The invention relates to an input mode selection arrangement for an electronic device having a stylus for inputting data via a display screen of the device and to a respective method.
Several types of electronic devices comprise a user interface which enables the user to interact with the device. A typical user interface comprises a display and a keyboard. In addition, portable electronic devices such as compact hand-held devices commonly referred to as PDA (Personal Digital Assistant) devices, hand-held computers and mobile phones are often operated with a pen-like stylus, which may be used to give commands and input data to the device. Commands are typically given by activating menu items shown on a display screen of the device by touching the various icons or areas on the screen. Data may be input to the device by writing or drawing directly on the display screen.
The stylus is thus used basically in two different purposes, to give commands and to input data to the device. Therefore the device typically comprises at least two different input modes, a command mode or a browsing mode and an editing mode. In the former mode the device expects commands from the user, and in the latter mode the device is expects data. There is no possibility for that the device could be aware of the next action of the user of the device. Therefore, in present devices, the user has to give a separate command for the device to inform it that the next action will be inputting data, and not another command, for example. The commands are typically given by pressing a button or selecting a menu command. This operation forces a user to interrupt the action to be performed, execute the command, and continue inputting data after the device has been sent to a mode where it accepts data from the user.
It is an object of the invention to provide an improved method and arrangement for input mode selection. This is achieved by an input mode selection method for an electronic device comprising a display screen, a stylus and at least two input modes. In the method, the input mode of the device is selected on the basis of the interaction type of the stylus with the device.
The invention also relates to a mode selection arrangement for an electronic device having a stylus for inputting data via a display screen of the device, the stylus having at least two interaction types with the device. The device comprises means for detecting the interaction type the stylus uses, and means for selecting the input mode on the basis of the interaction type.
Preferred embodiments of the invention are described in the dependent claims.
The method and system of the invention provide several advantages. In a preferred embodiment of the invention the device monitors the size of the tip of the stylus and selects an input mode on the basis of the detected tip size. Thus, after detecting a smaller tip the device could be in editing mode and after detecting a blunt tip the device could be expecting commands instead of data input. In this way the user can proceed using the device without any needless interruptions. The switch from an editing mode to a browsing mode (where commands are given) may happen by just changing the tip of the stylus.
In another preferred embodiment where the usage of the stylus is not based on touching but emitting a light beam, the device monitors the wavelength of the light beam emitted by the stylus.
In the following, the invention will be described in greater detail with reference to the preferred embodiments and the accompanying drawings, in which
The preferred embodiments of the invention can be applied in electronic devices such as mobile equipment, which is used as terminal equipment in a communication system comprising base stations and terminal equipment communicating with the base stations. In some embodiments of the invention, electronic devices may comprise means for short distance communication. These means may be realized by means of a Bluetooth chip, infrared transceiver or WLAN transmitter (Wireless Lan). The device may be for example a mobile phone, laptop computer, smart phone or another handheld computer device such as a PDA (Personal Digital Assistant). It is not necessary for the device to have any data communication means.
The structure of an electronic device according to an embodiment is illustrated in
The user interface of the device may further comprise a speaker 108, a keypad 110 and a pointing device such as a stylus. The user interface of the device may vary depending on the type of the device. In addition, the device may comprise communication means 112, which may comprise speech and channel encoders, modulators and radio frequency parts, for example, and an antenna 114.
Referring to
Referring to
A method according to an embodiment of the invention is illustrated in a flow chart in
In an embodiment, the size or the form of the tip of the stylus is changed. Thus, a larger tip is used for a certain input mode and a smaller tip is used in another input mode. A smaller tip may be used for editing mode, that is, for giving for example textual or graphical information to the device. A larger tip may be used in browsing mode, that is, for giving different commands to the device.
In a second embodiment, the wavelength emitted by the stylus device is changed. Thus, a given wavelength may used for certain input type and another wavelength may used in another input type. For example, a blue light beam may be used for editing mode, that is, for giving for example textual or graphical information to the device. Correspondingly, a red light beam may be used in browsing mode, that is, for giving different commands to the device.
In the second step 202 the device observes an interaction by the stylus. The user has thus used the stylus as an input device, for example by pressing the tip of the stylus on the touch sensitive surface 104 of the device. The screen detects the touch and sends information about the touching to the control unit 100 of the device.
In step 204 the device determines the type of the interaction. In the first embodiment the device registers the size of the area pressed by the tip of the stylus on the touch sensitive surface 104. In another embodiment the device receives a light beam emitted by the stylus with a light sensitive surface 118 and measures the wavelength of the beam.
In the following step 206 the device selects an input mode on the basis of the interaction type. In the first embodiment the device may compare the determined stylus tip size to given thresholds and on the basis of the comparison determine whether a large or a small tip of the stylus is used. Then, the device selects the input mode that corresponds to the observed tip size. In another embodiment the device compares the measured wavelength to given thresholds and on the basis of the comparison the device may determine the input mode to be used.
In step 208 the device receives input using the selected input mode.
In the example described above the device comprised two input modes. Nevertheless, the number of input modes is not restricted to two. Depending on the type of the device, there may be several different input modes. In a preferred embodiment the number of different interaction types of a stylus used with the device is the same as the number of input types. The invention is not, however, restricted to such an embodiment.
The device may comprise a memory 116, where different threshold values and respective interaction types used by a stylus are stored. When the control unit 100 of the device receives information from the screen 106 about an interaction and also parameters of the interaction, such as the area of the surface which has been touched, the control unit 100 may read different threshold surface areas from the memory 116, compare the received information with the stored threshold values, read the input mode corresponding to the observed value from the memory and select the input mode.
Let us briefly study an example. Assume that the device comprises a touch sensitive surface 104 and two input modes, a browsing mode and an editing mode. One threshold value TH is stored in the memory. Let us assume that the user of the device selects a tip of a given size for a stylus and touches the touch sensitive screen with the stylus. The touch sensitive screen registers the touch and determines the size of area touched, and sends information about the area A to the control unit 100. The control unit reads the threshold TH from the memory 116 and compares the measured area A with the threshold TH. If A<TH, then the control unit determines which input mode corresponds to such a result and selects the correct input mode. In case A≧TH the other input mode is selected.
Even though the invention is described above with reference to an example according to the accompanying drawings, it is clear that the invention is not restricted thereto but it can be modified in several ways within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
02102470.8 | Oct 2002 | EP | regional |
This application is a continuation of International Application PCT/FI2003/000783, with an international filing date of 21 Oct. 2003, which designated the U.S. and which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FI03/00783 | Oct 2003 | US |
Child | 11111326 | Apr 2005 | US |