1. Field of the Invention
The present invention concerns an arrangement for transferring, for backup purposes changing of customer data that are stored in a non-volatile manner in a franking device of the type wherein client-dependent data (such as, for example, clichés and cost center data) are stored in a non-volatile manner in a memory of the franking device and must be saved from data loss in the case of repair. Such a franking device can be a commercial franking machine or a personal computer that is operated as a PC franker and that controls a commercial printer.
2. Description of the Prior Art
A postal fee billing system is known from German Published Application DE 39 03 718 A1 (corresponding to U.S. Pat. No. 5,111,030). Franking machine usage information is written to a chip card or read out therefrom. A transfer of data stored in first hardware to second hardware is, however, not possible in the case of defective hardware.
A method and apparatus for monitored controlled downloading of graphical images from a portable apparatus into a franking machine system is known from U.S. Pat. No. 6,085,180. For image data transfer, image data are stored in a portable device and are loaded in a controlled manner into a franking machine. The apparatus concerns only image data and is not connected to only one specific franking machine, i.e. the image data are not customer-specific.
A method and an arrangement for input of a printing stamp into a franking machine is known from the German Published Application DE 199 13 066 A1. In the franking machine of the type Jetmail® (manufacturer Francotyp Postalia GmbH), a preparation of a set of different country-specific and/or carrier-specific post stamp data ensues in a non-exchangeable memory of the franking machine in a first step and a configuration for a carrier and for a country in which the franking machine should be used ensues at the manufacturer in a second step. The configuration ensues by transmission of data by means of the integrated interface, in particular by means of a chip card via a chip card read/write unit of the franking machine. Data can be input into the franking machine in this manner. Either print images are transferred into the franking machine via an interface (for example chip card) or print images already present are selected for use. The data are not transferred from the franking machine to the chip card, and thus the chip card does not represent an updatable memory for print images.
An exchange of data without interconnected transfer means is known from the European Patent EP 560 714 B1 (corresponding to U.S. Pat. No. 5,509,117). To secure postal accounting data, a defective (old) installation unit is exchanged for a non-defective (new) installation unit, and the data of the old installation unit are transmitted to the new installation unit after both have been interconnected together via plug connectors. However, a data memory cannot be exchanged individually but rather only together with the installation unit.
A security module placed in a security region, the security module being plugged into the mainboard (motherboard) of the meter of the franking machine of the type JetMail® and that contains the accounting data, is known from the German design patent DE 200 20 635 U1. Other customer-dependent data (such as, for example, cliché and cost center data) are stored in a non-volatile manner in a separate memory of each franking machine. A franking machine of the type JetMail® has a meter assembly group and a base assembly group. The meter housing is fashioned as a security housing for protection of the mainboard. Since the battery-buffered memory units used in the meter still exhibit a DIP housing, they could be plugged into corresponding sockets on the mainboard and are therefore easily exchangeable in the case of repair. However, pluggable memory ICs (for example in a DIP housing) are problematic due to possible problems as to availability, lower capacity and limited expansion capability.
Such memories are no longer available with capacity sufficient for the subsequently developed franking machines. The exchange of defective mainboards is made more difficult by the transition from pluggable memory modules (DIP housing) to permanently soldered memory ICs in SOP, TSSOP or BGA housings since the customer-dependent data (for example cliché, cost centers) cannot be transferred from one mainboard to another without further measures. Although this transfer was still possible in the franking machine of the type JetMail® via a plugging of the battery-buffered memory, since memory in the DIP housing could still be used, for a franking machine of the type Ultimail software was created with whose help the data can be transferred from the franking machine into a service computer or personal computer (PC) via a serial data connection. The customer data thus can be changed in franking machines. If, for example, a defective mainboard of the franking machine must be exchanged for a new mainboard, the customer data are first transferred from the franking machine to a service computer via a serial data connection and then are copied from the service computer into the memory of the new mainboard after the mainboard exchange. However, this procedure cannot be applied in the case of a mainboard that is so defective that the data cannot be transferred from the service computer. In this case no data can be salvaged and an increased effort must be made in order to repair the franking machine.
An object of the present invention is to provide an arrangement for exchanging customer data that are stored in a non-volatile manner in franking devices wherein the customer data are transferable with relatively little effort from a defective mainboard to another, non-defective mainboard.
The object is achieved in accordance with the invention by an arrangement for exchanging customer data, wherein a customer card is provided that can be plugged into a socket of a franking device as a backup medium for customer-specific data used by the franking device. The socket is connected with corresponding connections (contacts) of a processor of the device in order to serially transfer the customer data via the socket and to store the data there in a non-volatile manner. The transfer ensues with a high speed via an assembly group for protection of the customer card from destruction by electrostatic discharge (ESD). These customer can be:
The use of a commercial memory card (such as, for example, MultiMedia Card (MMC)) as a customer data memory offers the following advantages:
The present invention also concerns a method for backing up customer data in a franking device wherein the data are backed up to a customer card, such as a MultiMedia Card (MMC).
A perspective view of a known franking machine of the type Jetmail® from the front right top is shown in
A block diagram of the electronics of the franking machine of the type Jetmail® is shown in
Primarily the corresponding port pins of the processor 1 are connected with the MMC socket 3 via the ESD protection assembly group 2. Furthermore, via drivers 12 an interface 13 can optionally be enabled at the processor 1, for example a chip card read/write unit. The connections and the aforementioned optional assembly groups are marked with dash-dot lines.
The customer card MMC 4 is used as a backup medium for customer-specific data (cost center data, cliché data, optional print cliché data, class-of-mail data and postage table data as well as SMS-like short texts, abbreviated dialing and optional printing: statistics). In slower franking machines the processor is operated programmed by a first program stored in the program memory (flash) 9 such that altered data can be directly updated on the customer card MMC 4.
However, when the franking machine is a high-capacity franking system, all customer data cannot be immediately written to the customer card after each letter. The processor 1 is connected (in terms of operation) with a non-volatile memory (NVRAM) 6 permanently soldered onto the mainboard 11, which non-volatile memory 6 exhibits a low storage capacity, and said processor 1 is operated programmed by a second program stored in the program memory (flash) 9 such that, for example, the currently set cost center is loaded into the NVRAM 6 before the current data are stored in this NVRAM 6. The data are updated on the customer card in time intervals, for example when a print pause is achieved or the machine was just activated or deactivated. The process is correspondingly programmed for this. This method is distinctly quicker since the current altered data are transferred in parallel from the bus 5 and are buffered in the non-volatile memory (NVRAM) 6 between the time intervals.
Stages of an exchange of the PSDs and an MMC of a defective franking machine are shown in
An optional chip card 50 can be plugged into a chip card write/read unit that is arranged such that is accessible on the left half of the housing top 23 of the franking machine, behind a protective panel 21. The franking machine can be equipped with an automated sealer 30 (shown) and further mail stations (not shown) such as, for example, with an automatic feed in the periphery.
A rear view of the new franking machine FM A is shown in
An envelope (not shown) or another mail piece standing on edge can be transported in a shaft that is bounded on its sides by the protective panel 21 and a guide plate 22. The printing of the mail piece with a franking stamp image ensues without contact by means of inkjet technology during the mail piece transport. The billing or accounting data are cryptographically secured with keys from the PSD.
The non-volatile memory 6 arranged on the mainboard 11 of the franking machine is, for example, a battery-buffered NVRAM. As an alternative to this, other non-volatile memory technologies (FRAM, NVSRAM) can also be used.
The MMC is operationally connected with the processor. Solutions are also conceivable in which a programmable logic (such as, for example, a Spartan-II 2.5V FPGA from the company XILINX or an application-specific integrated circuit (ASIC)) is connected in-between.
In a further embodiments of the invention, the customer data are also cryptographically secured with keys from the PSD. The encrypted customer data can additionally comprise an association of the customer data with the serial number of the PSD.
An MMC with customer data can also be plugged into a personal computer PC when the PC exhibits a corresponding interface. The security module which is designated for use in postal apparatuses can also exhibit a different design that enables it to be plugged into the mainboard of a personal computer, for example, to allow the personal computer to be operated as a PC franker and control a commercial printer.
A procedure for backing up customer data stored in a franking machine, making use of an MMC in a card reader of the franking machine is shown in the flowcharts of
The portion of the procedure illustrated in
In step 85, it is checked whether the startup is normal with no errors, and if so the backup data are tested in step 85a. If the startup is not normal or if errors are detected in step 85, then in step 86 an inquiry is made as to whether any recovery action is needed. If so, the data are recovered in step 86a. If not, a check is made as to whether any defect in the MMC exists, and if not the routine exits to case 3, and if so the routine exits to case 1.
The results of the respective exit cases are shown in
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of their contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
20 2006 008 952.7 | May 2006 | DE | national |