Not applicable.
The present invention relates to paper and board machines. More specifically, the present invention relates to a method and an arrangement for controlling evaporation and moisture in a multinip calender when a continuous fibrous web is calendered in calendering nips placed one after the other before the fibrous web is wound on a reel-up/winder.
Calendering is a method by means of which the properties, such as smoothness, of a web-like material, such as a paper or board web, are sought to be generally improved. In calendering the web is passed into a nip which is formed between rolls pressed against each other and in which the web is deformed by the action of temperature, moisture and nip load, in which connection the physical properties of the web can be affected by controlling the above-mentioned parameters and the time of action, and the obtained smoothness is a function of the work done to the web.
In the papermaking art, grades of ever higher quality are required today. As the running speeds required of paper machines are continuously increasing, the direction in calendering technology is more and more towards on-line solutions, which include soft calendering and multinip on-line calendering. When the aim is to make higher quality printing paper grades having a PPS surface smoothness <2 μm, such as, for example, SC-A and LWC-roto grades and glossy coated paper grades, a substantial problem is that these kinds of grades can be produced in practice only by using, after drying a fibrous web, intermediate winding and off-line supercalenders, several of said supercalenders, usually three, being used side by side to meet production capacity.
Linear load increases in multinip calenders from the top nip to the bottom nip because of the force of gravity. In order to eliminate this downwardly increasing linear load, to control the deflection line of the roll, and also to quickly open the set of rolls, today's multiroll calenders employ roll relieving which is accomplished by means of a cylinder and lever arm mechanism and which compensates for the force of gravity. One such relieving system for rolls is provided in OptiLoad™ calenders.
Smoothness/work done on OptiLoad™ calenders roughly complies with the pattern shown in the graph of FIG. 2.
By means of the initial moisture content of the web before the calender and by means of the calendering temperature and steam treatments of the web the smoothness/impulse curve can be displaced, in particular in the temperature range of 100 EC-150 EC, typically by 0.2 μm in the smoothness scale in its direction.
Today, calendering problems are mainly caused by the following matters.
Because of these matters, the real control variables of a modern calender are relatively limited and the operating window of a single calender has become relatively narrow with increasing drying capacity of the calender. Today, quality can be successfully improved in practice only by increasing the number of nips of the calender. In connection with this, the controllability problem is aggravated by the fact that with increasing number of nips, difficulties also increase in setting the initial moisture content and initial temperature of the web such that curl of the web is avoided and that the web is still sufficiently moist in the lowermost nips of the calender and thus mouldable, which is of high significance for achieving smoothness in particular and also density.
In known multinip calenders, the web is usually passed from one nip to another by means of take-out or turning rolls, which are each situated at the take-out of the nip. It is also known that in connection with the take-out of the nip there are provided different steam boxes, spray devices and equivalent, by which attempts are made to control the change of the moisture content of the web.
Today, the final and initial moisture contents are largely dependent on the properties of fibre material and on the functional properties required of the end product, and since the best result is achieved by simultaneously controlling the calendering and final moisture content, which should be close to the equilibrium moisture content in a situation of final use in order to avoid large roughening and dimensional change effects, the primary object of the invention is not only to reduce the above-noted drawbacks and problems associated with calendering but also to generally improve control of evaporation and moisture in the calender in order to increase the quality potential at a given impulse level. Evaporation and drying of the web occurring in different running situations are strongly dependent on running speed, linear load and temperature, wherefore moisturizing and, thus, final quality and final moisture content are very difficult to control in different situations when there is a change in the calender. For this reason, an object of the invention is also to improve controllability in order that the moisture content of the web might be controlled in different situations of operation of the calender, for example, when there are changes in speed, roll temperatures and linear load.
The invention is thus based on the new and inventive idea that by replacing one or more take-out rolls with an air-float chamber of the turning airborne type, the net evaporation from and the final moisture content of the web can be made constant in different running situations. Thus, in accordance with the invention, it is advantageous that the calender comprises an air-float chamber of the turning airborne type in connection with the outlet of at least one nip. In a multiroll calender, the best result is achieved when there are several air-float chambers and preferably in connection with the outlet of each nip, in which connection moisture and evaporation can be made constant in the area of the entire calender, with the result that the web is not subject to large drying/moisturizing cycles, which is advantageous from the point of view of strength, dimensional stability, curling and after-roughening.
As an essential advantage associated with the invention it shall be further mentioned that by means of the invention retaining of the core moisture in the web is improved and, owing to this, higher temperatures can generally be used in calendering. The most effective way to mould, for example, paper is to mould fibre polymers at temperatures which are higher than the glass transition temperature, wherefore a substantial increase in temperature becomes possible in particular in multinip calenders with 6 and 8 rolls. With respect to advantages, it may be further mentioned that air-conditioning in the machine hall can be reduced and, in connection with SC paper, steam boxes can be dispensed with.
When the moisture level in a paper web is 5-10%, so-called glass transition temperatures are in the range of 120-90 EC, said glass transition temperature being the middle of the glass transition region characteristic of each fibre polymer pulp, such as mechanical and chemical fibre pulp, and the mouldability of pulp and thereby its capability of being calendered being at their best at said glass transition temperature. In a multinip calender with 6 or 8 rolls, in which the surface temperatures of the rolls are today typically 140-150 EC, because of high running speeds, the temperature of the web can rise only to the level of 80-70 EC, which is substantially below optimal calendering temperature, but the moisture control according to the invention makes it possible to preserve the core moisture of the web and thus to use higher calendering temperatures, with the result that the temperature of the web can be raised to an optimal level of 120-90 EC corresponding to the glass transition temperature. In calenders with 10 and 12 rolls, the temperature of the web rises because of the longer dwell time to a clearly higher level than in calenders with 6 and 8 rolls. In today's calenders with 10 or 12 rolls, typical drying of the web in the last nips, however, limits the use of temperatures and, in practice, the surface temperatures of rolls remain at about 120 EC and the temperature of the web remains at a level of about 90 EC, which is only just within the optimal calendering temperature range. Controlling moisture in accordance with the invention enables the core moisture of the web to be preserved and thus calendering temperatures to be used which are considerably higher than today's temperatures, i.e. 150 EC max, in which connection the temperature of the web can be raised to a clearly optimal level of 120-90 EC corresponding to the glass transition temperature. A further advantage of the invention is that the arrangement according to the invention for control of the moisture content of the web can be used instead of and/or in addition to steam boxes placed before the calender.
With a view to explaining the advantages and details of the invention, the invention will be described below by means of one embodiment thereof, regarded as advantageous, by way of example with reference to the accompanying patent drawing of
As shown in
Polymer is a general name of macromolecular compounds. In partially crystalline polymers, such as in mechanical pulps, the composition of pulps corresponds to the original composition of wood, in which connection molecules are in the crystalline and amorphous regions. Typically, wood contains three different types of biopolymer: partially crystalline cellulose (crystallinity degree 45-90%), amorphous hemicelluloses and amorphous lignin. The proportion of these to one another varies from tree species to tree species. Norway spruce (Picea abies), which is most commonly used as raw material for mechanical pulp in the Nordic countries, contains about 42% of cellulose, about 28% of hemicelluloses and about 27% of lignin. The lignin content in chemical pulp is lower than in mechanical pulp. Pine sulphate pulp contains about 75% of cellulose, about 19% of hemicelluloses and about 6% of lignin. Deformations occurring in the fibre polymers of such mechanical and chemical pulps are dependent on time and partly irreversible, i.e. viscoelastic. Viscoelastic behaviour substantially depends on the shear rate, the structure of polymers, and temperature. Since the increase of temperature speeds up the movement of molecules and their segments, the increase of temperature causes the amorphous phase to react more quickly to an external force. In that connection, permanent deformations are brought about in the material by an external force of shorter duration. Below a certain temperature specific to each polymer, the amorphous phase is in the glass state, in which amorphous polymers and the amorphous parts of partially crystalline polymers have solidified so as to be hard and brittle. By the action of an external force, in the glass-state amorphous phase there may occur, in addition to reversible deformation (elastic component), permanent deformation (viscous component), which is called plastic deformation. An increase in the temperature of the amorphous phase occurring in the glass-state region does not affect its viscoelastic behaviour to any significant extent. When the temperature of polymer rises to the glass transition region, all the physical and mechanical properties of the amorphous phase of the polymer change drastically and a considerable increase in the proportion of the viscous component is observed in the viscoelastic behaviour of the amorphous phase. The middle of the glass transition region is known as the so-called glass transition temperature. Below the glass transition temperature, large-scale fast segmental movements of amorphous polymers are totally inhibited, but by raising the temperature in the glass transition region a situation is reached in which polymer segments are capable of sliding past one another because of their thermal energy. As an example of glass transition temperatures it may be mentioned that in bone dry conditions, depending on the crystallinity degree, the glass transition temperatures vary as follows:
Moisture has a lowering effect on these temperatures. It shall be noted that lignin is capable of absorbing moisture only to a limited degree, and its glass transition temperature remains constant when the moisture content exceeds 2.5%, and that when the moisture level rises over 5%, it can be found that mechanical pulp has two different glass transition temperatures, a lower one for the cellulose fraction and an upper one for the lignin fraction.
As shown in
From the topmost nip 1, the web W passes further into a secondary moisturizing device 21, 22 which is disposed in connection with the outlet of the first nip 1 and between the outlet of the roll pair 11, 12 forming the topmost nip 1 and a take-out or turning roll 7 placed after the roll pair and referred to hereafter with the term “turning roll”. After the secondary moisturizing device 21, 22, the web W runs over the turning roll 7 into the second calendering nip 2, which is formed, like the first nip 1, advantageously between a smooth-surface press roll 12, such as a metal roll, and a roll 13 covered with a resilient cover, such as a polymer roll. A difference between the first and second nips 1 and 2 is that the roll 11 covered with a resilient cover is the upper roll in the first nip 1, while the roll 13 covered with a resilient cover is the lower roll in the second nip 2.
The web W passes from the second nip 2 into an air-float chamber 20 of the turning airborne type of the invention disposed in connection with the outlet of the second nip 2, which chamber also functions as a means for turning the running direction of the web W and for guiding it into the third nip, which is the reversing nip 3 of the calender, said nip being between two rolls 13 and 14 covered with a resilient cover, such as polymer rolls, in which connection work is done to both sides of the web W by means of a resilient-surface roll. In that connection, no turning roll is needed in the portion between the second nip 2 and the third nip 3.
The web W runs from the third nip 3 over a turning roll 7 into the fourth calendering nip 4, which is formed, like the first nip 1, advantageously between a smooth-surface press roll 15, such as a metal roll, which is the lower roll of the fourth nip 4, and a roll 14 covered with a resilient cover, such as a polymer roll, which is the upper roll of the fourth nip 4.
From the fourth nip 4 the web W runs again over a turning roll 7 into the fifth calendering nip 5, which is formed, like the second calendering nip 2, advantageously between a smooth-surface press roll 15, such as a metal roll, which is the upper roll of the fifth nip 5, and a roll 16 covered with a resilient cover, such as a polymer roll, which is the lower roll of the fifth nip 5.
In the exemplifying case shown in
Thus, in accordance with the invention, there is an air-float chamber of the turning airborne type or an equivalent in connection with the take-out of at least one nip 1, 2, 3, 4, 5 of the calender 10 for the purpose of controlling the moisture content of the web W, which chamber is closed and extends across the entire width of the web W. Advantageously, an air-float chamber 20 is placed in connection with the take-out of each nip 1, 2, 3, 4 and 5 of the calender 10, in which connection the compensation of evaporation and moisture is distributed and equalized uniformly over the entire area of the calender 10. This means that the web will not be liable to large drying/moisturizing cycles, which is advantageous from the point of view of strength, dimensional stability, curling and after-roughening.
In the embodiment shown in
In the embodiment shown in
In accordance with an application of another embodiment of the invention regarded as advantageous, the air-float chamber 20 includes, enclosed in a common housing:
The curved surface of the outer blow box 23 substantially corresponds in shape to the curved surface of the inner blow box 24, but its radius of curvature is larger than the radius of curvature of the inner blow box 24 for forming for the web W a passage that extends through the air-float chamber 20 and which is not in contact with the web W.
Since in the secondary moisturizing device in accordance with the invention, the hood parts 21 and 22 as well as the blow boxes 23 and 24 blow a feed pressure, feed temperature and feed quantity, into the outer blow box 23 is independent of the feed of a medium fed into the inner blow box 24 and vice versa, in which connection regulation of the temperature of and evaporation from one side of the web W is independent of regulation of the temperature of and evaporation from the other side of the web W. In order that the moisture content of and evaporation from the web W might also be regulated in the cross direction with respect to the machine direction of the paper machine, it is advantageous that the blow boxes 23 and 24 are compartmentalized or divided in this cross direction, in which connection, for example, the edge parts of the web W can be treated differently from the middle parts of the web.
In accordance with an application of another embodiment of the invention regarded as advantageous, the air-float chamber 20 includes, enclosed in a common housing:
The curved surface of the outer blow box 23 substantially corresponds in shape to the curved surface of the inner blow box 24, but its radius of curvature is larger than the radius of curvature of the inner blow box 24 for forming for the web W a passage that extends through the air-float chamber 20 and which is not in contact with the web W.
Since in the secondary moisturizing device in accordance with the invention, the hood parts 21 and 22 as well as the blow boxes 23 and 24 blow a medium to the opposite surfaces of the web W, the blow flows act as blow flows that reduce the medium flow through the web W, which, on the one hand, assures contactless running of the web W through the secondary moisturizing device 21, 22 and through the air-float chamber 20 and, on the other hand, facilitates the forming of a medium bed, causing the web W to float, between the web W and the lower hood part 22 or the inner blow box 24. An advantage of the medium flows supplied to both sides of the web W is also that the different sides of the web can be treated independently of each other in different ways.
In this connection, it must be noted that, from the point of view of operativeness of the invention, it is not necessary to apply medium flows to both sides of the web W in the secondary moisturizing device 21,_22 or in the air-float chamber 20, since it is sufficient for adequate control of evaporation and moisture that the medium flow is applied only to one surface of the web W, in which connection it is advantageous that the medium flow is directed at the web such that it is possible to achieve the effect of floating the web W.
Above, the invention has been described only by way of example with the help of some of its embodiments regarded as advantageous. This is, of course, not intended to limit the invention and, as is clear to a person skilled in the art, many different alternative arrangements and modifications are feasible within the inventive idea and in its scope of protection defined in the accompanying claims. It shall be particularly noted that the invention can be used widely in different multinip calender applications and that also other gaseous mediums can be used instead of air and steam
Number | Date | Country | Kind |
---|---|---|---|
20000788 | Apr 2000 | FI | national |
This application is a U.S. national stage application of International Application No. PCT/F101/00319, filed Apr. 3, 2001, and claims priority on Finnish Application No. 20000788 filed Apr. 4, 2000, the disclosures of both of which applications are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTFI01/00319 | 4/3/2001 | WO | 00 | 1/29/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0175224 | 10/11/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4342413 | Reba | Aug 1982 | A |
4642164 | Hanhikoski et al. | Feb 1987 | A |
4763822 | Mohrsen | Aug 1988 | A |
4804125 | Vits | Feb 1989 | A |
5045342 | Boissevain et al. | Sep 1991 | A |
5950899 | Bassa | Sep 1999 | A |
6004432 | Page et al. | Dec 1999 | A |
6207019 | Zwart et al. | Mar 2001 | B1 |
6634120 | Helmer et al. | Oct 2003 | B1 |
6694640 | Kayser | Feb 2004 | B1 |
Number | Date | Country |
---|---|---|
1 026 318 | Aug 2000 | EP |
WO 0079049 | Dec 2000 | WO |
WO 0175224 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040025720 A1 | Feb 2004 | US |