Particle blast systems utilizing various types of blast media are well known. Systems for entraining cryogenic particles, such as solid carbon dioxide particles, in a transport fluid and for directing the entrained particles toward objects/targets are well known, as are the various component parts associated therewith, such as nozzles, and are shown in U.S. Pat. Nos. 4,744,181, 4,843,770, 5,018,667, 5,050,805, 5,071,289, 5,188,151, 5,249,426, 5,288,028, 5,473,903, 5,520,572, 6,024,304, 6,042,458, 6,346,035, 6,524,172, 6,695,679, 6,695,685, 6,726,549, 6,739,529, 6,824,450, 7,112,120, 7,950,984, 8,187,057, 8,277,288, 8,869,551, 9,095,956, 9,592,586, 9,931,639, 10,315,862 and 10,737,890 all of which and their disclosures are incorporated herein in their entirety by reference.
Additionally, all of the following applications and their disclosures are incorporated herein in their entirety by reference: U.S. patent application Ser. No. 11/853,194, filed Sep. 11, 2007, for Particle Blast System With Synchronized Feeder and Particle Generator US Pub. No. 2009/0093196; U.S. Provisional Patent Application Ser. No. 61/589,551 filed Jan. 23, 2012, for Method And Apparatus For Sizing Carbon Dioxide Particles; U.S. Provisional Patent Application Ser. No. 61/592,313 filed Jan. 30, 2012, for Method And Apparatus For Dispensing Carbon Dioxide Particles; U.S. patent application Ser. No. 13/475,454, filed May 18, 2012, for Method And Apparatus For Forming Carbon Dioxide Pellets; U.S. patent application Ser. No. 14/062,118 filed Oct. 24, 2013 for Apparatus Including At Least An Impeller Or Diverter And For Dispensing Carbon Dioxide Particles And Method Of Use US Pub. No. 2014/0110510; U.S. patent application Ser. No. 14/516,125, filed Oct. 16, 2014, for Method And Apparatus For Forming Solid Carbon Dioxide US Pub. No. 2015/0166350; U.S. patent application Ser. No. 15/297,967, filed Oct. 19, 2016, for Blast Media Comminutor US Pub. No. 2017/0106500; U.S. patent application Ser. No. 15/961,321, filed Apr. 24, 2018 for Particle Blast Apparatus US Pub. No. 2019/0321942; U.S. Provisional Patent Application Ser. No. 62/890,044, filed Aug. 21, 2019, for Particle Blast Apparatus and Method; U.S. patent application Ser. No. 16/999,633, filed Aug. 21, 2020 for Particle Blast Apparatus and Method US Pub. No. 2021/0053187; U.S. Provisional Patent Application Ser. No. 62/955,893, filed Dec. 31, 2019, for Method and Apparatus For Enhanced Blast Stream; U.S. patent application Ser. No. 17/139,292, filed Dec. 31, 2020, for Method and Apparatus For Enhanced Blast Stream, US Pub. No. 2021/0197337; U.S. Provisional Patent Application Ser. No. 63/185,467, filed May 7, 2021, for Method and Apparatus for Forming Solid Carbon Dioxide; and U.S. patent application Ser. No. 17/738,389, filed May 6, 2022, for Method and Apparatus for Forming Solid Carbon Dioxide.
Also well-known are particle blast apparatuses which entrain non-cryogenic blast media, such as but not limited to abrasive blast media. Examples of abrasive blast media include, without limitation, silicon carbide, aluminum oxide, glass beads, crushed glass and plastic. Abrasive blast media can be more aggressive than dry ice media, and its use preferable in some situations.
Mixed media blasting is also known, in which more than one type of media is entrained within a flow which is directed toward a target. In one form of mixed media blasting, dry ice particles and abrasive media are entrained in a single flow and directed toward a target.
Many factors affect the ultimate performance of the flow of entrained particles exiting the blast nozzle of the particle blast system and impacting a target. The kinetic energy of the particles at impact on the target plays a significant role in the efficacy of the flow of entrained particles in achieving a desired result, such as decontaminating various types of surfaces, altering the properties of various type of surfaces or separating constituent parts (e.g., inter alia, removing layers of coatings or contaminants from substrates).
Typical prior art systems which utilize cryogenic particles transport the particles entrained in a flow of transport fluid, typically air. In some systems, the particles are entrained in the flow of transport fluid by a particle feeder, which introduces the particles into the transport fluid, and carried via a delivery hose to a blast nozzle for expulsion therefrom. In these systems, the transport fluid must have sufficient kinetic energy to convey the particles from the feeder, through the delivery hose to the blast nozzle. The transport fluid must have sufficient energy to discharge the particles out of the blast nozzle, whether the flow be subsonic, sonic or supersonic, and reach the target.
In other systems, the particles are entrained in a transport fluid and carried through a hose to a mixing nozzle at which the flow of particles entrained in the transport fluid is combined with a flow of blast fluid, typically via a venturi, and expelled out a blast nozzle. In such systems, the transport fluid must have sufficient energy to convey the particles to the venturi with the blast fluid, in concert with the transport fluid, having the energy necessary to discharge the particles out of the blast nozzle. In some versions, the venturi is integrated with the blast nozzle.
The accompanying drawings illustrate embodiments which serve to explain the principles of the present innovation.
In the following description, like reference characters designate like or corresponding parts throughout the several views. Also, in the following description, it is to be understood that terms such as front, back, inside, outside, and the like are words of convenience and are not to be construed as limiting terms. Terminology used in this patent is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. Referring in more detail to the drawings, one or more embodiments constructed according to the teachings of the present innovation are described.
It should be appreciated that with respect to any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Definitions, statements, or other disclosure material set forth in this disclosure shall supersede such material incorporated by reference to the extent necessary.
For clarity of disclosure, spatial terms such as “upstream,” “downstream,” “upper,” “outer,” “inner,” and “below,” are used herein for reference to relative positions and directions. Such terms are used below with reference to views as illustrated for clarity and are not intended to limit the innovation described herein.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other implementations.
In known prior art systems, the transport fluid is cooled by the cryogenic particles being conveyed. This cooling reduces the energy of the flow of transport fluid, which reduces the kinetic energy available to accelerate the particles out of the blast nozzle, and thus reduces the kinetic energy of the particles at impact. In systems that combine transport fluid flow with a flow of blast fluid, the cold transport fluid may significantly reduce the kinetic energy in the combined flow, reducing the kinetic energy available to accelerate the particles out of the blast nozzle, thus reducing the kinetic energy of the particles at impact.
Copending and co-owned U.S. patent application Ser. No. 17/139,292 for Method and Apparatus For Enhanced Blast Stream discloses the addition of energy to the entrained particle flow by combining a heated fluid flow with the flow of entrained particles. Even with the addition of the heated fluid flow, the cold transport fluid reduces the temperature of the combined flow, reducing the kinetic energy of particles and of the entraining fluid reaching the target. The reduced energy of the fluid, in the form of reduced temperature, means less thermal energy to heat and weaken the bonds between a coating or contaminant and the substrate.
Referring in more detail to the drawings, one or more embodiments constructed according to the teachings of the present innovation are described.
Referring to
First flow passageway 40 includes inlet 40a and second flow passageway 42 includes inlet 42a. Entrance end cap 34 includes respective mounting configurations at inlet 40a and inlet 42a adapted to have the physical embodiments of lines 14 and 12 connected thereto.
Combined flow passageway 46 includes outlet or exit 46a. In the embodiment depicted, exit end cap 38 includes a mounting configuration at outlet 46a adapted to have blast nozzle 10 connected thereto. Alternatively, blast nozzle 10 may not be mounted directly to flow mixer 8.
As can be seen at least in
As seen in
In the embodiment depicted, combined flow passageway 46 comprises a plurality of vents 62 extending in a downstream direction from intersection 44. As shown, vents 62 are in direct fluid communication with the combined flow passageway 46. Although in the depicted embodiment there is a plurality of vents 62, one or more vents may be used, or vents 62 may be omitted entirely. Additionally, although in the depicted embodiment, vents 62 extend downstream from intersection 44, one or more vents 62 may be disposed at any position or positions along combined flow passageway 46 sufficient to function in accordance with the teachings of the present invention to vent transport fluid from the flow of particles entrained in transport fluid, whether adjacent intersection 44 (as illustrated), proximal intersection 44, and/or at one or positions further downstream from intersection 44. The number, length and width (also referred to here in as vent area or total vent area) may be such as is sufficient to in accordance with the teachings of the present invention to vent transport fluid from the flow of particles entrained in transport fluid. The width of vents 62 may be smaller than the anticipated smallest size of particles desired to be expelled out the blast nozzle so that those particles do not flow through vents 62.
Vents 60 place second flow passageway 42 in fluid communication with vent passageway 64. Vents 62 place combined flow passageway 46 in fluid communication with vent passageway 64. Vent passageway 64 comprises vent exit 66. Vent passageway 66 may be open to the ambient, as illustrated, may have a breathable sound attenuation device (not illustrated) or may be connected to a vent hose or conduit (not illustrated). Additionally, vent passageway 64 may be connected to a passageway having a lower pressure thereby suctioning transport fluid therethrough.
Referring to
The cross-section visible in
Referring to
Referring to
In operation, a flow of blast fluid, typically air, may be directed through first flow passageway 40. As mentioned above, the energy of blast fluid flow may be increased such as by being heated, producing hot blast fluid such as, by way of non-limiting example, at the parameters described in U.S. patent application Ser. No. 17/139,292. A flow of particles entrained in transport fluid, typically air, may be directed through second flow passageway 42. The particles may comprise cryogenic particles, non-cryogenic particles, or mixed media particles. For cryogenic particles, such as, by way non-limiting example, carbon dioxide particles, the temperature and sublimation of the particles will affect the energy of the transport fluid, such as by decreasing the temperature. At intersection 44, operating within the design parameters, the pressures in the flow of blast fluid and in the flow of entrained particles are such that the particles will combine or merge with the flow of blast fluid and all or a sufficient or substantial portion of the transport fluid will pass through vents 60 and/or 62, into vent passageway 64 and out vent exit 66. The venting of the transport fluid prior to, proximal to or adjacent with the merging or introduction of the particles into the flow of blast fluid prevents or reduces the effect of the lower temperature (lower thermal energy) of the transport fluid on the energy, thermal and kinetic, of the blast fluid. As used herein, the term “vents” refers to structures that allow at least a portion of the transport fluid to be separated from the particles and/or the combined flow, depending on if the vents are located upstream or downstream of the intersection 44, without being recombined with the combined flow prior to the combined flow exiting the flow mixer or blast nozzle. As used herein, the term “design parameters” refers to operating conditions and/or values sufficient to allow the device to provide the desired performance.
As will be appreciated, the greater the volume of the flow of transport fluid that is vented (i.e., not present in/combined with the blast fluid flow), the less the effect the lower energy of the transport fluid will/can have on the energy of the blast fluid flow. Although desirable and within the scope of the teachings of the present invention, the teachings of the present invention do not require that all transport fluid be vented away before particles are entrained (combined/merged/introduced) into the flow of blast fluid.
In accordance with the many teachings of the present invention, the transport fluid flow is a flow fluid which has sufficient energy to transport the particles, entrained therein, into combination/merge/introduction into the flow of blast fluid. The blast fluid flow is a fluid flow which has sufficient energy, in conjunction with the effect of any transport fluid thereon, at the point of combination/merge/introduction to discharge the particles out the blast nozzle.
The configuration, construction and operation of flow mixer 108 differs from that of flow mixer 8 above in that flow mixer 108 comprises an integral blast nozzle. In the embodiment depicted, combined flow passageway 146 is defined by central insert 180 and lower insert 182. Referring also to
In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more physical devices comprising processors. Non-limiting examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), programmable logic controllers (PLCs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute processor-executable instructions. A processing system that executes instructions to effect a result is a processing system which is configured to perform tasks causing the result, such as by providing instructions to one or more components of the processing system which would cause those components to perform acts which, either on their own or in combination with other acts performed by other components of the processing system would cause the result. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium. The computer-readable medium may be a non-transitory computer-readable medium. Computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip), an optical disk (e.g., compact disk (CD), digital versatile disk (DVD)), a smart card, a flash memory device (e.g., card, stick, key drive), random access memory (RAM), read only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium may be resident in the processing system, external to the processing system, or distributed across multiple entities including the processing system. The computer-readable medium may be embodied in a computer-program product. By way of example, a computer-program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
“Based on” means that something is determined at least in part by the thing that it is indicated as being “based on.” When something is completely determined by a thing, it will be described as being “based exclusively on” the thing.
“Processor” means devices which can be configured to perform the various functionality set forth in this disclosure, either individually or in combination with other devices. Examples of “processors” include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), programmable logic controllers (PLCs), state machines, gated logic, and discrete hardware circuits. The phrase “processing system” is used to refer to one or more processors, which may be included in a single device, or distributed among multiple physical devices.
A statement that a processing system is “configured” to perform one or more acts means that the processing system includes data (which may include instructions) which can be used in performing the specific acts the processing system is “configured” to do. For example, in the case of a computer (a type of “processing system”) installing Microsoft WORD on a computer “configures” that computer to function as a word processor, which it does using the instructions for Microsoft WORD in combination with other inputs, such as an operating system, and various peripherals (e.g., a keyboard, monitor, etc.).
The foregoing description of one or more embodiments of the innovation has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments were chosen and described in order to best illustrate the principles of the innovation and its practical application to thereby enable one of ordinary skill in the art to best utilize the innovation in various embodiments and with various modifications as are suited to the particular use contemplated. Although only a limited number of embodiments of the innovation is explained in detail, it is to be understood that the innovation is not limited in its scope to the details of construction and arrangement of components set forth in the preceding description or illustrated in the drawings. The innovation is capable of other embodiments and of being practiced or carried out in various ways. Also, specific terminology was used for the sake of clarity. It is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose. It is intended that the scope of the invention be defined by the claims submitted herewith.
This application claims priority to U.S. Provisional Patent Application Ser. No. 63/358,057, filed Jul. 1, 2022, entitled “Method and Apparatus with Venting or Extraction of Transport Fluid from Blast Stream,” the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
63358057 | Jul 2022 | US |