The present invention relates to a method for computing and regulating the distribution of linear load in a multi-nip calender, wherein a material web to be calendered is passed through the nips in a set of rolls that is placed in a substantially vertical position. The set of rolls is formed by a variable-crown upper roll, a variable-crown lower roll and by at least two intermediate rolls provided with support cylinders and situated between the upper and lower rolls. All the rolls in the set of rolls are preferably supported so that, when the nips are closed, the bending lines of the rolls are curved downwards.
The present invention also relates to an arrangement for computing and regulating the distribution of linear load in a multi-nip calender intended for calendering paper or board, which calender comprises a set of rolls which is mounted on the frame of the calender in a substantially vertical position and which set of rolls includes a variable-crown upper roll, a variable-crown lower roll as well as one or more intermediate rolls interposed between the upper roll and the lower roll. The means of suspension of the intermediate rolls are provided with support cylinders, and all the rolls in the set of rolls are preferably supported so that, when the nips are closed, the bending lines of the rolls are curved downwards.
Further, the present invention relates to a multi-nip calender for carrying out the method in accordance with the invention.
In conventional supercalenders or multi-nip calenders, when the nips are closed, the set of rolls is supported from outside the zone of treatment of the web by means of forces which are substantially equal to what is called the pin load applied to the bearing housings of the rolls during running, or which forces are lower than the pin load. The pin load is commonly defined so that it includes the weight of all of the auxiliary equipment connected with the bearing housings of the roll, such as gap shields, doctors, and so-called take-out leading rolls, and also the weight of the portion placed outside the web width and the weight of the bearing system. This prior art has been described best in the paper by Rolf van Haag: “Der Weg zum Load Control-System”; Das Papier, 1990, Heft 7, in which the regulation of the linear load in a conventional supercalender is described. In such supercalenders, the rolls are positioned one above the other so that their middle portions are curved upwards or, in a very rare and special case, are fully straight. The intermediate rolls do not bend in the same way, as compared with one another. Owing to the mode of running, the nip loads in the set of calender rolls are such that the roll masses occurring in the area of the web to be calendered always act with full effect upon all the nip loads placed underneath the roll concerned. In such a mode of running, it is assumed that the set of rolls is curved in such a way during running that the rigidities of the rolls do not have a substantial effect on the uniformity of the linear loads, and attempts are made to operate the calender based on this assumption so that exclusively the linear loads of the upper roll and of the lower roll are regulated on the basis of measurements of quality.
In Finnish Patent No. 96,334, corresponding to U.S. Pat. No. 5,438,920 (incorporated by reference herein), a calendering method and a calender that applies the method are described, which calender comprises a variable-crown upper roll, a variable-crown lower roll and a number of intermediate rolls placed between the upper roll and the lower roll in nip contact with each other. The rolls are arranged as a substantially vertical stack of rolls on the frame of the calender.
A material web to be calendered is passed through the nips formed by the adjacent rolls. The nip load produced by the mass of the rolls in the stack of rolls is eliminated in a specific manner so that all the nips in the calender may be loaded with the desired load, which load is, in a preferred alternative embodiment, equally high in all nips. Thus, the calendering potential could be utilized substantially better than in the earlier calenders. In FI 96,334, it is one of the basic ideas of the prior art calender that rolls bending in the same way are employed in the calender. The conduct of such substantially equally bending rolls in the calender and the simple possibility, permitted by such rolls, of relieving the entire mass of the roll are described, in which case this prior art calender and calendering method differ essentially from the first-mentioned German prior art in the very respect that the effect of the masses of the rolls on the linear loads in the lower nips can be regulated freely.
The prior art described above involves an essential problem. If it is assumed that the natural deflections of the intermediate rolls in the calender without linear loads, i.e., when the nips are open, and the rigidities of the rolls as well as the masses are different, first it is to be stated that such rolls do not comply with those described in FI 96,334 or U.S. Pat. No. 5,438,920, in which all of the intermediate rolls had substantially equal deflections. In reality, the manufacture of such rolls, which substantially meet the absolute requirement stated in these publications without separate operations, is very difficult and also expensive, in which connection it has been ascertained that an entirely trivial algorithm of regulation of linear loads, which does not take into account minor differences between the rolls, is not adequate from the point of view of reliable operation of the calender.
Accordingly, it is an object of the present invention to provide a solution for the problems related to the prior art calenders by developing a novel mode of thinking, which takes into account the properties of deflection of the rolls.
Another object is to provide an improvement over the calender concept described in Finnish Patent No. 96,334 and U.S. Pat. No. 5,438,920, in particular in respect of the manner in which the distribution of linear load can be brought under control in the desired way.
In view of achieving these objects and others, in the method in accordance with the invention, in order to compute and regulate the linear loads, one or more of the physical properties affecting the bending of each intermediate roll under load, such as bending rigidity, mass, shape, and material properties, are taken into account, and the ratio of the linear loads applied to the intermediate rolls, the weight of the rolls, and/or the support forces applied to the rolls are regulated so that the set of rolls is in a state of equilibrium and a predetermined state of deflection. Preferably, all of the above-noted physical properties are determined and taken into account and the ratio of linear loads, weight of the rolls and support forces are all regulated.
The arrangement in accordance with the invention includes an automation system and a computing unit arranged to compute and regulate linear loads taking into account the physical properties affecting the bending of each intermediate roll under load, such as bending rigidity, mass, shape, and material properties, and serving to regulate the ratio of the linear loads applied to the intermediate rolls, the weight of the rolls, and the support forces applied to the rolls so that the set of rolls is in a state of equilibrium and in a predetermined state of deflection.
The method in accordance with the invention takes into account the properties of rolls of all types, and thus, in some embodiments of the invention, intermediate rolls are employed in the set of rolls in the calender whose bending properties are different from roll to roll.
In the computing or computation in accordance with the method and the arrangement of the invention, the set of rolls can be treated as a single unit. On the other hand, the computing can also be carried out individually in respect of each pair of rolls.
The intermediate rolls in the set of rolls are freely moving, so that just forces are applied to the rolls, but the rolls are not held in position.
By means of the method and the arrangement in accordance with the invention and by means of the calender intended for carrying out the method, significant advantages are obtained in particular in the respect that, by means of the arrangement in accordance with the invention, the linear loads in each nip can be regulated to the desired level. The arrangement takes into account and computes the deflection lines of the intermediate rolls and the loads of the relief cylinders corresponding to these deflection lines. The rigidities of the intermediate rolls and the differences in the natural deflections of the rolls arising from differences in mass can be readily compensated for in the arrangement by regulating the support forces of the roll support cylinders.
Thus, when an arrangement in accordance with the present invention is employed, the deflection lines of all of the intermediate rolls do not have to be identical. The method and the arrangement of the invention can be applied both with a traditional mode of running of a multi-nip calender, in which the paper web runs through all nips, and to a modified mode of running, in which the paper web is passed through certain, desired nips only.
Further advantages and characteristic features of the invention will come out better from the following detailed description of the invention.
Additional objects of the invention will be apparent from the following description of the preferred embodiment thereof taken in conjunction with the accompanying non-limiting drawings, in which:
Referring to
The upper roll 13 in the calender is a variable-crown roll, for example a roll adjustable in zones, having a bearing housing 131 attached directly to the calender frame 11. The axle of the variable-crown upper roll 13 is mounted in the bearing housing 131 and, in a conventional manner, the roll is provided with inside, inner or interior loading means, for example zone cylinders, by whose means the deflection of the roll mantle can be regulated in a desired way.
In a similar manner, the lower roll 14 in the calender is a variable-crown roll, in particular a roll adjustable in zones, having a mantle mounted to rotate about the roll axle and which roll 14 is provided with inner loading means, for example zone cylinders, by whose means the deflection of the roll mantle can be regulated in a desired way. The axle of the lower roll 14 is mounted in bearing housings 141, which have been mounted as shown in
Loading arms 142 are attached to the calender frame 11 pivotally by means of articulated joints 143. Between the calender frame 11 and the loading arms 142, lower cylinders 144 are mounted, by whose means the lower roll 14 can be shifted in the vertical plane. Thus, the set of rolls 12 can be loaded by means of the lower cylinders 144, and further, by means of the lower cylinders 144, if necessary, it is possible to open the set of rolls 12. By means of the zone cylinders of the variable-crown upper and lower rolls 13, 14, in the method and the arrangement in accordance with the invention, a necessary correction and/or desired regulation of the cross-direction profile of the paper web W can be carried out.
Between the upper and the lower rolls 13,14 in the calender, a number of intermediate rolls 15–22, which are in nip contact with each other, are arranged as stated above. In the following, exclusively the uppermost intermediate roll 15 will be examined, and the related constructions are described in more detail with the aid of reference numerals. A corresponding description can also be applied to the other constructions of intermediate rolls in the calender. The intermediate roll 15 is mounted from its ends to revolve in bearing housings 151. Bearing housings 151 are mounted on lever arms 152, which in turn, are pivotally mounted on the calender frame 11 by means of articulated joints 153 arranged in the axial direction of the roll 15. The lever arms 152 are provided with support means 154, which are preferably hydraulic cylinders. Cylinders 154 are elongate and are attached at one end to the lever arms 152 and at an opposite end to the calender frame 11.
By means of the cylinders 154, a support force is applied to the support constructions of the roll 15 and by means of which force, the loads caused by the weights of the roll 15 and related auxiliary equipment, such as the takeout leading roll 155 (however, always at least the weight of the auxiliary equipment connected with the roll as added with the weight of the parts placed outside the web), can be compensated for and supported in the desired and/or necessary manner. The support can also be carried out so that the loads are supported completely, in which case the weights of the roll 15 and the connected auxiliary equipment have no effect on the nip load, i.e., do not increase the nip load. If such complete support is carried into effect in respect of all of the intermediate rolls 15–22, the linear load in each nip N1, . . . ,N9 can be made substantially equally high.
The magnitude of the linear load can be regulated fully freely in order to achieve the desired calendering effect, and, in particular in the case of “full relief”, i.e., with a loading angle α of about 90°, the calendering effect can be regulated in the way illustrated in
The loads produced by the mass of the intermediate rolls 15–22 in the set of rolls 12 and by the mass of the auxiliary devices connected with these rolls can, if necessary, also be relieved partially, or so that exclusively the pin loads are relieved, in which case, in respect of the distribution of linear load in the set of rolls, for example, a situation as shown in
In conventional and traditional supercalenders, the loading angle has generally been in the range of from about 45° to about 55°, and the magnitude of this loading angle has been dependent on the size of the calender, i.e., mainly on the number of rolls. In the method in accordance with the present invention, the magnitude of the loading angle α can be adjusted quite freely, and by means of this adjustability of the loading angle, a considerable advantage and a remarkable improvement are achieved over earlier calendering constructions. The loading angle α can be used as an active variable in fine adjustment of the differences between different faces of the paper. Adjustment of two-sidedness has a significant effect on the properties of quality of paper, and in this manner, by means of the present invention, it is possible to produce paper of uniform quality reel after reel. A corresponding property has not been suggested anywhere else previously.
The support can, of course, also be accomplished, for example, as a what is called “excessive relief”, wherein the loading angle α is larger than 90°. In such a case, it is possible to reach a situation in which a lower nip always has a lower linear load than the nip placed above has. Such an embodiment has, however, not been illustrated herein.
In order to establish the significance of the loading angle α and its adjustability in comparison with other calendering parameters or variables, an extensive test program has been carried out with a test machine, and an example of the test results is given in
As seen clearly from
In the method in accordance with the present invention, a situation corresponding to a normal production situation is examined, in which case the set of rolls 12 is closed in the way shown in
As was already stated with reference to
In the method and the arrangement in accordance with the invention, the necessary correction and regulation of the cross-direction profile of paper, e.g., of thickness and/or glaze, is carried out by means of the zone cylinders in the variable-crown upper and lower roll 13,14. In the intermediate nips, i.e., in the nips N2, . . . ,N8 between the intermediate rolls 15–22, correction of the cross-direction profile can be carried out by means of regulation of the loading of the relief cylinders of the intermediate rolls. The method in accordance with the invention and the related computing of the distribution of the linear load in the set of rolls 12 can be applied both to a traditional mode of running of a multi-nip calender, wherein the paper web W runs through all of the nips N1, . . . ,N9, and to a modified mode of running, wherein the paper web W is passed through certain nips only. In the method in accordance with the invention, the automation system includes programs for maintenance of the set of rolls, distributions of linear load, roll parameters, and recipe data bases which, together with the program for computing the distribution of linear load, permit computing of the distributions of linear load specifically for each paper grade. Further, for maintaining the changes in the set of rolls in the calender and for monitoring the stock of rolls, there are program routines of their own.
The distribution of linear load in the set of rolls 12 and the support forces to be passed to the support cylinders of the intermediate rolls 15–22 are computed either in the automation system 30 or in a separate computing unit directly connected with the automation system. The computing model determines the rigidity and the mass distribution of the set of rolls 12 in the calender 10 consisting of chilled rolls and polymer rolls as well as the rigidity of the nips N1, . . . N9 between the rolls. Further, in the computing, the locations and masses of the outside masses connected with the set of rolls are determined, the effect of temperature on the modulus of elasticity is taken into account, the effect of the roll diameters on the original modulus of elasticity is taken into account, a possible additional linear load of the rolls and the separate effects of the centers of mass and gravity of the roll ends at the tending side and at the driving side are taken into account. The data employed in computing are divided into general calender-specific, nip-specific, and roll-specific data. Thus, the starting-value data necessary for the computing are defined in a roll data base 51, in a roll material data base 52, in a set-of-rolls mass data base 53, in a data base of geometry of the articulated linkage in the calender, i.e., in the set-of-rolls data base 54, as illustrated schematically in
The way in which the calender in accordance with the invention can be made to operate in the desired way, i.e., in which the forces that support the intermediate rolls are determined, is derived from the procedure in accordance with the invention, by whose means the ratio of the linear loads applied to the intermediate rolls, the weight of such rolls, and the support forces applied to such rolls is adjusted to such a level that a pre-determined state of deflection prevails in the area of the set of rolls. In the determination of the deflection of each roll, it is also possible to include a possible mode of grinding of the roll concerned, or the roll in nip contact with the same, to a shape different from the traditional cylindrical shape, such as a positive or negative crown.
When the basic load and the correction of linear load produced by means of the variable-crown rolls operating as end rolls are taken into account in the solution of the equations of deflection of the intermediate rolls, in every case it is possible to achieve such a state of equilibrium for the set of rolls that the distributions of linear load in the nips in the set of rolls correspond to the desired distribution of linear load.
The group of equations that has been formed and that illustrates the conduct of the set of rolls can be solved convergently by means of commonly used numeric solution algorithms of groups of equations. An example of this is
Since normally, the deflection forms of rolls are equal (paraboloidal), in the examination referring to
The deflection of a roll as a result of a deflecting linear load produced on the roll mantle can be expressed by means of the formula:
δ=k·(qts/(Et·1t))
from which the load is obtained by means of the deflection:
qts=((Et·1t)/k)·δt0
The sum of the loads that deflect the intermediate rolls in the whole set of rolls:
ΔQ=Σqts=Σ(((Et·1t)/k)·δt_
The load deflects the roll mantle expressed by means of component loads:
qts=Gtv/L+qty−qta+qti
When it is taken into account that, in an intermediate nip between rolls, the upper and lower nip loads of adjacent rolls are of equal magnitude, the sum of the loads that deflect the intermediate rolls in the whole set of rolls is obtained as:
ΔQ=Σqts=Σ(Gtv/L)+qyy−qaa+Σqti
When the deflections of the rolls are denoted equal and when they are substituted further, what is obtained is:
δ=δt
ΔQ=δ/k·Σ(Et·1t)
δ=δt=o,=(ΔQ·k)/Σ(Et·1t)
When this is substituted further in the formula of the load that deflects a roll, what is obtained is:
qts=(Et·1t)/Σ(Et·1t)·ΔQ
Regarding the equilibrium of forces in a roll, the required support force per side is solved:
Ftk=½·qts·L+Gtp
Ftk=½·(Et·1t)/Σ(Et·1t)·ΔQ·L+Gtp
The computing of the support forces of the set of rolls in the calender, expressly of the entire set of rolls, is based on knowledge of the exact physical properties of the rolls, i.e., the conduct of all the rolls is known when deflecting loads of different magnitudes are applied to the rolls. It is a basis of the computing that the bearing support forces applied to each roll are determined so that the entire set of roll obtains an equally high calculatory deflection. Thus, by means of regulation of the support forces, it is possible to affect the ratio of the upper nip load and the lower nip load at an individual roll so that the sum of these loads, together with the respective mass of the roll, produces the same predetermined deflection in each individual roll.
The computing can be applied to a set of rolls of any kind whatsoever in a calender, which set of rolls is placed in a substantially vertical position, in which set of rolls the upper roll is an adjustable-crown roll and the lower roll likewise an adjustable-crown roll, the axial distribution of support forces of the upper and lower roll being adjustable, and in which set of rolls there are at least two intermediate rolls between the upper roll and the lower roll. Further, it is an important requirement that all the rolls in the set of rolls are supported so that their deflection lines are downwards curved when the nips are closed.
It is an important characteristic feature of the method, the arrangement, and the calender in accordance with the invention that, when computing the linear loads in the set of rolls, the physical properties of each intermediate roll that affect the deflection under load, such as bending rigidity, mass, shape, and material properties, are taken into account.
It is a further property that the bearing support forces of the intermediate rolls are determined by means of computing so that the overall load applied to each intermediate roll subjects each intermediate roll substantially to a calculatory deflection such that the deflection forms of the contact faces of each roll, and the roll(s) in contact therewith in a nip, substantially correspond to one another.
The nip forces in a calender are regulated so that the difference between the nip forces of the uppermost nip and the lowest nip in the calender is determined to be at the desired level. This means, in fact, the regulation of the loading angle α that was described in relation to
To briefly summarize the foregoing, it can be stated further that it is an important feature of the invention that all the intermediate rolls in the set of rolls are supported to a greater extent than what is required by the pin forces (all mass outside the web). In such a case, the deflection lines of the rolls are downwards curved and substantially paraboloidal (parabolic). The support forces of each intermediate roll are regulated so that the deflection of the roll is adapted to the shapes of the other rolls in the set of rolls. Thus, the computing is carried out by means of the deflections. In this way, a group of equations is obtained in which the basic load between the rolls is determined so that the deflections of all the rolls are substantially equal. Thus, an equilibrium of forces is produced in the set of rolls. As the loading angle α, it is possible to use any loading angle whatsoever, and the regulation of the loading angle α is carried out by means of outside loading members through the lower roll and the upper roll. As a result, in the regulation of the deflection, the variable is the support force with which the roll is supported. Any errors produced by the mass of the areas outside the web in the distribution of linear load (and possibly other errors in the distribution of linear load) are corrected by means of the adjustable-crown upper and lower rolls.
As shown in
In a conventional supercalender, the set of rolls comprises a stack of rolls placed in a substantially vertical or obliquely vertical position, wherein the rolls rest one on the other and the pin loads applied to the bearing housings of the rolls have been relieved hydraulically. The loading and profiling of the set of rolls is taken care of by means of variable-crown upper and lower rolls.
In the alternative mode of loading shown in
A force F2 is applied to the bearing housings of the upper and more flexible roll 201 in the pair of rolls 200, for example a hydraulic force, and by whose means, besides relief of the pin loads, any error in the distribution of linear load between the rolls may be compensated for. Such errors might arise from the different rigidities of the rolls 201,202. This can be illustrated by means of the formula:
2F2=madd2,
Thus, the upper roll 201 rests with its own weight m2 (from which the pin loads have been “cleaned”) on the lower roll 202 and applies an even linear load m2/L to the lower roll, wherein L is the axial length of the nip N between the rolls 201,202. On the other hand, a force F1 is applied to the bearing housings of the lower roll 202 in the pair of rolls 200, by means of which force the mass of both rolls 101,102 in the pair of rolls 200 as well as the pin loads of the lower roll 202 are supported. This can be illustrated by means of the formula:
2F1=m1+m2+madd1,
Thus, in an optimal situation, between the separate pairs of rolls 200, no forces arising from the mass of the rolls are effective at all. In the nip N between the rolls 201,202 of the pair of rolls 200, exclusively the linear load arising from the mass of the upper roll 201 is effective, for example about from about 10 to about 20 kN/m. Owing to the differences between individual rolls, the whole set of rolls must be treated as a whole, and the reliefs of each roll must be optimized so that the cross-direction profile of linear load of the whole unit is as straight as possible and the linear load arising from the mass of the rolls is as low as possible. In this manner, a set of rolls with almost uniform loading is obtained, which set of rolls is, in most other respects, loaded in the manner described above. For example, when a load of about 300 kN/m is 1 considered as the load level, in every second nip there is a difference in loading of about 5 percent only, as compared with the preceding or the following nip, i.e., with existing rolls, a substantially even distribution of load is achieved.
Above, in connection with the description related to
In the regulation of loading carried out by the pair of rolls, in the set of rolls in a supercalender, compared with the illustration of
In the embodiment shown in
In
In
With reference to
After the computing operation, the optimized support forces of the intermediate rolls in the set of rolls of the calender are transferred to the support cylinders of intermediate rolls, as illustrated, for example, in
With regard to the process conditions of calendering, it can be stated generally that they are determined by the capacities of the components that are used as rolls, as is also ordinary in calender technology. Further, restrictive factors in the process include the desired properties of paper, such as bulk (stiffness), smoothness/roughness, and gloss, in particular gloss of printing paper. As examples of process conditions, reference is made to U.S. Pat. Nos. 4,749,445 and 4,624,744 by S. D. Warren. A possible range of surface temperature of a heatable, so-called thermo roll is Ts=about 60° C. to about 250° C., depending on the running speed so that the surface temperature is lower at low running speeds and higher at high running speeds. This is because the time of effect of the nip is shorter and thus, the transfer of heat from the thermo roll to the web face is lower. The range of variation of linear load can be from about 20 kN/m to about 550 kN/m or even higher, again depending on the running speed and the properties of the variable-crown upper and lower rolls that produce the linear load in the supercalender.
Above, some preferred embodiments of the invention have been described, and it is obvious to a person skilled in the art that numerous modifications can be made to these embodiments within the scope of the inventive idea defined in the accompanying patent claims. As such, the examples provided above are not meant to be exclusive. Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 09/156,232 filed Sep. 18, 1998, now abandoned, which in turn is a continuation-in-part of U.S. patent application Ser. No. 09/074,723 filed May 7, 1998, now abandoned, which claims domestic priority of U.S. Provisional Patent Application Serial No. 60/045,871 filed May 7, 1997.
Number | Name | Date | Kind |
---|---|---|---|
4597326 | Kultaranta | Jul 1986 | A |
4625637 | Pav et al. | Dec 1986 | A |
4644860 | Brendel | Feb 1987 | A |
4903517 | Van Haag et al. | Feb 1990 | A |
4936207 | Niskanen et al. | Jun 1990 | A |
5029521 | Pav et al. | Jul 1991 | A |
5226357 | Schiel | Jul 1993 | A |
5343801 | Schiel | Sep 1994 | A |
5438920 | Koivukunnas et al. | Aug 1995 | A |
5662037 | Van Haag | Sep 1997 | A |
5791242 | Kayser et al. | Aug 1998 | A |
6129011 | Cramer | Oct 2000 | A |
Number | Date | Country | |
---|---|---|---|
60045871 | May 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09156232 | Sep 1998 | US |
Child | 09303587 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09074723 | May 1998 | US |
Child | 09156232 | US |