Embodiments of the subject matter described herein relate generally to a system and method for providing electrical isolation for vehicle power systems.
Aerospace vehicles such as aircraft are susceptible to lightning strikes and other high intensity radiated fields (HIRF), or collectively voltage spikes or energy spikes. Voltage spikes and induced surges have the potential of interrupting the operation of electrical and control systems within the vehicles. In low-impedance systems, for example in power wiring, induced surges become high-current surges which can trip circuit breakers off-line and disrupt airplane services. In high-impedance systems, for example electronics, induced high-voltage spikes can trip logic, and damage semiconductor avionics. Current generations of aircraft use multiple low-voltage microprocessors, semiconductor devices, and high-frequency data busses, all of which are sensitive to voltage spikes. To mitigate these effects, protection in the form of shielding is used.
For example, in present airplanes with metal fuselages, and especially those produced in last 20 years, at least 90% of the protection required is achieved through the use of metallic shields on critical wiring and cable bundles. The demonstrated best-practice for such shielding (see e.g., “Lightning Protection of Aircraft”, Lightning Technologies Inc., Fisher, 2004 (LTI), Ch. 15, FIG. 15.1) is a copper-braid tube wrap on the entire bundle, terminated at each end by a bonded-ring to the connector back-shell, or other grounding methods depending on each individual case (see e.g., LTI, Ch. 15, FIG. 15.23.) While shielding has been proven to work quite well in metal airplanes by reducing the external effects by about 6 dB, it still leaves equipment exposed to 1500V spikes and 3000 Amp current surges (see Standards defined in “Environmental Conditions and Test Procedures for Airborne Equipment”, RTCA-DO-160E, RTCA Incorporated, 2007 (RTCA-DO-160E), Section 22, 23.) Because of these exposures, Line Replaceable Units (LRU's) typically include levels of internal protection to prevent damage, at extra cost and weight. Skilled workmanship is necessary to design and install copper-braided bundle-shields, and during their lifetime end-terminations are exposed to temperature-stress, current surges, and work-hardening breakages due to cable flexing. Special certification procedures are required for cable-shielding to demonstrate effectiveness to the FAA. Also, life expectancy has to be proven to the FAA, as shields are prone to coming loose and breakages are common.
Transformers used for Transformer-Rectifier 28 Vdc Units (TRU's) do provide some isolation, due in part because the secondary is not connected to the primary, but the isolation is nominal and provides only about −6 dB for the 400 Hz due to the 4:1 turns ratio. This protection is deemed acceptable for metal airplanes under RTCA-DO-160E design rules. Other traditional terrestrial solutions such as metal-oxide varistors (MOV's), diodes etc, have not been used mainly because they are not fault-tolerant, and a single latent-failure renders them useless for airplane purposes.
These solutions serve to mitigate the damage to electronics once a voltage spike is present in the vehicle, but do not prevent the voltage spike from entering the vehicle itself. Many fuselages of aircraft are constructed of metal, which provides some protection to the internal wiring and systems by inhibiting the flow of charge from outside into the enclosed metal fuselage. An enclosed metal structure is sometimes referred to as a “Faraday Cage.” In some vehicles, an additional enclosed metal compartment is created within the fuselage to further house and protect flight essential electronics and electrical systems from voltage spikes. However, a recent trend in modern aircraft is to use composite and other non-metal materials, in lieu of metal, in the construction of the vehicle. While these composite materials offer significant reductions in weight, and permit the use of advanced molding methods to achieve perfect aerodynamic forms not previously possible with metal-forming, they also significantly increase risk of damage from electromagnetic fields such as airport radars, high-power radio and TV transmitters Composite materials reduce the beneficial “Faraday Cage” effect of the fuselage, increasing the importance of using other means to prevent voltage spikes from harming the internal systems.
In terrestrial applications, electrical isolation is achieved through transorbs, spark gaps, gas tubes, and transformer isolation. For example, transformers having large volumes of dielectric liquid, or large air gaps, can be used as isolation transformers because there are generally no significant space or weight restrictions. Further, transorbs or components that deteriorate over a number of uses can be easily replaced in terrestrial environments. However, in an aerospace vehicle, there are significant space and weight considerations, and components whose performance deteriorates after every use must be periodically inspected and/or replaced, increasing maintenance time and costs.
Presented is a system and method that mitigates voltages spikes and other high voltage radiated fields or HIRF. The aircraft power system protection uses optimized isolation transformer modules in the aircraft power feeder circuits to provide isolation between the generators coupled to external wiring and the electronics systems inside the fuselage of the vehicle. In an embodiment, the optimized isolation transformer modules reduce voltage spikes in the electrical system from lightning and HIRF by approximately 30 db, or reducing the induced effects by approximately 1/1000 Volts and 1/10,000 Joules of the original Voltage or energy. This reduction in the coupling of energy to system inside the vehicle reduces the need to require special treatment in every electronic unit to handle voltage spikes.
The method comprises inserting a linear optimized isolation transformer between a generator and a portion of a power distribution system; directing each phase of the power distribution system into a separate linear optimized isolation transformer; and, positioning the linear optimized isolation transformers relative to structures of the vehicle to increase the electrical isolation of electrical components within the structures. In embodiments, the structures are the fuselage, the wing root where electrical cables from the generator enter a fuselage, the aft bulkhead where the auxiliary power unit (APU) is located, the electronics bay, or Faraday Cage structures in the vehicle. In embodiments, the linear isolation transformers are positioned so that the primary and secondary sides are on opposite sides of the structure.
The system comprises a linear optimized isolation transformer having a magnetic core with a primary side winding that is isolated from a secondary side winding by an isolation dielectric that maintains a high value isolation independent of pressure differences due to operation at different altitudes. In embodiments, linear optimized isolation transformers associated with each phase of a power distribution system electrically couple power from a generator through a structure of a vehicle to increase electrical isolation of electrical components inside the structure from electrical surges originating outside the structure.
The features, functions, and advantages discussed can be achieved independently in various embodiments of the present invention or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
The accompanying figures depict various embodiments of the system and method for providing isolation for vehicle power systems. A brief description of each figure is provided below. Elements with the same reference number in each figure indicated identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number indicate the drawing in which the reference number first appears.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the invention or the application and uses of such embodiments. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
There is a need to provide electrical isolation between the power generators in an aerospace vehicle and the internal electronics systems inside the vehicle that use the power from the power generators. Lightning strikes or high intensity radiated fields (HIRF) can create or induce voltage spikes that travel through the power lines leading from the power generators to the internal electronics systems inside the vehicle. The system and method of the present disclosure present a linear optimized isolation transformer for providing isolation for vehicle power systems.
Referring now to
Although the conventional isolation transformer 100 provides good electrostatic isolation between the primary side 102 and the secondary side 104, there is little electromagnetic protection. Because the windings are directly on top of one another, surges on the primary side 102 can be electromagnetically coupled to the secondary side 104. The core 106 acts as a reactive choke to some degree, but the proximity of the wires of the primary side 102 and secondary side 104 enable substantial energy to couple between the wires.
Isolation transformers, are seldom used in aircraft because the 115 Vac 400 Hz systems do not have transformers, and the extra weight of two isolation transformers does not trade-off well against bundle-shields, on the basis of protection from surges. However, one aspect of this disclosure is the design and placement of isolation transformers that prevent surges from occurring, rather than protection from surges that have already entered the vehicle.
Referring now to
However, although the use of an air gap 202 is satisfactory for terrestrial applications, it is not acceptable for use in an aerospace vehicle where operation of the optimal isolation transformer 200 would also occur at high altitudes. This is because voltage breakdown flashover between terminals changes with altitude, in accordance with the Paschen curve.
Referring now to
In an embodiment of the linear optimized transformer 300, wires of a primary side 102 are wound around one portion of a center core member 310 of a squared-off figure-eight shaped core 308. In an embodiment the core is an iron core. Wires of a secondary side 104 are wound around a second portion of a center core structure of the figure-eight shaped core 308. The figure-eight shaped core 308 comprises a set of laminated layers configured to reduce eddy currents and associated losses due to eddy currents in the figure-eight shaped core 308. The figure-eight shaped core 308 extends from the primary side 102 to the secondary side 104. Between the primary side 102 and secondary side 104, an isolation dielectric 306 separates the primary side 102 from the secondary side 104.
The isolation dielectric 306 is comprised of a set of laminated members having a shape that fills all of the space between the primary side 102 and the secondary side that is not occupied by the figure-eight shaped core 308. In an embodiment, the isolation dielectric 306 is an H-shape having two crossbar members as illustrated in
In an embodiment, the primary side terminals 302 and secondary side terminals 304 are provided on opposite sides of the linear optimized transformer 300. This separation of the primary side terminals 304 and secondary side terminals 306 provides superior electrostatic isolation.
In an embodiment, the linear optimized transformer 300 is a 1:1 isolation transformer. In embodiments the linear optimized transformer 300 is a 1:x or x:1 isolation transformer, where x is a real number greater than 1. For example, if the generator provides 230V power, and the system to be powered requires 115V power, then the linear optimized transformer 300 can be adapted to be a 2:1 transformer. In an embodiment, the linear optimized transformer 300 has one or more taps for 1:x or x:1 power coupling. For example, if two 115V power systems on the secondary side are to be powered using a single 230V power source fed to the primary side, then a center tap in the linear optimized transformer 300 can provide power to each 115V power system, each of which has a 2:1 power coupling ratio. In an embodiment, the linear optimized transformer 300 provides a 1:x step down voltage appropriate for providing power for 28 Vdc avionic systems. In embodiments, the linear optimized transformer 300 further comprises one or more transorbs, gas-discharge tubes, or other semiconductor or equivalent electronics to perform, for example, further R.F. choke or surge protection functionality.
Many aerospace vehicles use generators that are part of, or integrated into, the engines or jet turbines of an aircraft 400. Power from the engines or jet turbines is typically generated as three-phase power. In an embodiment, three linear optimized transformers 300 are used to provide power isolation for each phase of a three-phase power generator.
Referring now to
Referring now to
In an embodiment, linear optimized transformers 300 are used to isolate the components and systems inside the avionics bay 406 from the electric cables 412 delivering power from the generator associated with the engine 408 or APU 404. In some aircraft 400, the avionics bay 406 is isolated from the rest of the fuselage 410 by a cage that functions as a Faraday Cage to protect the components and systems inside of the avionics bay 406. The cage serves to protect critical avionics flight control systems and navigation equipment from induced power surges. Passenger entertainment systems and other systems may similarly reside in the cage or in their own cage. In an embodiment, one or more linear optimized transformers 300 are positioned in proximity to the avionics bay 406 to provide power isolation. In a non-limiting example, the primary side terminals 302 reside outside the avionics bay, while the secondary side terminals 306 reside inside the avionics bay 406.
Referring now to
The embodiments of the invention shown in the drawings and described above are exemplary of numerous embodiments that may be made within the scope of the appended claims. It is contemplated that numerous other configurations of the system and method for providing electrical isolation for vehicle power systems may be created taking advantage of the disclosed approach. It is the applicant's intention that the scope of the patent issuing herefrom will be limited only by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3717876 | Volkers et al. | Feb 1973 | A |
5291829 | Avory et al. | Mar 1994 | A |
5761791 | Bando | Jun 1998 | A |
5926115 | Schleder et al. | Jul 1999 | A |
6040753 | Ramakrishnan et al. | Mar 2000 | A |
6141194 | Maier | Oct 2000 | A |
6475351 | Sun et al. | Nov 2002 | B2 |
6726857 | Goedde et al. | Apr 2004 | B2 |
7148779 | Wolfgram | Dec 2006 | B2 |
7394340 | Kakehashi et al. | Jul 2008 | B2 |
8191540 | Visser et al. | Jun 2012 | B2 |
8354911 | Visser et al. | Jan 2013 | B2 |
20020145416 | Attarian et al. | Oct 2002 | A1 |
20030164479 | Goedde et al. | Sep 2003 | A1 |
20070132535 | Kakehashi et al. | Jun 2007 | A1 |
20080071260 | Shores | Mar 2008 | A1 |
20090188458 | Visser et al. | Jul 2009 | A1 |
20110254505 | Evander et al. | Oct 2011 | A1 |
Entry |
---|
Akihiko Yagasaki, “Isolation Transformers to Prevent the Propagation of Lightning Surges along Power Lines: the Problem Involved and the Effects of the Improvement”, J. Inst. Electrostat. Jpn., vol. 25, Issue 6, 2001, p. 311-319, Seidenki Gakkai, Japan (English Abstract). |
RTCA Special Committee 135 (SC-135), “Environmental Conditions and Test Procedures for Airborne Equipment”, DO-160F, RTCA, Inc., 2007, Sections 15, 17, 22, 23, and 25. |
RTCA Special Committee 180 (SC-180), “Design Assurance Guidance for Airborne Electronic Hardware”, DO-254, RTCA, Inc., 2000. |
SAE Aerospace, “Aircraft Lightning Zoning”, ARP5414 Rev. A, SAE International, 2005. |
Department of Defence, “Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment”, MIL-STD-461F, 2007. |
Fisher, F.A. et al., Lightning Protection of Aircraft, Second Edition, 2004, published by Lightning Technologies Inc., Pittsfield, MA, Fig. 15.1 and Fig. 15.23, pp. 486, 500. |