In the WiMAX network section 2, the communication system 1 comprises at least one mobile terminal 5, also referred to as mobile station (MS) or user equipment (UE). Furthermore, the WiMAX network 2 comprises a number of base stations (BS) 6, also referred to as access points. The base stations 6 are connected with an Access Server Node Gateway (ASN-GW) 7, also referred to as Wimax Access Controler (WAC), which functions as a router for transmissions from a number of base stations 6, as shown. According to the embodiment of
In the 3G network section, also referred to as 3rd Generation Partnership Project (3GPP) network, the communication system 1 comprises at least a first network element 8, in the following referred to as Tunnel Termination Gateway (TTG), a second network element 9, in the following referred to as Gateway GPRS Support Node (GGSN). Second network element 9 is operatively connected with a Packet Data Network (PDN) 10, i.e., an IP network.
Furthermore, the communication system 1 of
The functioning of the above-mentioned elements of communication system 1 will now be explained to some extent in connection with an operation of the shown embodiment of the communication system 1 in accordance with the present invention:
In the interworking scenario considered here, user equipment 5 first sends a Dynamic Service Addition (DSA) request for service flow addition to base station 6, as indicated by means of horizontal arrow marked DSA in
As a consequence of the above-described transmission of requests DSA, DSA′, RFC 2868, PDP a number of service flow tunnels are established respectively within and between WiMAX network 2 and 3GPP network 3. As already stated above, service flow tunnels 12.1, 13.1 for non-3GPP service flow and 3GPP service flow, respectively, are established over a radio link between user equipment 5 and base station 6. Base station 6 then relays said service flows to WAC 7 via service flow tunnel 12.2 for non-3GPP service flow and service flow tunnel 13.2 dedicated for the 3GPP service flow and marked accordingly. In WAC 7, said marked service flow 13.2 is received and detected among a totality of received service flows 12.2, 13.2 by receiving means 7a and detecting means 7b, respectively.
In accordance with the present invention, said marking of a service flow over the radio link as “3GPP service flow” intended for mapping to the 3GPP network 3 can be achieved in a variety of ways: Preferably, Global Service Class names as described in specification IEEE 802.16e may be used.
Such an approach has been described in European Patent Application 05292696.1 (“Method for 3GPP-WiMAX interworking”) filed 13 Dec. 2005 in the name of the present applicant, the entire contents of which is herewith incorporated by reference into the present document.
Accordingly, a Global Service Class name associated with a given service flow will comprise certain 3GPP PDP attributes, e.g., an Access Point Name (APN) and/or Network Service Access Point Identifier (NSAPI) are added to the Global Service Class name in order to signal in the WiMAX network 2 a terminal service flow which has to be mapped with the 3GPP core network 3. Alternatively, other approaches may be used to exchange 3GPP PDP signalling between the WiMAX user equipment 5 and the WiMAX network 2: For instance, a specific service flow may be used together with 3GPP GPRS session management (SM), like Protocol over IP.
In a subsequent step, the WiMAX network 2 relays received and detected service flow tunnel 13.2 together with the above-mentioned 3GPP PDP attributes to said first network element 8 (TTG) of 3GPP core network 3 using mapping means 7c. In this context, service flow tunnel 13.2 to be mapped can also be referred to as “per service flow” tunnel, since every service flow is being tunneled individually from the user equipment 5 to TTG 8.
A standard configuration and functioning of TTG 8 is described in 3GPP TS 23.234 Release 6 (cf. above) and is assumed to be known to a person skilled in the art. In the context of the shown embodiment, in accordance with the present invention TTG functionality is extended to enable additional tunnel signalling and data tunnelling with respect to standard TTG functionality. In the shown embodiments, this can be achieved by suitably devising said means 8a for establishing an inter-network tunnel with WAC 7 comprised in TTG 8, preferably by providing corresponding program code sequences thereto.
In an alternative to the embodiment shown in
In
As will be appreciated by a person skilled in the art, the non-3GPP service flow initiated on service flow tunnel 12.1 and further relayed to WAC 7 via service flow tunnel 12.2 is managed normally according to WiMAX fashion by further relaying to the IP network/internet 4 on MS Mobile IP (MIP) tunnel 12.3 and IP flow tunnel 12.4 via Home Agent (HA) 11, as known to a person skilled in the art.
In this way, a communication system 1 in accordance with the present invention by means of network element WAC 7/base station 6 and network element TTG 8 achieves relaying service flows over IEEE 802.16/WiMAX radio links from WiMAX network 2 to 3GPP core network 3, wherein two service flows 12.1, 13.1, i.e. non-3GPP service flows and 3GPP service flows, respectively, are completely distinguishable between a mobile terminal 5 and an associated base station 6 for every terminal flow. In this context, IEEE service flows correspond to tunnels over the WiMAX radio link. As described in detail above, the basic idea in accordance with the present invention consists in mapping the 3GPP tunnelling concept, i.e. PDP concept, in correspondence with said WiMAX service flow concept and to tunnel said WiMAX service flows through the WiMAX network to the 3GPP core network.
The communication system 1′ of
The communication system 1″ of
In this case a GPRS Tunnelling Protocol (GTP) tunnelling used between WAC-TTG 16 and GGSN 9 preferably is an extended GTP tunnelling, which as such does not form part of the present invention.
Alternatively (case not shown in
This way, a method and architecture for interworking of different standardised networks, in particular 3G-WiMAX interworking, is achieved which does not rely on reusing Release 6 3GPP-WLAN interworking solutions, which would mean employing VPN-like tunnels from a user equipment to the PDG, i.e. the TTG, which are not particularly well matched with the WiMAX context.
Number | Date | Country | Kind |
---|---|---|---|
06290679.7 | Apr 2006 | EP | regional |