 2005 | A1 |
20050114062 | Davies | May 2005 | A1 |
20050114154 | Wolkowicz | May 2005 | A1 |
20050114444 | Brown | May 2005 | A1 |
20050118056 | Swanson | Jun 2005 | A1 |
20050118062 | Otake | Jun 2005 | A1 |
20050119681 | Marshall | Jun 2005 | A1 |
20050123443 | Fujiwara | Jun 2005 | A1 |
20050123680 | Kang | Jun 2005 | A1 |
20050124869 | Hefti | Jun 2005 | A1 |
20050125017 | Kudrna | Jun 2005 | A1 |
20050125018 | Galloway | Jun 2005 | A1 |
20050125019 | Kudrna | Jun 2005 | A1 |
20050126929 | Mansouri | Jun 2005 | A1 |
20050130248 | Willner | Jun 2005 | A1 |
20050130249 | Parris | Jun 2005 | A1 |
20050130292 | Ahn | Jun 2005 | A1 |
20050131286 | Parker | Jun 2005 | A1 |
20050131440 | Starnes | Jun 2005 | A1 |
20050131441 | Iio | Jun 2005 | A1 |
20050133368 | Davies | Jun 2005 | A1 |
20050136471 | Bhullar | Jun 2005 | A1 |
20050136501 | Kuriger | Jun 2005 | A1 |
20050136529 | Yang | Jun 2005 | A1 |
20050136550 | Yang | Jun 2005 | A1 |
20050137531 | Prausnitz et al. | Jun 2005 | A1 |
20050137536 | Gonnelli | Jun 2005 | A1 |
20050140659 | Hohl | Jun 2005 | A1 |
20050143675 | Neel | Jun 2005 | A1 |
20050143713 | Delmore | Jun 2005 | A1 |
20050143771 | Stout | Jun 2005 | A1 |
20050145490 | Shinno | Jul 2005 | A1 |
20050145491 | Amano | Jul 2005 | A1 |
20050145520 | Ilo | Jul 2005 | A1 |
20050149088 | Fukuda | Jul 2005 | A1 |
20050149089 | Trissel | Jul 2005 | A1 |
20050149090 | Morita et al. | Jul 2005 | A1 |
20050150762 | Butters | Jul 2005 | A1 |
20050150763 | Butters | Jul 2005 | A1 |
20050154277 | Tang | Jul 2005 | A1 |
20050154374 | Hunter | Jul 2005 | A1 |
20050154410 | Conway | Jul 2005 | A1 |
20050154616 | Iliff | Jul 2005 | A1 |
20050158850 | Kubo | Jul 2005 | A1 |
20050159656 | Hockersmith | Jul 2005 | A1 |
20050159768 | Boehm | Jul 2005 | A1 |
20050163176 | You et al. | Jul 2005 | A1 |
20050164299 | Stewart | Jul 2005 | A1 |
20050164322 | Heller | Jul 2005 | A1 |
20050164329 | Wallace-Davis | Jul 2005 | A1 |
20050165285 | Iliff | Jul 2005 | A1 |
20050165393 | Eppstein | Jul 2005 | A1 |
20050165622 | Neel | Jul 2005 | A1 |
20050169810 | Hagen | Aug 2005 | A1 |
20050169961 | Hunter | Aug 2005 | A1 |
20050170448 | Burson | Aug 2005 | A1 |
20050171567 | DeHart | Aug 2005 | A1 |
20050172021 | Brown | Aug 2005 | A1 |
20050172022 | Brown | Aug 2005 | A1 |
20050173245 | Feldman | Aug 2005 | A1 |
20050173246 | Hodges | Aug 2005 | A1 |
20050175509 | Nakaminami | Aug 2005 | A1 |
20050176084 | Burkoth | Aug 2005 | A1 |
20050176133 | Miyashita | Aug 2005 | A1 |
20050176153 | O'hara | Aug 2005 | A1 |
20050177071 | Nakayama | Aug 2005 | A1 |
20050177201 | Freeman | Aug 2005 | A1 |
20050177398 | Watanabe | Aug 2005 | A1 |
20050178218 | Montagu | Aug 2005 | A1 |
20050181010 | Hunter | Aug 2005 | A1 |
20050181497 | Salto | Aug 2005 | A1 |
20050182307 | Currie | Aug 2005 | A1 |
20050187439 | Blank | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050187444 | Hubner | Aug 2005 | A1 |
20050192488 | Bryenton | Sep 2005 | A1 |
20050196821 | Monfre | Sep 2005 | A1 |
20050197666 | Raney | Sep 2005 | A1 |
20050201897 | Zimmer | Sep 2005 | A1 |
20050202567 | Zanzucchi | Sep 2005 | A1 |
20050203358 | Monfre | Sep 2005 | A1 |
20050203364 | Monfre | Sep 2005 | A1 |
20050204939 | Krejci | Sep 2005 | A1 |
20050205136 | Freeman | Sep 2005 | A1 |
20050205422 | Moser | Sep 2005 | A1 |
20050205816 | Hayenga | Sep 2005 | A1 |
20050209515 | Hockersmith | Sep 2005 | A1 |
20050209564 | Bonner | Sep 2005 | A1 |
20050209625 | Chan | Sep 2005 | A1 |
20050211571 | Schulein | Sep 2005 | A1 |
20050211572 | Buck | Sep 2005 | A1 |
20050214881 | Azarnia | Sep 2005 | A1 |
20050214892 | Kovatchev | Sep 2005 | A1 |
20050215871 | Feldman | Sep 2005 | A1 |
20050215872 | Berner | Sep 2005 | A1 |
20050215923 | Wiegel | Sep 2005 | A1 |
20050215925 | Chan | Sep 2005 | A1 |
20050216046 | Yeoh | Sep 2005 | A1 |
20050218024 | Lang | Oct 2005 | A1 |
20050221276 | Rozakis | Oct 2005 | A1 |
20050221470 | Matsumoto | Oct 2005 | A1 |
20050222599 | Czernecki | Oct 2005 | A1 |
20050227372 | Khan | Oct 2005 | A1 |
20050228242 | Kawamura | Oct 2005 | A1 |
20050228883 | Brown | Oct 2005 | A1 |
20050230252 | Tsai | Oct 2005 | A1 |
20050230253 | Marquant | Oct 2005 | A1 |
20050232813 | Karmali | Oct 2005 | A1 |
20050232815 | Ruhl | Oct 2005 | A1 |
20050234368 | Wong | Oct 2005 | A1 |
20050234486 | Allen | Oct 2005 | A1 |
20050234487 | Shi | Oct 2005 | A1 |
20050234488 | Allen | Oct 2005 | A1 |
20050234489 | Allen | Oct 2005 | A1 |
20050234490 | Allen | Oct 2005 | A1 |
20050234491 | Allen | Oct 2005 | A1 |
20050234492 | Tsai | Oct 2005 | A1 |
20050234494 | Conway | Oct 2005 | A1 |
20050234495 | Schraga | Oct 2005 | A1 |
20050235060 | Brown | Oct 2005 | A1 |
20050239154 | Feldman | Oct 2005 | A1 |
20050239156 | Drucker | Oct 2005 | A1 |
20050239194 | Takahashi | Oct 2005 | A1 |
20050240090 | Ruchti | Oct 2005 | A1 |
20050240119 | Draudt | Oct 2005 | A1 |
20050240207 | Marshall | Oct 2005 | A1 |
20050240778 | Saito | Oct 2005 | A1 |
20050245798 | Yamaguchi | Nov 2005 | A1 |
20050245843 | Day | Nov 2005 | A1 |
20050245844 | Mace | Nov 2005 | A1 |
20050245845 | Roe | Nov 2005 | A1 |
20050245846 | Casey | Nov 2005 | A1 |
20050245954 | Roe | Nov 2005 | A1 |
20050245955 | Schraga | Nov 2005 | A1 |
20050256534 | Alden | Nov 2005 | A1 |
20050258035 | Harding | Nov 2005 | A1 |
20050258036 | Harding | Nov 2005 | A1 |
20050258050 | Harding | Nov 2005 | A1 |
20050265094 | Harding | Dec 2005 | A1 |
20050276133 | Harding | Dec 2005 | A1 |
20050278945 | Feldman | Dec 2005 | A1 |
20050279631 | Celentano | Dec 2005 | A1 |
20050279647 | Beaty | Dec 2005 | A1 |
20050283094 | Thym | Dec 2005 | A1 |
20050284110 | Lang | Dec 2005 | A1 |
20050284757 | Allen | Dec 2005 | A1 |
20050287620 | Heller | Dec 2005 | A1 |
20050288637 | Kuhr | Dec 2005 | A1 |
20050288698 | Matsumoto | Dec 2005 | A1 |
20050288699 | Schraga | Dec 2005 | A1 |
20060000549 | Lang | Jan 2006 | A1 |
20060003398 | Heller | Jan 2006 | A1 |
20060004270 | Bedard | Jan 2006 | A1 |
20060004271 | Peyser | Jan 2006 | A1 |
20060004272 | Shah | Jan 2006 | A1 |
20060006574 | Lang | Jan 2006 | A1 |
20060008389 | Sacherer | Jan 2006 | A1 |
20060015129 | Shahrokni | Jan 2006 | A1 |
20060016698 | Lee | Jan 2006 | A1 |
20060020228 | Fowler | Jan 2006 | A1 |
20060024774 | Zocchi | Feb 2006 | A1 |
20060025662 | Buse | Feb 2006 | A1 |
20060029979 | Bai | Feb 2006 | A1 |
20060029991 | Hagino | Feb 2006 | A1 |
20060030028 | Nakaminami | Feb 2006 | A1 |
20060030050 | Milne | Feb 2006 | A1 |
20060030761 | Raskas | Feb 2006 | A1 |
20060030788 | Wong | Feb 2006 | A1 |
20060034728 | Kloepfer | Feb 2006 | A1 |
20060037859 | Hodges | Feb 2006 | A1 |
20060040333 | Zocchi | Feb 2006 | A1 |
20060047220 | Sakata | Mar 2006 | A1 |
20060047294 | Mori | Mar 2006 | A1 |
20060052723 | Roe | Mar 2006 | A1 |
20060052724 | Roe | Mar 2006 | A1 |
20060052809 | Karbowniczek | Mar 2006 | A1 |
20060052810 | Freeman | Mar 2006 | A1 |
20060058827 | Sakata | Mar 2006 | A1 |
20060058828 | Shi | Mar 2006 | A1 |
20060062852 | Holmes | Mar 2006 | A1 |
20060063988 | Schurman | Mar 2006 | A1 |
20060064035 | Wang | Mar 2006 | A1 |
20060079739 | Chen Wang | Apr 2006 | A1 |
20060079810 | Patel | Apr 2006 | A1 |
20060079811 | Roe | Apr 2006 | A1 |
20060079920 | Schraga | Apr 2006 | A1 |
20060081469 | Lee | Apr 2006 | A1 |
20060085020 | Freeman | Apr 2006 | A1 |
20060085137 | Bartkowiak | Apr 2006 | A1 |
20060086624 | Tapsak | Apr 2006 | A1 |
20060088945 | Douglas | Apr 2006 | A1 |
20060089566 | DeHart | Apr 2006 | A1 |
20060091006 | Wang | May 2006 | A1 |
20060094944 | Chuang | May 2006 | A1 |
20060094947 | Kovatchev | May 2006 | A1 |
20060094985 | Aceti | May 2006 | A1 |
20060094986 | Neel | May 2006 | A1 |
20060095061 | Trautman | May 2006 | A1 |
20060096859 | Lau | May 2006 | A1 |
20060099107 | Yamamoto | May 2006 | A1 |
20060099703 | Choi | May 2006 | A1 |
20060100542 | Wong | May 2006 | A9 |
20060100543 | Raney | May 2006 | A1 |
20060100654 | Fukuda | May 2006 | A1 |
20060100655 | Leong | May 2006 | A1 |
20060100656 | Olson | May 2006 | A1 |
20060106373 | Cahir | May 2006 | A1 |
20060108236 | Kasielke | May 2006 | A1 |
20060113187 | Deng | Jun 2006 | A1 |
20060115857 | Keen | Jun 2006 | A1 |
20060116562 | Acosta | Jun 2006 | A1 |
20060116704 | Ashby | Jun 2006 | A1 |
20060116705 | Schraga | Jun 2006 | A1 |
20060119362 | Kermani | Jun 2006 | A1 |
20060121547 | McIntire | Jun 2006 | A1 |
20060121625 | Clemens | Jun 2006 | A1 |
20060121759 | Kasai | Jun 2006 | A1 |
20060122099 | Aoki | Jun 2006 | A1 |
20060122536 | Haar | Jun 2006 | A1 |
20060129065 | Matsumoto | Jun 2006 | A1 |
20060129172 | Crossman | Jun 2006 | A1 |
20060129173 | Wilkinson | Jun 2006 | A1 |
20060134713 | Rylatt | Jun 2006 | A1 |
20060140457 | Simshauser | Jun 2006 | A1 |
20060144704 | Ghesquiere | Jul 2006 | A1 |
20060151323 | Cho | Jul 2006 | A1 |
20060151342 | Yaguchi | Jul 2006 | A1 |
20060155215 | Cha | Jul 2006 | A1 |
20060155316 | Perez | Jul 2006 | A1 |
20060155317 | List | Jul 2006 | A1 |
20060156796 | Burke | Jul 2006 | A1 |
20060157362 | Schraga | Jul 2006 | A1 |
20060160100 | Gao | Jul 2006 | A1 |
20060161078 | Schraga | Jul 2006 | A1 |
20060161194 | Freeman | Jul 2006 | A1 |
20060163061 | Hodges | Jul 2006 | A1 |
20060166302 | Clarke | Jul 2006 | A1 |
20060167382 | Deshmukh | Jul 2006 | A1 |
20060169599 | Feldman | Aug 2006 | A1 |
20060173254 | Acosta | Aug 2006 | A1 |
20060173255 | Acosta | Aug 2006 | A1 |
20060173379 | Rasch-Menges | Aug 2006 | A1 |
20060173380 | Hoenes | Aug 2006 | A1 |
20060173478 | Schraga | Aug 2006 | A1 |
20060175216 | Freeman | Aug 2006 | A1 |
20060178573 | Kermani | Aug 2006 | A1 |
20060178599 | Faupel | Aug 2006 | A1 |
20060178600 | Kennedy | Aug 2006 | A1 |
20060178686 | Schraga | Aug 2006 | A1 |
20060178687 | Freeman | Aug 2006 | A1 |
20060178688 | Freeman | Aug 2006 | A1 |
20060178689 | Freeman | Aug 2006 | A1 |
20060178690 | Freeman | Aug 2006 | A1 |
20060183871 | Ward | Aug 2006 | A1 |
20060183983 | Acosta | Aug 2006 | A1 |
20060184065 | Deshmukh | Aug 2006 | A1 |
20060184101 | Srinivasan | Aug 2006 | A1 |
20060188395 | Taniike | Aug 2006 | A1 |
20060189895 | Neel | Aug 2006 | A1 |
20060191787 | Wang | Aug 2006 | A1 |
20060195023 | Acosta | Aug 2006 | A1 |
20060195047 | Freeman | Aug 2006 | A1 |
20060195128 | Alden | Aug 2006 | A1 |
20060195129 | Freeman | Aug 2006 | A1 |
20060195130 | Freeman | Aug 2006 | A1 |
20060195131 | Freeman | Aug 2006 | A1 |
20060195132 | Freeman | Aug 2006 | A1 |
20060195133 | Freeman | Aug 2006 | A1 |
20060196031 | Hoenes | Sep 2006 | A1 |
20060196795 | Windus-Smith | Sep 2006 | A1 |
20060200044 | Freeman | Sep 2006 | A1 |
20060200045 | Roe | Sep 2006 | A1 |
20060200046 | Windus-Smith | Sep 2006 | A1 |
20060200181 | Fukuzawa | Sep 2006 | A1 |
20060200981 | Bhullar | Sep 2006 | A1 |
20060200982 | Bhullar | Sep 2006 | A1 |
20060201804 | Chambers | Sep 2006 | A1 |
20060204399 | Freeman | Sep 2006 | A1 |
20060205029 | Heller | Sep 2006 | A1 |
20060205060 | Kim | Sep 2006 | A1 |
20060206135 | Uehata | Sep 2006 | A1 |
20060211127 | Iwaki | Sep 2006 | A1 |
20060211927 | Acosta | Sep 2006 | A1 |
20060211931 | Blank | Sep 2006 | A1 |
20060219551 | Edelbrock | Oct 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060222567 | Kloepfer | Oct 2006 | A1 |
20060224171 | Sakata | Oct 2006 | A1 |
20060224172 | Levaughn | Oct 2006 | A1 |
20060229532 | Wong | Oct 2006 | A1 |
20060229533 | Hoenes | Oct 2006 | A1 |
20060229651 | Marshall | Oct 2006 | A1 |
20060229652 | Iio et al. | Oct 2006 | A1 |
20060231396 | Yamaoka | Oct 2006 | A1 |
20060231418 | Harding | Oct 2006 | A1 |
20060231421 | Diamond | Oct 2006 | A1 |
20060231423 | Harding | Oct 2006 | A1 |
20060231425 | Harding | Oct 2006 | A1 |
20060231442 | Windus-Smith | Oct 2006 | A1 |
20060232278 | Diamond | Oct 2006 | A1 |
20060232528 | Harding | Oct 2006 | A1 |
20060233666 | Vu | Oct 2006 | A1 |
20060234263 | Light, II | Oct 2006 | A1 |
20060234369 | Sih | Oct 2006 | A1 |
20060235284 | Lee | Oct 2006 | A1 |
20060235454 | LeVaughn | Oct 2006 | A1 |
20060241517 | Fowler | Oct 2006 | A1 |
20060241666 | Briggs | Oct 2006 | A1 |
20060241667 | Freeman | Oct 2006 | A1 |
20060241668 | Schraga | Oct 2006 | A1 |
20060241669 | Stout | Oct 2006 | A1 |
20060247154 | Palmieri | Nov 2006 | A1 |
20060247554 | Roe | Nov 2006 | A1 |
20060247555 | Harttig | Nov 2006 | A1 |
20060247670 | LeVaughn | Nov 2006 | A1 |
20060247671 | Levaughn | Nov 2006 | A1 |
20060254932 | Hodges | Nov 2006 | A1 |
20060259057 | Kim | Nov 2006 | A1 |
20060259058 | Schiff | Nov 2006 | A1 |
20060259060 | Whitson | Nov 2006 | A1 |
20060264718 | Ruchti | Nov 2006 | A1 |
20060264996 | Levaughn | Nov 2006 | A1 |
20060264997 | Colonna | Nov 2006 | A1 |
20060266644 | Pugh | Nov 2006 | A1 |
20060266765 | Pugh | Nov 2006 | A1 |
20060271083 | Boecker | Nov 2006 | A1 |
20060271084 | Schraga | Nov 2006 | A1 |
20060276724 | Freeman | Dec 2006 | A1 |
20060277048 | Kintzig | Dec 2006 | A1 |
20060278545 | Henning | Dec 2006 | A1 |
20060279431 | Bakarania | Dec 2006 | A1 |
20060281187 | Emery | Dec 2006 | A1 |
20060282109 | Jansen | Dec 2006 | A1 |
20060286620 | Werner | Dec 2006 | A1 |
20060287664 | Grage | Dec 2006 | A1 |
20060293577 | Morrison | Dec 2006 | A1 |
20070004989 | Dhillon | Jan 2007 | A1 |
20070004990 | Kistner | Jan 2007 | A1 |
20070007183 | Schulat | Jan 2007 | A1 |
20070009381 | Schulat | Jan 2007 | A1 |
20070010839 | Galloway | Jan 2007 | A1 |
20070010841 | Teo | Jan 2007 | A1 |
20070015978 | Kanayama | Jan 2007 | A1 |
20070016079 | Freeman | Jan 2007 | A1 |
20070016103 | Calasso | Jan 2007 | A1 |
20070016104 | Jansen | Jan 2007 | A1 |
20070016239 | Sato | Jan 2007 | A1 |
20070017805 | Hodges | Jan 2007 | A1 |
20070027370 | Brauker | Feb 2007 | A1 |
20070027427 | Trautman | Feb 2007 | A1 |
20070032812 | Loerwald | Feb 2007 | A1 |
20070032813 | Flynn | Feb 2007 | A1 |
20070038149 | Calasso | Feb 2007 | A1 |
20070038235 | Freeman | Feb 2007 | A1 |
20070043305 | Boecker | Feb 2007 | A1 |
20070043386 | Freeman | Feb 2007 | A1 |
20070049901 | Wu | Mar 2007 | A1 |
20070049959 | Feaster | Mar 2007 | A1 |
20070055174 | Freeman | Mar 2007 | A1 |
20070055297 | Fukuzawa | Mar 2007 | A1 |
20070055298 | Uehata et al. | Mar 2007 | A1 |
20070060842 | Alvarez-Icaza | Mar 2007 | A1 |
20070060843 | Alvarez-Icaza | Mar 2007 | A1 |
20070060844 | Alvarez-Icaza | Mar 2007 | A1 |
20070060845 | Perez | Mar 2007 | A1 |
20070061393 | Chen | Mar 2007 | A1 |
20070062250 | Krulevitch | Mar 2007 | A1 |
20070062251 | Anex | Mar 2007 | A1 |
20070062315 | Hodges | Mar 2007 | A1 |
20070064516 | Briggs | Mar 2007 | A1 |
20070066939 | Krulevitch | Mar 2007 | A1 |
20070066940 | Karunaratne | Mar 2007 | A1 |
20070068807 | Feldman | Mar 2007 | A1 |
20070073188 | Freeman | Mar 2007 | A1 |
20070073189 | Freeman | Mar 2007 | A1 |
20070074977 | Guo | Apr 2007 | A1 |
20070078358 | Escutia | Apr 2007 | A1 |
20070078360 | Matsumoto | Apr 2007 | A1 |
20070078474 | Kim | Apr 2007 | A1 |
20070080093 | Boozer | Apr 2007 | A1 |
20070083130 | Thomson | Apr 2007 | A1 |
20070083131 | Escutia | Apr 2007 | A1 |
20070083222 | Schraga | Apr 2007 | A1 |
20070083335 | Moerman | Apr 2007 | A1 |
20070084749 | Demelo | Apr 2007 | A1 |
20070088377 | LeVaughn | Apr 2007 | A1 |
20070092923 | Chang | Apr 2007 | A1 |
20070093728 | Douglas | Apr 2007 | A1 |
20070093752 | Zhao | Apr 2007 | A1 |
20070093753 | Krulevitch | Apr 2007 | A1 |
20070093863 | Pugh | Apr 2007 | A1 |
20070093864 | Pugh | Apr 2007 | A1 |
20070095178 | Schraga | May 2007 | A1 |
20070100255 | Boecker | May 2007 | A1 |
20070100256 | Sansom | May 2007 | A1 |
20070100364 | Sansom | May 2007 | A1 |
20070102312 | Cha | May 2007 | A1 |
20070106178 | Roe | May 2007 | A1 |
20070108048 | Wang | May 2007 | A1 |
20070112281 | Olson | May 2007 | A1 |
20070112367 | Olson | May 2007 | A1 |
20070118051 | Korner et al. | May 2007 | A1 |
20070119710 | Goldberger | May 2007 | A1 |
20070123801 | Goldberger | May 2007 | A1 |
20070123802 | Freeman | May 2007 | A1 |
20070123803 | Fujiwara et al. | May 2007 | A1 |
20070129618 | Goldberger | Jun 2007 | A1 |
20070129650 | Freeman | Jun 2007 | A1 |
20070131565 | Fujiwara | Jun 2007 | A1 |
20070135828 | Rutynowski | Jun 2007 | A1 |
20070142747 | Boecker | Jun 2007 | A1 |
20070142748 | Freeman | Jun 2007 | A1 |
20070142776 | Kovelman | Jun 2007 | A9 |
20070142854 | Schraga | Jun 2007 | A1 |
20070144235 | Werner | Jun 2007 | A1 |
20070149875 | Ouyang | Jun 2007 | A1 |
20070149897 | Ghesquiere | Jun 2007 | A1 |
20070161960 | Chen | Jul 2007 | A1 |
20070162064 | Starnes | Jul 2007 | A1 |
20070162065 | Li | Jul 2007 | A1 |
20070167869 | Roe | Jul 2007 | A1 |
20070167870 | Freeman | Jul 2007 | A1 |
20070167871 | Freeman | Jul 2007 | A1 |
20070167872 | Freeman | Jul 2007 | A1 |
20070167873 | Freeman | Jul 2007 | A1 |
20070167874 | Freeman | Jul 2007 | A1 |
20070167875 | Freeman | Jul 2007 | A1 |
20070173739 | Chan | Jul 2007 | A1 |
20070173740 | Chan | Jul 2007 | A1 |
20070173741 | Boecker | Jul 2007 | A1 |
20070173742 | Freeman et al. | Jul 2007 | A1 |
20070173743 | Freeman | Jul 2007 | A1 |
20070173874 | Uschold | Jul 2007 | A1 |
20070173875 | Uschold | Jul 2007 | A1 |
20070173876 | Aylett | Jul 2007 | A1 |
20070176120 | Schwind | Aug 2007 | A1 |
20070179356 | Wessel | Aug 2007 | A1 |
20070179404 | Escutia | Aug 2007 | A1 |
20070179405 | Emery | Aug 2007 | A1 |
20070179406 | DeNuzzio | Aug 2007 | A1 |
20070182051 | Harttig | Aug 2007 | A1 |
20070185412 | Boecker | Aug 2007 | A1 |
20070185515 | Stout | Aug 2007 | A1 |
20070185516 | Schosnig | Aug 2007 | A1 |
20070191702 | Yodfat | Aug 2007 | A1 |
20070191737 | Freeman | Aug 2007 | A1 |
20070191738 | Raney | Aug 2007 | A1 |
20070191739 | Roe | Aug 2007 | A1 |
20070193019 | Feldman | Aug 2007 | A1 |
20070193882 | Dai | Aug 2007 | A1 |
20070196240 | Boozer | Aug 2007 | A1 |
20070196242 | Boozer | Aug 2007 | A1 |
20070203514 | Flaherty | Aug 2007 | A1 |
20070203903 | Attaran Rezaei | Aug 2007 | A1 |
20070205103 | Hodges | Sep 2007 | A1 |
20070207498 | Palmieri | Sep 2007 | A1 |
20070213601 | Freeman | Sep 2007 | A1 |
20070213637 | Boozer | Sep 2007 | A1 |
20070213682 | Haar | Sep 2007 | A1 |
20070213756 | Freeman | Sep 2007 | A1 |
20070218543 | Flaherty | Sep 2007 | A1 |
20070219346 | Trifiro | Sep 2007 | A1 |
20070219432 | Thompson | Sep 2007 | A1 |
20070219436 | Takase | Sep 2007 | A1 |
20070219462 | Briggs | Sep 2007 | A1 |
20070219463 | Briggs | Sep 2007 | A1 |
20070219572 | Deck | Sep 2007 | A1 |
20070219573 | Freeman | Sep 2007 | A1 |
20070219574 | Freeman | Sep 2007 | A1 |
20070225741 | Ikeda | Sep 2007 | A1 |
20070225742 | Abe | Sep 2007 | A1 |
20070227907 | Shah | Oct 2007 | A1 |
20070227911 | Wang | Oct 2007 | A1 |
20070227912 | Chatelier | Oct 2007 | A1 |
20070229085 | Kawai | Oct 2007 | A1 |
20070232872 | Prough | Oct 2007 | A1 |
20070232956 | Harman | Oct 2007 | A1 |
20070233013 | Schoenberg | Oct 2007 | A1 |
20070233166 | Stout | Oct 2007 | A1 |
20070233167 | Weiss | Oct 2007 | A1 |
20070233395 | Neel | Oct 2007 | A1 |
20070235329 | Harding | Oct 2007 | A1 |
20070235347 | Chatelier | Oct 2007 | A1 |
20070239068 | Rasch-Menges | Oct 2007 | A1 |
20070239188 | Boozer | Oct 2007 | A1 |
20070239189 | Freeman | Oct 2007 | A1 |
20070239190 | Alden | Oct 2007 | A1 |
20070240984 | Popovich | Oct 2007 | A1 |
20070240986 | Reymond | Oct 2007 | A1 |
20070244380 | Say | Oct 2007 | A1 |
20070244412 | Lav | Oct 2007 | A1 |
20070244498 | Steg | Oct 2007 | A1 |
20070244499 | Briggs | Oct 2007 | A1 |
20070249921 | Groll | Oct 2007 | A1 |
20070249962 | Alden | Oct 2007 | A1 |
20070249963 | Alden | Oct 2007 | A1 |
20070250099 | Flora | Oct 2007 | A1 |
20070251836 | Hsu | Nov 2007 | A1 |
20070254359 | Rezania | Nov 2007 | A1 |
20070255141 | Esenaliev | Nov 2007 | A1 |
20070255178 | Alvarez-Icaza | Nov 2007 | A1 |
20070255179 | Alvarez-Icaza | Nov 2007 | A1 |
20070255180 | Alvarez-Icaza | Nov 2007 | A1 |
20070255181 | Alvarez-Icaza | Nov 2007 | A1 |
20070255300 | Vanhiel | Nov 2007 | A1 |
20070255301 | Freeman | Nov 2007 | A1 |
20070255302 | Koeppel | Nov 2007 | A1 |
20070260271 | Freeman | Nov 2007 | A1 |
20070260272 | Weiss | Nov 2007 | A1 |
20070264721 | Buck | Nov 2007 | A1 |
20070265511 | Renouf | Nov 2007 | A1 |
20070265532 | Maynard | Nov 2007 | A1 |
20070265654 | Iio | Nov 2007 | A1 |
20070273901 | Baskeyfield | Nov 2007 | A1 |
20070273903 | Baskeyfield | Nov 2007 | A1 |
20070273904 | Robinson | Nov 2007 | A1 |
20070273928 | Robinson | Nov 2007 | A1 |
20070276197 | Harmon | Nov 2007 | A1 |
20070276211 | Mir | Nov 2007 | A1 |
20070276290 | Boecker | Nov 2007 | A1 |
20070276425 | Kim | Nov 2007 | A1 |
20070276621 | Davies | Nov 2007 | A1 |
20070278097 | Bhullar | Dec 2007 | A1 |
20070282186 | Gilmore | Dec 2007 | A1 |
20070282362 | Berg | Dec 2007 | A1 |
20070288047 | Thoes | Dec 2007 | A1 |
20070293743 | Monfre | Dec 2007 | A1 |
20070293744 | Monfre | Dec 2007 | A1 |
20070293790 | Bainczyk | Dec 2007 | A1 |
20070293882 | Harttig | Dec 2007 | A1 |
20070293883 | Horie | Dec 2007 | A1 |
20070295616 | Harding | Dec 2007 | A1 |
20080004651 | Nicholls | Jan 2008 | A1 |
20080007141 | Deck | Jan 2008 | A1 |
20080009767 | Effenhauser | Jan 2008 | A1 |
20080009768 | Sohrab | Jan 2008 | A1 |
20080009892 | Freeman | Jan 2008 | A1 |
20080009893 | LeVaughn | Jan 2008 | A1 |
20080015425 | Douglas | Jan 2008 | A1 |
20080015623 | Deck | Jan 2008 | A1 |
20080017522 | Heller | Jan 2008 | A1 |
20080019870 | Newman | Jan 2008 | A1 |
20080021291 | Zocchi | Jan 2008 | A1 |
20080021293 | Schurman | Jan 2008 | A1 |
20080021295 | Wang | Jan 2008 | A1 |
20080021296 | Creaven | Jan 2008 | A1 |
20080021346 | Haar | Jan 2008 | A1 |
20080021490 | Briggs | Jan 2008 | A1 |
20080021491 | Freeman | Jan 2008 | A1 |
20080021492 | Freeman | Jan 2008 | A1 |
20080021493 | Levaughn | Jan 2008 | A1 |
20080021494 | Schmelzeisen-R | Jan 2008 | A1 |
20080027385 | Freeman | Jan 2008 | A1 |
20080031778 | Kramer | Feb 2008 | A1 |
20080033268 | Stafford | Feb 2008 | A1 |
20080033318 | Mace | Feb 2008 | A1 |
20080033319 | Kloepfer | Feb 2008 | A1 |
20080033468 | Lathrop | Feb 2008 | A1 |
20080033469 | Winheim | Feb 2008 | A1 |
20080034834 | Schell | Feb 2008 | A1 |
20080034835 | Schell | Feb 2008 | A1 |
20080039885 | Purcell | Feb 2008 | A1 |
20080039886 | Shi | Feb 2008 | A1 |
20080039887 | Conway | Feb 2008 | A1 |
20080040919 | Griss | Feb 2008 | A1 |
20080045825 | Melker | Feb 2008 | A1 |
20080045992 | Schraga | Feb 2008 | A1 |
20080047764 | Lee | Feb 2008 | A1 |
20080053201 | Roesicke | Mar 2008 | A1 |
20080057484 | Miyata | Mar 2008 | A1 |
20080058624 | Smart | Mar 2008 | A1 |
20080058626 | Miyata | Mar 2008 | A1 |
20080058631 | Draudt | Mar 2008 | A1 |
20080058847 | Abe | Mar 2008 | A1 |
20080058848 | Griffin | Mar 2008 | A1 |
20080058849 | Conway | Mar 2008 | A1 |
20080060424 | Babic | Mar 2008 | A1 |
20080064986 | Kraemer | Mar 2008 | A1 |
20080064987 | Escutia | Mar 2008 | A1 |
20080065130 | Patel | Mar 2008 | A1 |
20080065131 | List | Mar 2008 | A1 |
20080065132 | Trissel | Mar 2008 | A1 |
20080065133 | Kennedy | Mar 2008 | A1 |
20080065134 | Conway | Mar 2008 | A1 |
20080073224 | Diamond | Mar 2008 | A1 |
20080077048 | Escutia | Mar 2008 | A1 |
20080077167 | Flynn | Mar 2008 | A1 |
20080077168 | Nicholls | Mar 2008 | A1 |
20080081969 | Feldman | Apr 2008 | A1 |
20080081976 | Hodges | Apr 2008 | A1 |
20080082023 | Deck | Apr 2008 | A1 |
20080082116 | Lathrop | Apr 2008 | A1 |
20080082117 | Ruf | Apr 2008 | A1 |
20080086042 | Brister | Apr 2008 | A1 |
20080086044 | Brister | Apr 2008 | A1 |
20080086273 | Shults | Apr 2008 | A1 |
20080093227 | Diamond | Apr 2008 | A1 |
20080093228 | Diamond | Apr 2008 | A1 |
20080093230 | Diamond | Apr 2008 | A1 |
20080094804 | Reynolds | Apr 2008 | A1 |
20080097171 | Smart | Apr 2008 | A1 |
20080097241 | Maltezos | Apr 2008 | A1 |
20080097503 | Creaven | Apr 2008 | A1 |
20080098802 | Burke | May 2008 | A1 |
20080103396 | Johnson | May 2008 | A1 |
20080103415 | Roe | May 2008 | A1 |
20080103517 | Takemoto | May 2008 | A1 |
20080105024 | Creaven | May 2008 | A1 |
20080105568 | Wu | May 2008 | A1 |
20080108130 | Nakaminami | May 2008 | A1 |
20080108942 | Brister | May 2008 | A1 |
20080109024 | Berkovitch | May 2008 | A1 |
20080109025 | Yang | May 2008 | A1 |
20080109259 | Thompson | May 2008 | A1 |
20080114227 | Haar | May 2008 | A1 |
20080114228 | McCluskey | May 2008 | A1 |
20080118400 | Neel | May 2008 | A1 |
20080119703 | Brister | May 2008 | A1 |
20080119704 | Brister | May 2008 | A1 |
20080119706 | Brister | May 2008 | A1 |
20080119761 | Boecker | May 2008 | A1 |
20080119883 | Conway | May 2008 | A1 |
20080119884 | Flora | May 2008 | A1 |
20080121533 | Hodges | May 2008 | A1 |
20080125800 | List | May 2008 | A1 |
20080125801 | List | May 2008 | A1 |
20080134806 | Capriccio | Jun 2008 | A1 |
20080134810 | Neel | Jun 2008 | A1 |
20080135559 | Byrd | Jun 2008 | A1 |
20080140105 | Zhong | Jun 2008 | A1 |
20080144022 | Schulat | Jun 2008 | A1 |
20080146899 | Ruchti | Jun 2008 | A1 |
20080146966 | LeVaughn | Jun 2008 | A1 |
20080147108 | Kennedy | Jun 2008 | A1 |
20080149268 | Zhao | Jun 2008 | A1 |
20080149599 | Bohm | Jun 2008 | A1 |
20080152507 | Bohm | Jun 2008 | A1 |
20080154187 | Krulevitch | Jun 2008 | A1 |
20080154513 | Kovatchev | Jun 2008 | A1 |
20080159913 | Jung | Jul 2008 | A1 |
20080161664 | Mastrototaro | Jul 2008 | A1 |
20080161724 | Roe | Jul 2008 | A1 |
20080161725 | Wong | Jul 2008 | A1 |
20080166269 | Jansen | Jul 2008 | A1 |
20080167578 | Bryer | Jul 2008 | A1 |
20080167673 | Zhong | Jul 2008 | A1 |
20080188771 | Boecker | Aug 2008 | A1 |
20080194987 | Boecker | Aug 2008 | A1 |
20080194989 | Briggs | Aug 2008 | A1 |
20080208026 | Noujaim | Aug 2008 | A1 |
20080208079 | Hein | Aug 2008 | A1 |
20080210574 | Boecker | Sep 2008 | A1 |
20080214909 | Fuerst | Sep 2008 | A1 |
20080214917 | Boecker | Sep 2008 | A1 |
20080214919 | Harmon | Sep 2008 | A1 |
20080214956 | Briggs | Sep 2008 | A1 |
20080228212 | List | Sep 2008 | A1 |
20080249435 | Haar | Oct 2008 | A1 |
20080249554 | Freeman | Oct 2008 | A1 |
20080255598 | LeVaughn et al. | Oct 2008 | A1 |
20080262387 | List | Oct 2008 | A1 |
20080262388 | List | Oct 2008 | A1 |
20080267822 | List | Oct 2008 | A1 |
20080269723 | Mastrototaro | Oct 2008 | A1 |
20080269791 | Hoenes | Oct 2008 | A1 |
20080275365 | Guthrie | Nov 2008 | A1 |
20080275384 | Mastrototaro | Nov 2008 | A1 |
20080277291 | Heller | Nov 2008 | A1 |
20080277292 | Heller | Nov 2008 | A1 |
20080277293 | Heller | Nov 2008 | A1 |
20080277294 | Heller | Nov 2008 | A1 |
20080286149 | Roe | Nov 2008 | A1 |
20080294068 | Briggs | Nov 2008 | A1 |
20080300614 | Freeman | Dec 2008 | A1 |
20080318193 | Alvarez-Icaza | Dec 2008 | A1 |
20080319284 | Alvarez-Icaza | Dec 2008 | A1 |
20080319291 | Freeman | Dec 2008 | A1 |
20090005664 | Freeman | Jan 2009 | A1 |
20090020438 | Hodges | Jan 2009 | A1 |
20090024009 | Freeman | Jan 2009 | A1 |
20090026075 | Harding | Jan 2009 | A1 |
20090026091 | Harding | Jan 2009 | A1 |
20090027040 | Kermani | Jan 2009 | A1 |
20090029479 | Docherty | Jan 2009 | A1 |
20090030441 | Kudrna | Jan 2009 | A1 |
20090043177 | Milledge | Feb 2009 | A1 |
20090043183 | Kermani | Feb 2009 | A1 |
20090048536 | Freeman | Feb 2009 | A1 |
20090054813 | Freeman | Feb 2009 | A1 |
20090057146 | Teodorczyk | Mar 2009 | A1 |
20090069716 | Freeman | Mar 2009 | A1 |
20090076415 | Moerman | Mar 2009 | A1 |
20090084687 | Chatelier | Apr 2009 | A1 |
20090099477 | Hoenes et al. | Apr 2009 | A1 |
20090105572 | Malecha | Apr 2009 | A1 |
20090105573 | Malecha | Apr 2009 | A1 |
20090112123 | Freeman | Apr 2009 | A1 |
20090112155 | Zhao | Apr 2009 | A1 |
20090112180 | Krulevitch | Apr 2009 | A1 |
20090112185 | Krulevitch | Apr 2009 | A1 |
20090112247 | Freeman et al. | Apr 2009 | A1 |
20090118752 | Perez et al. | May 2009 | A1 |
20090119760 | Hung et al. | May 2009 | A1 |
20090124932 | Freeman | May 2009 | A1 |
20090131829 | Freeman | May 2009 | A1 |
20090131830 | Freeman | May 2009 | A1 |
20090131964 | Freeman | May 2009 | A1 |
20090131965 | Freeman | May 2009 | A1 |
20090137930 | Freeman | May 2009 | A1 |
20090138032 | Freeman | May 2009 | A1 |
20090139300 | Pugh | Jun 2009 | A1 |
20090177117 | Amano et al. | Jul 2009 | A1 |
20090184004 | Chatelier | Jul 2009 | A1 |
20090187351 | Orr | Jul 2009 | A1 |
20090192410 | Freeman | Jul 2009 | A1 |
20090192411 | Freeman | Jul 2009 | A1 |
20090196580 | Freeman | Aug 2009 | A1 |
20090204025 | Marsot | Aug 2009 | A1 |
20090216100 | Ebner | Aug 2009 | A1 |
20090237262 | Smith | Sep 2009 | A1 |
20090240127 | Ray | Sep 2009 | A1 |
20090247838 | Cummings | Oct 2009 | A1 |
20090247982 | Krulevitch | Oct 2009 | A1 |
20090259146 | Freeman | Oct 2009 | A1 |
20090270765 | Ghesquiere et al. | Oct 2009 | A1 |
20090280551 | Cardosi | Nov 2009 | A1 |
20090281457 | Faulkner | Nov 2009 | A1 |
20090281458 | Faulkner | Nov 2009 | A1 |
20090281459 | Faulkner | Nov 2009 | A1 |
20090301899 | Hodges | Dec 2009 | A1 |
20090302872 | Haggett | Dec 2009 | A1 |
20090302873 | Haggett | Dec 2009 | A1 |
20090322630 | Friman | Dec 2009 | A1 |
20090325307 | Haggett | Dec 2009 | A1 |
20100016700 | Sieh | Jan 2010 | A1 |
20100018878 | Davies | Jan 2010 | A1 |
20100030110 | Choi | Feb 2010 | A1 |
20100041084 | Stephens | Feb 2010 | A1 |
20100094170 | Wilson et al. | Apr 2010 | A1 |
20100094324 | Huang et al. | Apr 2010 | A1 |
20100113981 | Oki et al. | May 2010 | A1 |
20100198107 | Groll et al. | Aug 2010 | A1 |
20100256525 | List et al. | Oct 2010 | A1 |
20100274273 | Schraga et al. | Oct 2010 | A1 |
20100292611 | Lum et al. | Nov 2010 | A1 |
20100324452 | Freeman et al. | Dec 2010 | A1 |
20100324582 | Nicholls et al. | Dec 2010 | A1 |
20110077478 | Freeman et al. | Mar 2011 | A1 |
20110077553 | Alroy | Mar 2011 | A1 |
20110098541 | Freeman et al. | Apr 2011 | A1 |
20110178429 | Jacobs | Jul 2011 | A1 |
20110184448 | Brown et al. | Jul 2011 | A1 |
20120149999 | Freeman et al. | Jun 2012 | A1 |
20120184876 | Freeman et al. | Jul 2012 | A1 |
20120232425 | Freeman et al. | Sep 2012 | A1 |
20120271197 | Castle et al. | Oct 2012 | A1 |
20120296233 | Freeman | Nov 2012 | A9 |
20130261500 | Jacobs | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1946340 | Apr 2007 | CN |
2206674 | Aug 1972 | DE |
3538313 | Apr 1986 | DE |
4212315 | Oct 1993 | DE |
4320347 | Dec 1994 | DE |
4344452 | Jun 1995 | DE |
4420232 | Dec 1995 | DE |
4420232 | Dec 1995 | DE |
29800611 | Jul 1998 | DE |
19819407 | Nov 1999 | DE |
20009475 | Oct 2000 | DE |
29824204 | Oct 2000 | DE |
10053974 | Dec 2000 | DE |
10032042 | Jan 2002 | DE |
10057832 | Feb 2002 | DE |
10057832 | Feb 2002 | DE |
10142232 | Mar 2003 | DE |
10208575 | Aug 2003 | DE |
10208575 | Aug 2003 | DE |
10245721 | Dec 2003 | DE |
10245721 | Dec 2003 | DE |
10361560 | Jul 2005 | DE |
10361560 | Jul 2005 | DE |
0112498 | Jul 1984 | EP |
0160768 | Nov 1985 | EP |
199484 | Oct 1986 | EP |
0199484 | Oct 1986 | EP |
0254246 | Jan 1988 | EP |
0289 269 | Nov 1988 | EP |
0317847 | May 1989 | EP |
0320109 | Jun 1989 | EP |
359831 | Mar 1990 | EP |
364208 | Apr 1990 | EP |
0364208 | Apr 1990 | EP |
0170375 | May 1990 | EP |
0136362 | Dec 1990 | EP |
406304 | Jan 1991 | EP |
0449525 | Oct 1991 | EP |
0453283 | Oct 1991 | EP |
0263948 | Feb 1992 | EP |
0449147 | Aug 1992 | EP |
505475 | Sep 1992 | EP |
505494 | Sep 1992 | EP |
505504 | Sep 1992 | EP |
0530994 | Mar 1993 | EP |
0374355 | Jun 1993 | EP |
552223 | Jul 1993 | EP |
0351891 | Sep 1993 | EP |
0593096 | Apr 1994 | EP |
0630609 | Dec 1994 | EP |
0415388 | May 1995 | EP |
0654659 | May 1995 | EP |
0505494 | Jul 1995 | EP |
0662367 | Jul 1995 | EP |
0359831 | Aug 1995 | EP |
0471986 | Oct 1995 | EP |
0368474 | Dec 1995 | EP |
0461601 | Dec 1995 | EP |
0429076 | Jan 1996 | EP |
0552223 | Jul 1996 | EP |
0735363 | Oct 1996 | EP |
759553 | Feb 1997 | EP |
0505504 | Mar 1997 | EP |
0777123 | Jun 1997 | EP |
0406304 | Aug 1997 | EP |
0537761 | Aug 1997 | EP |
0795601 | Sep 1997 | EP |
0562370 | Nov 1997 | EP |
0415393 | Dec 1997 | EP |
817809 | Jan 1998 | EP |
0823239 | Feb 1998 | EP |
0560336 | May 1998 | EP |
847447 | Jun 1998 | EP |
0878 708 | Nov 1998 | EP |
874984 | Nov 1998 | EP |
0505475 | Mar 1999 | EP |
0898936 | Mar 1999 | EP |
898936 | Mar 1999 | EP |
0901018 | Mar 1999 | EP |
0470649 | Jun 1999 | EP |
937249 | Aug 1999 | EP |
938493 | Sep 1999 | EP |
0951939 | Oct 1999 | EP |
951939 | Oct 1999 | EP |
0847447 | Nov 1999 | EP |
0964059 | Dec 1999 | EP |
0964060 | Dec 1999 | EP |
0969097 | Jan 2000 | EP |
0985376 | Mar 2000 | EP |
985376 | Mar 2000 | EP |
1021950 | Jul 2000 | EP |
0894869 | Feb 2001 | EP |
1074832 | Feb 2001 | EP |
1093854 | Apr 2001 | EP |
1101443 | May 2001 | EP |
1114995 | Jul 2001 | EP |
0736607 | Aug 2001 | EP |
0874984 | Nov 2001 | EP |
1157660 | Nov 2001 | EP |
0730037 | Dec 2001 | EP |
0636879 | Jan 2002 | EP |
01174083 | Jan 2002 | EP |
1174083 | Jan 2002 | EP |
0851224 | Mar 2002 | EP |
0759553 | May 2002 | EP |
0856586 | May 2002 | EP |
0817809 | Jul 2002 | EP |
0872728 | Jul 2002 | EP |
0795748 | Aug 2002 | EP |
0685737 | Sep 2002 | EP |
0958495 | Nov 2002 | EP |
0937249 | Dec 2002 | EP |
1337182 | Aug 2003 | EP |
1337182 | Aug 2003 | EP |
0880692 | Jan 2004 | EP |
01374770 | Jan 2004 | EP |
1374770 | Jan 2004 | EP |
1401233 | Mar 2004 | EP |
1404232 | Apr 2004 | EP |
1404232 | Apr 2004 | EP |
1404233 | Apr 2004 | EP |
1246688 | May 2004 | EP |
1486766 | Dec 2004 | EP |
1502614 | Feb 2005 | EP |
1502614 | Feb 2005 | EP |
1643908 | Apr 2006 | EP |
1790288 | May 2007 | EP |
1881322 | Jan 2008 | EP |
1921992 | May 2008 | EP |
1921992 | May 2008 | EP |
2039294 | Mar 2009 | EP |
2130493 | Dec 2009 | EP |
WO 2007010087 | Jan 2007 | FI |
2555432 | May 1985 | FR |
2555432 | May 1985 | FR |
2622457 | Nov 1987 | FR |
1558111 | Dec 1979 | GB |
2168815 | Jun 1986 | GB |
2331936 | Jun 1999 | GB |
2331936 | Jun 1999 | GB |
2335860 | Oct 1999 | GB |
2335860 | Oct 1999 | GB |
2335990 | Oct 1999 | GB |
2335990 | Oct 1999 | GB |
2335990 | Oct 1999 | GB |
WO 2005045414 | May 2005 | GB |
WO 2010109461 | Sep 2010 | IL |
HEI 4 194660 | Jul 1992 | JP |
1996010208 | Dec 1992 | JP |
9-276235 | Oct 1997 | JP |
10-104906 | Jan 1998 | JP |
1014906 | Jan 1998 | JP |
2000-116768 | Apr 2000 | JP |
WO 2007088905 | Aug 2007 | JP |
04-194660 | Dec 2008 | JP |
WO 2008085052 | Jul 2008 | NL |
WO 8001389 | Jul 1980 | WO |
137975 | Apr 1985 | WO |
WO 8504089 | Sep 1985 | WO |
WO8605966 | Oct 1986 | WO |
WO 8607632 | Dec 1986 | WO |
WO 9109139 | Jun 1991 | WO |
WO9203099 | Mar 1992 | WO |
WO9206971 | Apr 1992 | WO |
WO9207263 | Apr 1992 | WO |
WO9207468 | May 1992 | WO |
WO9300044 | Jan 1993 | WO |
WO 9302720 | Feb 1993 | WO |
WO 9306979 | Apr 1993 | WO |
WO9309723 | May 1993 | WO |
WO 9312726 | Jul 1993 | WO |
WO 9325898 | Dec 1993 | WO |
WO 9427140 | Nov 1994 | WO |
WO 9429703 | Dec 1994 | WO |
WO 9429704 | Dec 1994 | WO |
WO 9429731 | Dec 1994 | WO |
WO 9500662 | Jan 1995 | WO |
WO 9506240 | Mar 1995 | WO |
WO 9510223 | Apr 1995 | WO |
WO9512583 | May 1995 | WO |
WO 9522597 | Aug 1995 | WO |
WO9614799 | May 1996 | WO |
WO 9630431 | Oct 1996 | WO |
WO9637148 | Nov 1996 | WO |
WO 9702359 | Jan 1997 | WO |
WO 9702487 | Jan 1997 | WO |
WO 9711883 | Apr 1997 | WO |
WO 9718464 | May 1997 | WO |
WO9728741 | Aug 1997 | WO |
WO 9730344 | Aug 1997 | WO |
WO 9742882 | Nov 1997 | WO |
WO 9742888 | Nov 1997 | WO |
WO 9745720 | Dec 1997 | WO |
WO 9803431 | Jan 1998 | WO |
WO9814436 | Apr 1998 | WO |
WO 9819159 | May 1998 | WO |
WO9819609 | May 1998 | WO |
WO 9820332 | May 1998 | WO |
WO 9820348 | May 1998 | WO |
WO9820867 | May 1998 | WO |
WO 9824366 | Jun 1998 | WO |
WO 98 24373 | Jun 1998 | WO |
WO 9835225 | Aug 1998 | WO |
WO9845276 | Oct 1998 | WO |
WO 9903584 | Jan 1999 | WO |
WO 9905966 | Feb 1999 | WO |
WO9907295 | Feb 1999 | WO |
WO 9907431 | Feb 1999 | WO |
WO 9962576 | Mar 1999 | WO |
WO 9917854 | Apr 1999 | WO |
WO 9918532 | Apr 1999 | WO |
WO 9919507 | Apr 1999 | WO |
WO 9919717 | Apr 1999 | WO |
WO 9927483 | Jun 1999 | WO |
WO 9927852 | Jun 1999 | WO |
WO 9913100 | Dec 1999 | WO |
WO 9964580 | Dec 1999 | WO |
WO 0006024 | Feb 2000 | WO |
WO 0009184 | Feb 2000 | WO |
WO 0011578 | Mar 2000 | WO |
WO 0015103 | Mar 2000 | WO |
WO 0017799 | Mar 2000 | WO |
WO 0017800 | Mar 2000 | WO |
WO 0018293 | Apr 2000 | WO |
WO 0019346 | Apr 2000 | WO |
WO 0020626 | Apr 2000 | WO |
WO0029577 | May 2000 | WO |
WO 0030186 | May 2000 | WO |
WO 0032097 | Jun 2000 | WO |
WO 0032098 | Jun 2000 | WO |
WO 0033236 | Jun 2000 | WO |
WO 0039914 | Jul 2000 | WO |
WO 0042422 | Jul 2000 | WO |
WO 0044084 | Jul 2000 | WO |
WO0046854 | Aug 2000 | WO |
WO 0050771 | Aug 2000 | WO |
WO0055915 | Sep 2000 | WO |
WO 0060340 | Oct 2000 | WO |
WO 0064022 | Oct 2000 | WO |
WO 0067245 | Nov 2000 | WO |
WO 0067268 | Nov 2000 | WO |
WO 0072452 | Nov 2000 | WO |
WO 0100090 | Jan 2001 | WO |
WO 0115807 | Mar 2001 | WO |
WO 0116578 | Mar 2001 | WO |
WO 0175433 | Mar 2001 | WO |
WO 0123885 | Apr 2001 | WO |
WO 0125775 | Apr 2001 | WO |
WO 0126813 | Apr 2001 | WO |
WO0129037 | Apr 2001 | WO |
WO 0133216 | May 2001 | WO |
WO 0134029 | May 2001 | WO |
WO 0136955 | May 2001 | WO |
WO 0137174 | May 2001 | WO |
WO 0145014 | Jun 2001 | WO |
WO 0140788 | Jul 2001 | WO |
WO 0157510 | Aug 2001 | WO |
WO 0163271 | Aug 2001 | WO |
WO 0164105 | Sep 2001 | WO |
WO 0166010 | Sep 2001 | WO |
WO 0169505 | Sep 2001 | WO |
WO-0166010 | Sep 2001 | WO |
WO 0172220 | Oct 2001 | WO |
WO 0172225 | Oct 2001 | WO |
WO 0173124 | Oct 2001 | WO |
WO 0173395 | Oct 2001 | WO |
WO 0189691 | Nov 2001 | WO |
WO 0191634 | Dec 2001 | WO |
WO 0195806 | Dec 2001 | WO |
WO 0200101 | Jan 2002 | WO |
WO 0202796 | Jan 2002 | WO |
WO 0208750 | Jan 2002 | WO |
WO 0208753 | Jan 2002 | WO |
WO 0208950 | Jan 2002 | WO |
WO 0218940 | Mar 2002 | WO |
WO 0221317 | Mar 2002 | WO |
WO 0225551 | Mar 2002 | WO |
WO 0232559 | Apr 2002 | WO |
WO 0241227 | May 2002 | WO |
WO 0241779 | May 2002 | WO |
WO 0244948 | Jun 2002 | WO |
WO 0249507 | Jun 2002 | WO |
WO0249507 | Jun 2002 | WO |
WO 02056769 | Jul 2002 | WO |
WO 02059734 | Aug 2002 | WO |
WO 02069791 | Sep 2002 | WO |
WO 02077638 | Oct 2002 | WO |
WO 02100251 | Dec 2002 | WO |
WO 02100252 | Dec 2002 | WO |
WO 02100253 | Dec 2002 | WO |
WO 02100254 | Dec 2002 | WO |
WO 02100460 | Dec 2002 | WO |
WO 02100461 | Dec 2002 | WO |
WO 02101343 | Dec 2002 | WO |
WO 02101359 | Dec 2002 | WO |
WO 03000321 | Jan 2003 | WO |
WO 03023389 | Mar 2003 | WO |
WO 03042691 | May 2003 | WO |
WO 03039369 | May 2003 | WO |
WO 03045557 | Jun 2003 | WO |
WO 03046542 | Jun 2003 | WO |
WO 03049609 | Jun 2003 | WO |
WO 03050534 | Jun 2003 | WO |
WO 03066128 | Aug 2003 | WO |
WO 03070099 | Aug 2003 | WO |
WO 03071940 | Sep 2003 | WO |
WO 03082091 | Oct 2003 | WO |
WO 03088824 | Oct 2003 | WO |
WO 03088834 | Oct 2003 | WO |
WO 03088835 | Oct 2003 | WO |
WO 03088851 | Oct 2003 | WO |
WO 03094752 | Nov 2003 | WO |
WO 03101297 | Dec 2003 | WO |
WO 2004008130 | Jan 2004 | WO |
WO 2004022133 | Mar 2004 | WO |
WO-2004017964 | Mar 2004 | WO |
WO 2004026130 | Apr 2004 | WO |
WO 2004040285 | May 2004 | WO |
WO 2004040287 | May 2004 | WO |
WO 2004040948 | May 2004 | WO |
WO 2004041082 | May 2004 | WO |
WO 2004045375 | Jun 2004 | WO |
WO 2004054455 | Jul 2004 | WO |
WO 2004060174 | Jul 2004 | WO |
WO 2004060446 | Jul 2004 | WO |
WO 2004091693 | Oct 2004 | WO |
WO 2004098405 | Nov 2004 | WO |
WO 2004003147 | Dec 2004 | WO |
WO 2004107964 | Dec 2004 | WO |
WO 2004107975 | Dec 2004 | WO |
WO 2004112602 | Dec 2004 | WO |
WO 2004112612 | Dec 2004 | WO |
WO-2004103147 | Dec 2004 | WO |
WO 2005001418 | Jan 2005 | WO |
WO 2005006939 | Jan 2005 | WO |
WO 2005011774 | Feb 2005 | WO |
WO 2005013824 | Feb 2005 | WO |
WO 2005016125 | Feb 2005 | WO |
WO 2005018425 | Mar 2005 | WO |
WO 2005018430 | Mar 2005 | WO |
WO 2005018454 | Mar 2005 | WO |
WO 2005018709 | Mar 2005 | WO |
WO 2005018710 | Mar 2005 | WO |
WO 2005018711 | Mar 2005 | WO |
WO 2005022143 | Mar 2005 | WO |
WO 2005023088 | Mar 2005 | WO |
WO 2005033659 | Apr 2005 | WO |
WO 2005034720 | Apr 2005 | WO |
WO 2005034721 | Apr 2005 | WO |
WO 2005034741 | Apr 2005 | WO |
WO 2005034778 | Apr 2005 | WO |
WO 2005035017 | Apr 2005 | WO |
WO 2005035018 | Apr 2005 | WO |
WO 2005037095 | Apr 2005 | WO |
WO 2005046477 | May 2005 | WO |
WO 2005065399 | Jul 2005 | WO |
WO 2005065414 | Jul 2005 | WO |
WO 2005065415 | Jul 2005 | WO |
WO 2005072604 | Aug 2005 | WO |
WO2005084546 | Sep 2005 | WO |
WO 2005084557 | Sep 2005 | WO |
WO 2005104948 | Nov 2005 | WO |
WO 2005114185 | Dec 2005 | WO |
WO 2005116622 | Dec 2005 | WO |
WO 2005119234 | Dec 2005 | WO |
WO 2005120197 | Dec 2005 | WO |
WO 2005120199 | Dec 2005 | WO |
WO 2005120365 | Dec 2005 | WO |
WO 2005121759 | Dec 2005 | WO |
WO 2006001797 | Jan 2006 | WO |
WO 2006001973 | Jan 2006 | WO |
WO 2006005545 | Jan 2006 | WO |
WO-2006005545 | Jan 2006 | WO |
WO 2006011062 | Feb 2006 | WO |
WO 2006013045 | Feb 2006 | WO |
WO 2006015615 | Feb 2006 | WO |
WO 2006027702 | Mar 2006 | WO |
WO 2006031920 | Mar 2006 | WO |
WO 2006032391 | Mar 2006 | WO |
1643908 | Apr 2006 | WO |
WO 2006072004 | Jul 2006 | WO |
WO 2006105146 | Oct 2006 | WO |
WO 2006116441 | Nov 2006 | WO |
WO 2007025635 | Mar 2007 | WO |
WO 2007044834 | Apr 2007 | WO |
WO 2007054335 | May 2007 | WO |
WO 2007070719 | Jun 2007 | WO |
WO 2007084367 | Jul 2007 | WO |
WO 2007106470 | Sep 2007 | WO |
WO 2007119900 | Oct 2007 | WO |
WO 2008112268 | Sep 2008 | WO |
WO 2008112279 | Sep 2008 | WO |
WO-2008112268 | Sep 2008 | WO |
WO-2008112279 | Sep 2008 | WO |
Entry |
---|
G. Jarzabek, Z. Borkowska, On the Real Surface Area of Smooth Solid Electrodes, 1997, Electrochimica Acta, vol. 42, No. 19, pp. 2915-2918. |
Wolfbeis et al. (Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background, Biosensors & Bioelectronics 15 (2000) pp. 69-76). |
Machine translation of DE 10053974 pp. 1-4, provided by epo.org. |
A. Bott, W. Heineman, Chronocoulometry, Current Separations, 2004, 20, pp. 121. |
Number | Date | Country | |
---|---|---|---|
20120264204 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
60437184 | Dec 2002 | US | |
60437185 | Dec 2002 | US | |
60437186 | Dec 2002 | US | |
60437191 | Dec 2002 | US | |
60437192 | Dec 2002 | US | |
60437312 | Dec 2002 | US | |
60437323 | Dec 2002 | US | |
60437333 | Dec 2002 | US | |
60437334 | Dec 2002 | US | |
60437335 | Dec 2002 | US | |
60437336 | Dec 2002 | US | |
60437337 | Dec 2002 | US | |
60437340 | Dec 2002 | US | |
60437341 | Dec 2002 | US | |
60437342 | Dec 2002 | US | |
60437343 | Dec 2002 | US | |
60437345 | Dec 2002 | US | |
60437346 | Dec 2002 | US | |
60437347 | Dec 2002 | US | |
60437386 | Dec 2002 | US | |
60437454 | Dec 2002 | US | |
60437455 | Dec 2002 | US | |
60437510 | Dec 2002 | US | |
60437514 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10541124 | US | |
Child | 13532927 | US |