The present invention relates to telecommunication systems in general, and specifically to methods and arrangements for improved channel-dependent time-and-frequency-domain scheduling in an Orthogonal Frequency Division Multiplex (OFDM) based telecommunication system.
In the area of user resource allocation for wireless fading channels, great effort is presently focused on scheduling [1-2]. Scheduling algorithms can typically be classified into channel-dependent or channel-independent scheduling according to the dependence on the channel. An example of such an algorithm is Round Robin (RR), a typical channel-independent scheduling, which benefits from simplicity at the price of poor performance.
The class of channel-dependent scheduling algorithms utilize the so-called channel state information (CSI) or channel quality indicator (CQI) in order to improve the system performance.
For OFDM systems, the above mentioned channel-dependent scheduling can be further classified into so called time-domain scheduling, where a single user or user terminal per frame is scheduled in a given time scale, and so called time-and-frequency-domain scheduling, where multiple users per frame are scheduled exclusively in a given time scale. The time-and-frequency-domain scheduling, hereinafter referred to as frequency-domain scheduling, has previously been shown to provide better performance than the time-domain scheduling due to the multi-user diversity in the frequency domain, especially for wideband transmissions [1]. However, the frequency-domain scheduling requires CSI or CQI feedback once per frequency-domain resource unit, which requires extensive overhead signaling that is much higher than that for time-domain scheduling, i.e. one feedback for the whole band at a time. In addition, there are many different detailed criteria for the frequency-domain scheduling, such as Max-CIR, Proportional-Fair (PF), weighted-queue-PF etc [3], for both frequency-domain and time-domain scheduling.
For the class of channel-dependent scheduling algorithms the time-domain scheduling has the advantages of low computational complexity and low signaling overhead (for it self and power allocation, link adaptation afterwards as well). However, due to the frequency-selectivity along the wideband, the time-domain scheduling cannot guarantee that the scheduled user performs well on the whole band, therefore, can hardly achieve good performances in capacity and coverage.
Frequency-domain scheduling schemes perform the criteria in the more refined sub-group (e.g. chunk) of the whole band, and utilize the multi-user diversity as well, so that the performances in capacity and coverage are greatly improved as compared to the time-domain scheduling schemes.
However, the disadvantages of the otherwise advantageous frequency-domain scheduling increase as the performance improves. Specifically, the computational complexity increases greatly with the number of chunks and the system load. In addition, since the scheduled user terminals may be different from one chunk to another, a large quantity of DL signaling is required for the frequency-domain adaptation (FDA), including the chunk allocation and the subsequent power allocation and link adaptation per user. The signaling overhead thus increases linearly with the increasing bandwidth, i.e. with the number of chunks, and with the system load, i.e. the number of users.
These disadvantages have prevented, up until now, the further exploitation of channel-dependent time-and-frequency domain scheduling.
Consequently, there is a need for methods and arrangements enabling exploiting the advantages of channel-dependent time- and frequency domain scheduling whilst at the same time reducing the known disadvantages.
A general problem with known channel-dependent scheduling algorithms is how to utilize the advantageous performance of frequency domain scheduling but without the above described disadvantages.
A general object of the present invention is to provide methods and arrangements for improved channel-dependent frequency-domain scheduling.
These and other objects are achieved according to the attached set of claims.
According to a basic aspect, the present invention comprises determining the load of the system. If the load equals or surpasses a predetermined threshold value, a subset of all the user terminals are pre-selected for scheduling and subsequently scheduled.
Advantages of the present invention comprise:
The invention, together with further objects and advantages thereof, may best be understood by referring to the following description taken together with the accompanying drawings, in which:
To provide a further insight into the disadvantages of channel-dependent frequency-domain scheduling as compared to channel-dependent time-domain scheduling a further detailed discussion and analysis is provided below.
The frequency-domain adaptation (FDA) related signaling overhead in the downlink (DL) consists of the signaling used to inform FDA decisions for each user or user terminal, where the pilot signals for signal to interference noise ratio (SINR) estimation are assumed to be the same for all the schemes, therefore not taken into account in the following.
As an illustrative example, consider a system with Nch chunks in the DL to serve N users per cell, where the number NbitsDCCH of signaling bits per frame is calculated according to the following:
For the example for RR time-domain scheduling, uniform power allocation and single modulation and code scheme (MCS) with continuous coding rate, the considered number of DL signaling bits NbitsDCCH becomes:
N
bitsDCCH=┌ log2(N)┐+(kmod+kcr) [bits/frame], (1)
N
bitsDCCH
=N
ch┌ log2(N)┐+N×(kmod+kcr) [bits/frame] (2)
Accordingly, as recognized by the inventors, if the DL signaling of FDA can be reduced, the efficiency and usefulness of channel-dependent frequency-domain scheduling can be further improved.
A basic embodiment according to the invention thus provides a method of pre-selecting a subset of the active user terminals in a system and performing frequency-domain scheduling, link adaptation and resource allocation for that subset. The remaining set of user terminals are processed subsequently, thereby significantly reducing the DL overhead signaling in each time instance.
A specific embodiment of a method according to the invention will be described below with reference to the schematic flow diagram of
If the determined load of the system is larger than or equal to the predetermined threshold, pre-selection is deemed necessary, and a subset of user terminals are pre-selected S2 for scheduling. The subset of user terminals comprises at least two user terminals and less than all terminals.
Finally, the subset of user terminals is subjected to scheduling S3 and optionally link adaptation and resource allocation according to known measures.
If the threshold is not surpassed, then all user terminals are scheduled in a known manner.
According to a specific embodiment, the pre-selection process can optionally be repeated for a plurality of subsets until the measured load of the system is below the preset threshold or based on some other criteria.
There are several potential criteria for pre-selecting the above mentioned subset of user terminals:
where γ(n) denotes the estimated SINR of user n, the user(s) with the highest SINR(s) according to Equation (3) are selected frame-wise or chunk-wise.
where TPest(n) denotes the estimated throughput of user terminal with index n and TPav(n) stands for the average throughput of user terminal n each frame, the user(s) with the highest ratio(s) of (4) are selected frame-wise.
There may also be other pre-selection criteria based on chunk-wise PF or including other cost functions or quality of service (QoS) for each user terminal.
By utilizing the step of pre-selection, the users are limited to a pre-defined scale in order to reduce the corresponding DL signaling.
Among the pre-selected users, the frequency-domain scheduling, power allocation and link adaptation can be further performed. The non-elected or discarded user terminals can optionally be queued until the next round of signal processing. In this manner the number of bits for the DL FDA signaling of Equation (2) for the simplified PFTF schemes becomes
N
bitsDCCH
=N
sel×┌ log2(N)┐+Nch×┌ log2(Nsel)┐+Nsel×(kmod+kcr) [bits/frame] [5]
where the first term of Equation (5) corresponds to the user index of the pre-selected user terminals.
To illustrate the benefits of the method according to the invention further, a few simulation experiments are presented and described below.
The basic simulation parameters are summarized below in Table 1.
For the simulations the Priority-Fair (PF) criteria in the time-domain (PFT) scheduling represents the channel-dependent time-domain scheduling. The PF in time and frequency domain (PFTF) represents the channel-dependent frequency-domain scheduling. For pre-selection schemes, random selection and PFT selection are considered. Therefore, in the following description four schemes are compared for illustrations, namely:
Two cases of different system load e.g. 8 and 30 user terminals are considered. However, the invention is not limited to those load scenarios. Moreover, for the load of 30 user terminals the impact of the pre-selection bound (4 and 8) is also shown. The DL signaling of the above schemes under different cases are listed below in Table 2.
It can be seen that with any type of user pre-selection, the resulting DL signaling is fixed and much less than the pure frequency-domain scheduling PFTF. Especially in the case of high load, e.g., 30, the DL signaling with user pre-selection is even smaller than the pure PFTF scheme. The reduction ratios (to the signaling of the pure PFTF) are 74% (bound of 4) and 57% (bound of 8), respectively, which are very remarkable.
It also implies that the resulting computational complexity is greatly reduced by the application of user pre-selection according to the invention.
On the other hand, the slight performance loss as the price of signaling reduction deserves observation.
It can be seen that the PFT+PFTF scheme shows a little worse performance than the pure PFTF. Especially in the high load case, the PFT+PFTF scheme with bound of 8 shows very close performance to the pure PFTF.
Of course, there are other options for user pre-selection, which might have even better performance than the ones shown. Therefore, user pre-selection provides the potential to further improve the system performance with limited DL signaling.
A node according to an embodiment of the present invention is configured for enabling the above discussed method according to the invention, and will be described with reference to
A basic embodiment of a node 1 according to the invention comprises a load determination unit 10 which enables measuring or at least acquiring a measure of the present load in the system, a comparing unit 11 that compares the load measure to a preset load measure threshold, and a pre-selection unit 12 that pre-selects a subset of user terminals for scheduling if the load measure surpasses the threshold value. Finally, the node 1 comprises a scheduling unit 13 for scheduling the pre-selected user terminals.
If the threshold is not surpassed by the present load, the scheduling unit 13 is adapted for scheduling all user terminals in a known manner.
Advantages of the Invention comprise:
It will be understood by those skilled in the art that various modifications and changes, including combinations of various embodiments, may be made to the present invention without departure from the scope thereof, which is defined by the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE06/50285 | 8/17/2006 | WO | 00 | 2/10/2009 |