Method and apparatus using volume holographic wavelength blockers

Information

  • Patent Grant
  • 8184285
  • Patent Number
    8,184,285
  • Date Filed
    Thursday, June 9, 2011
    13 years ago
  • Date Issued
    Tuesday, May 22, 2012
    12 years ago
Abstract
The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm−1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating spurious multiple diffractions that degrade the filter performance. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a method and apparatus for fabricating and using volume holographic wavelength blockers of high optical density and narrow bandwidth. Wavelength blockers are used to attenuate the signal of a pump source, such as lasers, while letting a scattering signal such as, but not limited to, fluorescence or Raman to go through. Thick reflective volume holographic elements (>typ. 0.1 mm thickness) have narrow rejection band but have limited attenuation of the order of optical density of 1 to 2. It is desirable to have a narrow spectral band rejection in conjunction with high attenuation reaching at least an optical density 6 for Raman spectroscopy for example.


Portions of the disclosure of this patent document contain material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office file or records, but otherwise reserves all copyright rights whatsoever.


2. Background Art


Wavelength blockers, also called notch rejection filters, are an essential component in Raman and fluorescence instruments. The purpose of the wavelength blocker is to greatly attenuate the backscattered light from the laser illuminating a sample under test, while letting the faint Raman spectrally shifted signature pass through. Two non-dispersive filter technologies are currently used for the wavelength blocker: holographic and thin film. Commercial holographic notch filter technology uses holographic recording in a thin film of dichromated gelatin to produce a notch filter with 3 dB bandwidth of 350 cm−1 and optical density of 6. Commercial thin film technology uses deposition of many layers to obtain a 3 dB bandwidth of approximately 600 cm−1 and optical density of 6. Both technologies provide a compact size wavelength blocker element with a 10 mm aperture diameter and several millimeters thickness. However, both notch filter technologies are limited to observing Raman spectral shift above approximately 350 cm−1.


The Raman signal in the low frequency shift region, i.e., near the frequency of the excitation laser, contains critical information about the molecular structure. For example, carbon nanotubes exhibit vibration modes in the range of 150 cm−1 to 200 cm−1 depending on their size. Relaxation in liquids, solutions and biological samples exhibit Raman shift in the range between 0 and 400 cm−1. U.S. Pat. Nos. 5,684,611 and 5,691,989 describe the use of reflective volume holographic filters (VHG) with millimeters thickness as filters producing 3 dB bandwidth of the order of 10 cm−1. VHGs produced in a glass material are now commercially available and show long lifetime, high efficiency and excellent transmission in the red and near infrared. The photosensitive glass can contain, for example, silicon oxide, aluminum oxide and zinc oxide, fluorine, silver, chlorine, bromine and iodine, cerium oxide. Composition and processes for manufacturing the photosensitive glass are described in U.S. Pat. No. 4,057,408, the disclosure of which is incorporated herein by reference. Large area (30×30 mm) reflective VHGs are restricted to the millimeter range thickness due to the material absorption. The optical density (O.D) achievable is therefore limited to O.D near unity (i.e., ˜90% efficiency) with thickness of 1.5 mm and transmission of 97 to 98% away from the notch in the near infrared.


By carefully individually aligning a cascade of VHGs, researchers have shown that the optical density can be added up: a cascade of 4 VHGs with each exhibiting an optical density of one yields a compounded notch with an optical density of 4. Commercial instruments comprising individual alignment fixtures for each VHG exhibit an optical density ranging from 4 to 6 with bandwidth of 10 cm−1. However, there are several drawbacks to this approach:


1. The alignment procedure is complicated and required for each VHG separately.


2. The footprint is large (˜100 cm3) and as such not suitable to replace standard notch filters in existing Raman instruments.


3. The surface of each VHG contributes to Fresnel reflection loss.


4. Upon rotation of the assembly, the individual VHGs spectrally shift at different rates, thus reducing severely the optical density and broadening the overall blocker bandwidth.


The technology utilized to observe the Raman signal close to the laser excitation (>9 cm−1) is based on cascading dispersive spectrometers. The cascaded spectrometers are bulky (˜1 m2), expensive (˜$100K) and of moderate transmission (˜50%).


SUMMARY OF THE INVENTION

The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker to overcome all the limitations outlined above. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm−1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating the spurious multiple diffractions that yield unacceptable rejection ratios. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1: Grating wave vector representation of four slanted reflective VHBF diffracting the same wavelength.



FIG. 2A, 2B: Illustration of stacked reflective VHBF assembly.



FIG. 3: Illustration for tuning the Bragg wavelength of each VHG in the VHBF assembly.



FIG. 4: Plot of a typical angular selectivity of one VHG in the VHBF stack.



FIG. 5A, 5B: Spectral response of a VHBF assembly showing addition of optical densities.



FIG. 6A, 6B: Plot showing wavelength tuning of the VHBF assembly and spectral transmission between 700 and 1000 nm.



FIG. 7A, 7B: Illustration of an ASE filtered laser source and a plot of an ASE suppressed laser diode spectrum.



FIG. 8: Plot showing the optical density of 6 achieved with a VHBF assembly of 6 VHGs.



FIG. 9: Illustration of a feedback loop for the keep the VHBF assembly aligned to the laser frequency for maintaining maximum optical density.



FIG. 10: Illustration of a Raman apparatus using a VHBF assembly and an ASE suppressed laser excitation source.



FIG. 11: Illustration of a Raman spectrometer incorporating the ASE function, the blocker function, the dichroic filter function in one glass holographic wafer.



FIG. 12: Same as FIG. 11, except that the laser is incorporated in the doped holographic wafer.





DETAILED DESCRIPTION OF THE INVENTION

In the following description of the present invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.


The notch wavelength λB of a reflective VHG is characterized by the grating period Λ and the angle of incidence Θ of the collimated illumination on the grating planes:

λBo·cos(Θ),  (1)

where λo=2·n·Λ is the anti-parallel diffraction wavelength where n the index of refraction.


Identical reflection VHGs, i.e., VHGs characterized by the same grating period Λ and incidence angle Θ cannot simply be stacked since the diffracted beams will fulfill the Bragg condition for other VHGs in the stack. Double diffraction on individual VHGs will cause interference effects and prevent the optical density values to be simply added.


However, by varying the grating slant (the angle between the grating vector and the VHG surface normal) and the grating spacing, Λ of each individual VHG in such a way that the same wavelength fulfills the Bragg condition for each VHG, the diffracted light from subsequent VHGs does not full fill the Bragg condition on any other grating. FIG. 1 illustrates an embodiment of the construction for a stack of four VHGs. The incident light beam 100 is represented in grating vector space. The grating vectors 110, 120, 130 and 140 each have a specific direction and amplitude and are represented in one plane for simplicity of the explanation. The diffracted beams 112, 122, 132 and 142, corresponding respectively to the four slanted VHGs, diffract the same wavelength but propagate in different directions given respectively by the angles 115, 125, 135 and 145 and thus the diffracted beams do not interfere or re-diffract with the other gratings.


In one embodiment, each VHG may be physically separated, for example, but not limited to spacers as FIG. 2A illustrates. In another embodiment, each VHG may be physically contacted for example, but limited to, with an index matching epoxy as FIG. 2B illustrates. The invention is not limited to stacking three VHGs but rather the drawing in FIGS. 2A and 2B uses three VHBFs for simplicity. The number of VHGs comprising a VHBF is limited by the total transmission achievable.


For the following analysis, we will assume that the collimated incident beam wave vector outside the material is parallel to the z-axis as FIG. 3 illustrates. The incident collimated beam 311 propagates in the direction of the z-axis: {right arrow over (k)}air=kair{right arrow over (e)}z. We will allow a grating slant φ (angle between grating vector and surface normal) only in the x-z plane. We assume that the illumination is of single frequency. The laser wavelength is chosen slightly below the normal incidence wavelength of each VHG in the stack.


Following the illustration in FIG. 3, the first VHG is positioned with its grating vector {right arrow over (K)} (310) in the x-z plane and rotated around the x-axis to fulfill the Bragg condition according to equation (1). The facet normal of the first VHG defines the incidence angle ΘM of the entire stack with respect to the collimated illumination direction {right arrow over (k)}air. The orientation of the facet normal of subsequent VHGs with respect to the incident beam, i.e., ΘM are collinear with each other since we assume the VHG in the stack are in mechanical contact.


For the subsequent VHGs after the first one, fine wavelength tuning is achieved by rotating the VHG around its surface normal, the only degree of freedom left, by an angle ω.


Using Snell's law, the incident beam wave vector in the material is:











k
->

=



k


(



0





-

sin
(






Θ
x

-

Θ
M


)







cos


(


Θ
x

-

Θ
M


)





)







with






Θ
M


=


a

sin



(


sin


(

Θ
x

)


/
n

)




,




(
2
)








where Θx−ΘM is the angle between z-axis and {right arrow over (k)} and ΘM the angle between surface normal and {right arrow over (k)} measured inside the medium. After rotation of the VHG around the x-axis by an angle Θx, and around the surface normal by angle ω, the VHG's grating vector {right arrow over (K)} is:










K
->

=


K


(





cos


(
ω
)




sin


(
ϕ
)










cos


(

Θ
x

)




sin


(
ω
)




sin


(
ϕ
)



-


sin


(

Θ
x

)




cos


(
ϕ
)











sin


(

Θ
x

)




sin


(
ω
)




sin


(
ϕ
)



+


cos


(

Θ
x

)




cos


(
ϕ
)







)


.





(
3
)







Using cos(Θ)={right arrow over (k)}·{right arrow over (K)}/(kK) and equation (3), we find the notch wavelength λB as a function of the angles ω and ΘM:

λB0 cos(φ)(cos(ΘM)+sin(ΘM)sin(ω)tan(φ)).  (4)


From equation (4), we observe that individual VHGs can be Bragg-matched to the required notch wavelength by adjusting the rotation angles ωi for each grating i=2, . . . , N. The fine wavelength tuning is only possible when ΘM, φi>0.


A typical angular selectivity curve for an individual VHG is given in FIG. 4. The angular 3 dB bandwidth is 0.4 degrees. In another embodiment, the slant angle of each VHG is chosen such that the diffracted beams do not satisfy the Bragg condition for all other VHGs. From the measurement shown in FIG. 4, a value of at least 1 degree for the slant angle has been selected to satisfy that condition.


The rejection ratio of the VHBF assembly is the compounded rejection of each VHG in the stack when the alignment procedure outlined in the embodiments above is followed. This is justified because there are no coherent effects between the diffracted beams with the arrangement of the grating wave vector of each VHG described above. An example of spectral response of the notch filter with the VHBF assembly of one and three individual VHBF is shown respectively in FIGS. 5A and 5B.


We prepared six individual reflection VHGs with thickness of 1.6 mm and diffraction efficiencies near 90% (corresponding to optical density near unity). Anti-parallel diffraction wavelength and slant angles are given in table 1.


In one embodiment, each of the successive five VHGs is brought into direct mechanical contact to the previous VHG. After alignment, individual gratings are secured to the stack by an index matching epoxy. This procedure ensures that the internal incident angle ΘM is the same for every grating in the stack. Only the rotation angle ωi is used to fine tune the Bragg wavelength.


The laser used for the alignment is a wavelength locked semi-conductor laser diode at 785.0 nm, which is subsequently ASE filtered by a slanted reflection VHG. Grating #1 is aligned for Bragg diffraction with ω1≈0 and ΘM=2.7 deg.









TABLE 1







Measured anti-parallel diffraction wavelength λo,i , slant angle φi


and peak diffraction efficiency η for 6 gratings. Also given


is the normal incidence wavelength λo,i cos(φi), which determines the


tuning range of the final stack. The average normal incidence


wavelength λo,i cos(φi) is (785.84 ± 0.069) nm.











VHG #
λo,i [nm]
φi [deg]
λo,i cos(φi) [nm]
η [%]





1
785.96
+0.94
785.85
93


2
786.04
−1.02
785.92
92


3
786.10
+1.50
785.83
95


4
786.18
−1.50
785.91
91


5
786.32
+2.02
785.83
92


6
786.20
−1.99
785.73
91









Now, let's determine what happens when the stack of bonded VHGs is wavelength tuned.


In another embodiment, wavelength tuning is performed by varying the incident angle from the initial alignment angle ΘM to a new incident angle ΘM+ΔΘM. For all VHGs in the stack, the new notch wavelength will vary according to equation (4) and the difference in wavelength between any two gratings can be computed to be:









Δλ
=


(



λ

o
,
1




cos


(

ϕ
1

)



-


λ

o
,
2




cos


(

ϕ
2

)




)





sin


(

ΔΘ
M

)



sin


(

Θ
M

)



.






(
5
)







Note that the wavelength shift between any two gratings does not depend on the rotation terms ωi. This is due to the constraint that at the alignment angle ΘM of the stack, the wavelength shift Δλ is equal to zero.


Table 1 gives a standard deviation of 0.069 nm for the quantity (λo,i cos(φi)−λo,j cos(φj)).


The stack of six VHGs was aligned at a value for ΘM of 2.7 degrees and tuned by ΔΘM of 11.4 degrees (these are values inside the material of index n=1.5). According to equation 5, we expect to observe a broadening of the overall bandwidth by 0.29 nm. The experimental result is shown in FIG. 6A. As expected, the 6-stack wavelength blocker maintains a single transmission notch at all tuning angles. The measured spectral bandwidth broadening is half the computed value (0.14 nm vs. 0.29 nm).


Light transmission of the six-stack wavelength blocker is measured by a CARY 500 spectrometer. The transmission measurement in FIG. 6B shows that the 9.6 mm thick filter stack (6 times 1.6 mm) transmits greater than 80% of the incident light outside the notch. The first and last VHG facets are without anti-reflection (AR) coatings. An additional 8% transmission could be gained by adding an AR coating to the outside facet of the first and last VHG in the stack.


In another embodiment, the Raman excitation laser light source is a laser whose amplified spontaneous emission is filtered as illustrated in FIG. 7 A. A laser light source 700 is collimated by collimating assembly 710. A slanted reflective VHG 720 is positioned to receive the collimated beam. The diffracted beam 730 is the ASE filtered beam. The specularly reflected light beam 740 is propagating in a different direction. In other embodiments, more than one ASE filter can be used to further reduce the ASE content of the laser.



FIG. 7B shows the spectrum of the unfiltered and filtered laser diode measured with an ANDO double spectrometer with 0.05 nm resolution. We observe that the ASE of the original laser diode is drastically reduced. The spectrometer distorts and broadens the actual ASE filtered spectrum due to stray light inside the spectrometer. The optical density of the fabricated stack is measured at 780.7 nm with an ASE filtered single frequency laser light source.


The collimated light beam of dimension 1 mm×2 mm is incident on the wavelength blocker. The transmitted light is fiber coupled to a multimode fiber and sent to the spectrometer. The result is shown in FIG. 8. An attenuation of the laser power of 60 dB, corresponding to an optical density of 6, is achieved. The stack was assembled at a wavelength of 785.1 nm. We have shown that after tuning the stack by 5 nm, an optical density of 6 was maintained.


Another embodiment in the invention is a means to angularly tune the VHBF assembly so that the Bragg wavelength of the VHBF always tracks the wavelength of the excitation laser in order to obtain maximum optical density (maximum rejection of the excitation light). An example of a tuning mechanism consists of positioning the VHBF on a rotation stage and rotating the stage. A detector is added to receive a portion of the attenuated pump after the VHBF assembly. The signal can be used as feedback to the tuning mechanism. FIG. 9 illustrates the tuning and feedback mechanism. The VHBF 905 is placed on the rotation stage 910. The collimated signal 900 is incident on the VHBF 905. A fraction of the transmitted beam 930 is deflected by the beam-splitter 925 and directed to a photodetector 920. The electrical signal is processed by a computer or microprocessor 915 and a feedback signal is sent to the rotation stage to minimize to photodetected power.


Another embodiment is an apparatus that uses the VHBF assembly of the embodiments above as illustrated by FIG. 10. A laser source 1003 is collimated and ASE filtered by the assembly 1004. The ASE filtered beam 1005 is reflected by a dichroic beam-splitter 1010 towards a lens assembly 1000 that focuses the laser beam onto a sample under examination. The dichroic beam-splitter 1010 reflects the laser beam and is transparent to other wavelength. In yet another embodiment, the dichroic beam-splitter 1010 may be a reflective or transmissive VHG or any other type of narrowband filter. The signal beam generated from the sample as a result of the excitation laser beam (fluorescence, Raman) as well as the backscattering of the laser is recollimated by the same lens assembly 1000. The signal is transmitted through the dichroic beam-splitter 1010 and incident on the VHBF assembly 1015 that may also include the tuning assembly disclosed in the embodiment above. Further spatial beam filters may be incorporated in the path of the signal beam to perform a confocal system. After the VHBF assembly, the laser light is rejected and the Raman, fluorescence or any other signal generated by the excitation laser impinges on a dispersive element 1025 such as, but not limited to, a diffraction grating. The spectrally dispersed signal is then received by an array of photodector 1020. The array of photodetectors can be one or two dimensional.


In another embodiment, many of the discrete functions that comprise a standard Raman or fluorescence system, such as laser, ASE filtering, dichroic beam-splitters and wavelength blocker are integrated in a single holographic glass wafer. FIG. 11 illustrates the embodiment. A laser diode 1100 is collimated to produce collimated beam 1115 which is directed to the entrance facet of a holographic glass wafer 1110. A grating 1120, recorded holographically using a transmission geometry, filters the collimated beam 1115 and directs it to an identical grating 1130, also recorded holographically using a transmission geometry. The role of the grating 1130 is of an ASE filter and dichroic beam-splitter. The ASE filtered beam is then brought to a focus by a lens assembly 1150. The wavelength blocker is a cascade of VHGs 1140 whose grating vector amplitude and direction are designed to diffract the same wavelength. The VHGs 1140 are recorded holographically with the transmission geometry. The wavelength blocker attenuates the backscattered laser excitation light. The dimension of the holographic wafer is approximately 10 mm by 15 mm and comprises three distinct functions: ASE filtering, dichroic beam-splitter and wavelength blocker.


After the wavelength blocker, a lens assembly 1150 is used in conjunction with an aperture 1160 to perform confocal measurements. The lens assembly 1150 can be, but is not limited to, a cylindrical lens. A compact spectrometer is built in one glass block, which has a cylindrical surface 1161 to collimated the signal to direct it to a dispersive grating 1162. The spectrally dispersed signal is then capture by an array of photodetectors 1163.


In another embodiment illustrated in FIG. 12, the laser 1200 is used to pump a doped glass region 1210 (for example, but not limited to, Neodymium) which is surrounded by two holographically written reflective VHGs 1205 and 1215 that serve as resonators to amplify the doped glass region and provide laser light.

Claims
  • 1. A volume holographic wavelength blocking filter assembly comprising: a plurality of reflective volume holographic gratings having a cumulative optical density of at least two, each reflective volume holographic grating having a distinct slant angle; anda distinct grating spacing,wherein the plurality of reflective volume holographic gratings produce a filtered optical signal when disposed in a path of an optical signal.
  • 2. The volume holographic wavelength blocking filter assembly of claim 1, wherein the optical signal is a Raman signal.
  • 3. The volume holographic wavelength blocking filter assembly of claim 1, wherein the plurality of reflective volume holographic gratings have a cumulative optical density of at least four at the Bragg wavelength.
  • 4. The volume holographic wavelength blocking filter assembly of claim 1, wherein at least two of the reflective volume holographic gratings are bonded with an index matching epoxy.
  • 5. The volume holographic wavelength blocking filter assembly of claim 1, wherein at least two of the reflective volume holographic gratings are secured to each other at their edges and have an index matching fluid between the gratings.
  • 6. The volume holographic wavelength blocking filter assembly of claim 1, wherein at least two of the reflective volume holographic gratings are secured to each other via optical contacting.
  • 7. The volume holographic wavelength blocking filter assembly of claim 1, wherein at least two of the reflective volume holographic gratings have index matched optical coatings and are secured to each other at their edges.
  • 8. The volume holographic wavelength blocking filter assembly of claim 1, wherein at least two of the reflective volume holographic gratings are separated by spacers and are secured to each other at their edges.
  • 9. The volume holographic wavelength blocking filter assembly of claim 1, wherein at least two of the reflective volume holographic gratings are coated with an anti-reflection material.
  • 10. The volume holographic wavelength blocking filter assembly of claim 1, wherein the product of the cosine of the slant angle and the grating spacing for each reflective volume holographic grating forming the stack is substantially equal to each of the other products.
  • 11. The volume holographic wavelength blocking filter assembly of claim 1, wherein each reflective volume holographic grating is successively aligned by a first rotation of a common angle with respect to a collimated single frequency laser beam and a second rotation around the surface normal of each reflective volume holographic grating by an angle to maximize the optical density at the common Bragg wavelength.
  • 12. The volume holographic wavelength blocking filter assembly of claim 1, wherein the slant angle and the grating spacing is measured for each volume holographic grating, each volume holographic gratings being passively aligned.
  • 13. The volume holographic wavelength blocking filter assembly of claim 1, wherein the blocking wavelength is tuned by rotation.
  • 14. The volume holographic wavelength blocking filter assembly of claim 1, wherein the blocking wavelength is at least partially tuned by temperature.
  • 15. The volume holographic wavelength blocking filter assembly of claim 1, wherein the holographic material is made of photosensitive glass.
  • 16. The volume holographic wavelength blocking filter assembly of claim 15, wherein the photosensitive glass comprises at least one compound selected from the group consisting of silicon oxide, aluminum oxide, and zinc oxide.
  • 17. The volume holographic wavelength blocking filter assembly of claim 16, wherein the photosensitive glass further comprises an alkali oxide, fluorine, silver and at least one compound selected from the group consisting of chlorine, bromine, and iodine.
  • 18. The volume holographic wavelength blocking filter assembly of claim 16, wherein the photosensitive glass further comprises cerium oxide.
  • 19. The volume holographic wavelength blocking filter assembly of claim 1, wherein the entire filter assembly forms a compact device that is used in a handheld device that is easily transportable.
  • 20. The volume holographic wavelength blocking filter assembly of claim 1, wherein the entire filter assembly is formed on a single photosensitive glass wafer to form a compact device that is used in a handheld device that is easily transportable.
  • 21. An apparatus for Raman spectroscopy, the apparatus comprising: a laser, an output of the laser being directed toward physical matter to cause Raman scattering, thereby producing a Raman signal;a plurality of reflective volume holographic gratings having a cumulative optical density of at least two, each reflective volume holographic grating having a distinct slant angle; anda distinct grating spacing,wherein the plurality of reflective volume holographic gratings produces a filtered Raman signal when disposed in a path of a Raman signal;the apparatus further comprising an optical spectrometer disposed in a path of the Raman signal to measure a spectrum of the Raman signal and to generate a detection signal; anda microprocessor to receive the detection signal to determine properties of the physical matter.
  • 22. The apparatus of claim 21, further comprising: a beam-splitter positioned in the path of the filtered Raman signal to sample a portion of the beam; anda photodetector, wherein the sampled portion of the beam is detected by the photodetector to generate a signal to create a feedback mechanism to tune the laser wavelength to maximize the optical density at the Rayleigh wavelength.
  • 23. The apparatus of claim 21, further comprising a filter assembly positioned in the path of the laser that removes at least amplified spontaneous emission from the laser output.
  • 24. The apparatus of claim 23, wherein the filter assembly comprises one or more volume holographic gratings.
  • 25. The apparatus of claim 21, wherein the blocking wavelength is tuned by rotation.
  • 26. The apparatus of claim 21, wherein the blocking wavelength is at least partially tuned by temperature.
  • 27. The apparatus of claim 21, further comprising a fiber optic cable to deliver the signal to the spectrometer.
  • 28. The apparatus of claim 21, wherein the entire filter assembly is formed on a single photosensitive glass wafer to form a compact device that is handheld and easily transportable.
  • 29. The apparatus of claim 28, wherein the laser is also mounted on the single photosensitive glass wafer.
  • 30. The apparatus of claim 21, wherein a volume holographic grating is used as a dichroic beam-splitter to reflecting the main laser line and transmit other spectral components.
  • 31. The apparatus of claim 21, wherein a volume holographic grating is used to: direct more than 50% of the laser light toward the sample;divert ASE light or parasitic longitudinal modes away from the sample;divert more that 50% of the Rayleigh scattered light away from the detection system; andtransmit the Raman scattered light toward the detection system.
CROSS-REFERENCE TO RELATED APPLICATION

The present patent application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 12/315,470 filed Dec. 3, 2008, which claims the priority benefit of U.S. provisional patent application No. 61/137,871 filed on Aug. 4, 2008, the disclosures of which are incorporated by reference herein in their entirety.

US Referenced Citations (168)
Number Name Date Kind
3588254 Rhoades Jun 1971 A
3588738 Goodwin Jun 1971 A
3659947 Neumann May 1972 A
3902135 Terada Aug 1975 A
4017144 Staebler Apr 1977 A
4057408 Pierson Nov 1977 A
4103254 Chikami Jul 1978 A
4181515 Dyott Jan 1980 A
4456328 Arns Jun 1984 A
4794344 Johnson Dec 1988 A
4807950 Glenn Feb 1989 A
4824193 Maeda Apr 1989 A
4942583 Nazarathy Jul 1990 A
5042898 Morey Aug 1991 A
5107365 Ota Apr 1992 A
5221957 Jannson Jun 1993 A
5315417 Moss et al. May 1994 A
5335098 Leyva Aug 1994 A
5388173 Glenn Feb 1995 A
5432623 Egan Jul 1995 A
5440669 Rakuljic Aug 1995 A
5491570 Rakuljic Feb 1996 A
5517525 Endo May 1996 A
5594744 Lefevre Jan 1997 A
5625453 Matsumoto Apr 1997 A
5636304 Mizrahi Jun 1997 A
5640256 De Vre Jun 1997 A
5657121 Nishina Aug 1997 A
5684611 Rakuljic Nov 1997 A
5691989 Rakuljic Nov 1997 A
5771250 Shigehara Jun 1998 A
5796096 Rakuljic Aug 1998 A
5844700 Jeganathan Dec 1998 A
5917648 Harker Jun 1999 A
5943128 Slater Aug 1999 A
5960133 Tomlinson Sep 1999 A
5966391 Zediker Oct 1999 A
6049554 Lang Apr 2000 A
6100975 Smith Aug 2000 A
6101301 Engelberth Aug 2000 A
6139146 Zhang Oct 2000 A
6147341 Lemaire Nov 2000 A
6169829 Laming Jan 2001 B1
6192062 Sanchez-Rubio Feb 2001 B1
6211976 Popovich Apr 2001 B1
6221535 Cox Apr 2001 B1
6226084 Tormod May 2001 B1
6249624 Putnam Jun 2001 B1
6281974 Scheiner et al. Aug 2001 B1
6304687 Inoue Oct 2001 B1
6327283 Hung Dec 2001 B1
6327292 Sanchez-Rubio Dec 2001 B1
6339609 Lefevre Jan 2002 B2
6356684 Patterson Mar 2002 B1
6363187 Fells Mar 2002 B1
6370310 Jin Apr 2002 B1
6396982 Lin May 2002 B1
6414973 Hwu Jul 2002 B1
6449097 Zhu Sep 2002 B1
6498872 Bouevitch Dec 2002 B2
6498891 Montesanto Dec 2002 B1
6507693 Maron Jan 2003 B2
6512618 Heflinger Jan 2003 B1
6568220 Paek May 2003 B1
6586141 Efimov Jul 2003 B1
6587180 Wang Jul 2003 B2
6606152 Littau Aug 2003 B2
6621957 Sullivan Sep 2003 B1
6628862 Yao Sep 2003 B1
6670079 Kitamura Dec 2003 B1
6673497 Efimov Jan 2004 B2
6714309 May Mar 2004 B2
6750996 Jagt Jun 2004 B2
6768577 Namiki Jul 2004 B2
6788849 Pawluczyk Sep 2004 B1
6822218 Helmig et al. Nov 2004 B2
6828262 Borrelli Dec 2004 B2
6829067 Psaltis Dec 2004 B2
6844946 Buse Jan 2005 B2
6847763 Eggleton Jan 2005 B2
6879441 Mossberg Apr 2005 B1
6904200 Wang Jun 2005 B2
6934060 Psaltis Aug 2005 B2
6987907 Psaltis Jan 2006 B2
6992805 Ingwall Jan 2006 B2
7002697 Domash Feb 2006 B2
7031573 Volodin Apr 2006 B2
7081977 Kim Jul 2006 B2
7081978 Chen Jul 2006 B2
7125632 Volodin Oct 2006 B2
7136206 Psaltis Nov 2006 B2
7173950 Hand Feb 2007 B2
7212554 Zucker May 2007 B2
7245369 Wang Jul 2007 B2
7245407 Komma Jul 2007 B2
7248617 Volodin Jul 2007 B2
7248618 Volodin Jul 2007 B2
7273683 Volodin Sep 2007 B2
7298771 Volodin Nov 2007 B2
7355768 Billmers Apr 2008 B1
7359046 Steckman Apr 2008 B1
7359420 Shchegrov Apr 2008 B2
7372565 Holden et al. May 2008 B1
7391703 Volodin Jun 2008 B2
7397837 Volodin Jul 2008 B2
7477818 Volodin Jan 2009 B2
7483190 Psaltis Jan 2009 B2
7528385 Volodin May 2009 B2
7542639 Moser Jun 2009 B2
7545844 Volodin Jun 2009 B2
7548313 Nguyen Jun 2009 B2
7570320 Anderson Aug 2009 B1
7590162 Volodin Sep 2009 B2
7605911 Wieloch Oct 2009 B2
7633985 Volodin et al. Dec 2009 B2
7636376 Moser et al. Dec 2009 B2
7639718 Moser et al. Dec 2009 B1
7667882 Adibi Feb 2010 B2
7697589 Volodin et al. Apr 2010 B2
7719675 Grygier May 2010 B2
7746480 Ozcan Jun 2010 B2
7792003 Volodin et al. Sep 2010 B2
7796673 Volodin et al. Sep 2010 B2
7817888 Volodin et al. Oct 2010 B2
7830507 Brady et al. Nov 2010 B2
20010050751 Banyai Dec 2001 A1
20020015376 Liu Feb 2002 A1
20020045104 Efimov Apr 2002 A1
20020093701 Zhang Jul 2002 A1
20020141063 Petrov Oct 2002 A1
20020154315 Myrick Oct 2002 A1
20020181035 Donoghue Dec 2002 A1
20030007202 Moser Jan 2003 A1
20030011833 Yankov Jan 2003 A1
20030072336 Senapati Apr 2003 A1
20030128370 De Lega Jul 2003 A1
20030156607 Lipson Aug 2003 A1
20030169787 Vurgaftman Sep 2003 A1
20030190121 Luo Oct 2003 A1
20030210863 Myers Nov 2003 A1
20030231305 Zeng Dec 2003 A1
20040021920 Psaltis Feb 2004 A1
20040165639 Lang Aug 2004 A1
20040191637 Steckman Sep 2004 A1
20040253751 Salnik Dec 2004 A1
20040258356 Brice Dec 2004 A1
20050018743 Volodin Jan 2005 A1
20050129072 Tayebati Jun 2005 A1
20050206984 Kawano Sep 2005 A1
20050226636 Hiramatsu Oct 2005 A1
20050248819 Hymel Nov 2005 A1
20050248820 Moser Nov 2005 A1
20050270607 Moser Dec 2005 A1
20060029120 Mooradian Feb 2006 A1
20060098258 Chen May 2006 A1
20060114955 Steckman Jun 2006 A1
20060156241 Psaltis Jul 2006 A1
20060251143 Volodin Nov 2006 A1
20060256830 Volodin Nov 2006 A1
20060280209 Treusch Dec 2006 A1
20070047608 Volodin Mar 2007 A1
20070160325 Son Jul 2007 A1
20100027001 Moser Feb 2010 A1
20100103489 Moser Apr 2010 A1
20100110429 Simoni May 2010 A1
20100149647 Figueroa Jun 2010 A1
20110216316 Moser et al. Sep 2011 A1
20110216384 Moser et al. Sep 2011 A1
Foreign Referenced Citations (1)
Number Date Country
4214014 Nov 1992 DE
Related Publications (1)
Number Date Country
20120002197 A1 Jan 2012 US
Provisional Applications (1)
Number Date Country
61137871 Aug 2008 US
Continuations (1)
Number Date Country
Parent 12315470 Dec 2008 US
Child 13157265 US