The present application relates to a method and an arrangement for optimized maintenance of devices providing for increased and predictable availability of the device.
Availability of a technical device, in particular, in the context of large systems such as automation systems, assembly lines, etc. is one of the most important aspects with respect to costs and efficiency of the respective system. Availability, thus, defines the time a certain technical device is operable within its specification. Any technical system consisting of a plurality of technical devices including parts that are subject to wear and tear will fail at some time if the system is not properly maintained. Thus, each technical device or component often has a predictable operating time, also often expressed as a mean time between failure (MTBF). This operating time depends on the complexity of the system or component and also the required maintenance. If properly maintained the MTBF and, thus, the availability of the respective system or device can be increased. Even if the MTBF is known for single components of a complex system, the interaction between components and external conditions may influence the MTBF positively or negatively. Thus, a user of a complex system faces the problem to determine the connection between a maintenance activity of the single components and the effect that this maintenance has on the overall availability of the system. For example, a user would like to know by which degree the availability of a device is increased if, e.g., the lubricating interval for a valve of the system are shortened or enlarged. The result of such influencing factors is not easily obtainable as many other factors might be significant. For the user it is also important to compare the financial costs of the measurement with the benefit received to evaluate any economic utility/cost effectiveness of the measurement.
Therefore, it is an object of the present application to provide for a method and arrangement which properly evaluates and controls the availability of a technical system or technical device.
A method for optimizing the availability of a technical object, comprises the steps of providing a serviceable technical object; defining a service plan; defining a setpoint availability; maintaining the serviceable technical object according to the service plan; determining the actual availability of the serviceable technical object; and automatically adjusting the service plan according to a difference between the setpoint availability and the actual availability.
The step of determining the actual availability of the serviceable technical object can be performed manually by a service personnel. The step of determining the actual availability of the serviceable technical object can also be performed automatically by evaluating at least one sensor value which determines a parameter of the serviceable technical object. The service plan may include a maintenance schedule including, at least one service interval. The service plan may include a task list. The step of adjusting the service plan may include the step of increasing or decreasing the service interval. The step of adjusting the service plan may also include the step of adding or modifying a task. The method steps can be performed for a plurality of serviceable technical objects with a plurality of setpoint availabilities for each object and a plurality of actual availabilities for each object, and the method may comprise the steps of determining a resulting availability from the plurality of actual availabilities; and adjusting each service plan according to each actual availability and according to the resulting availability. Each serviceable technical object can be of the same or similar type.
A system for optimizing the availability of a technical object, comprises a serviceable technical object; means for defining a service plan; means for defining a setpoint availability; means for maintaining the serviceable technical object according to the service plan; means for determining the actual availability of the serviceable technical object; and means for automatically adjusting the service plan according to a difference between the setpoint availability and the actual availability.
A service personnel may determine the actual availability of the serviceable technical object. The system may comprise at least one sensor value for determining a parameter of the serviceable technical object which relates to the availability of the object. The service plan may include a maintenance schedule including at least one service interval. The service plan may also include a task list. The means for adjusting the service plan may increase or decrease the service interval. The means for adjusting the service plan may add or modify a task of the task list. The system may comprise a plurality of serviceable technical objects with a plurality of setpoint availabilities for each object and a plurality of actual availabilities for each object, and may further comprise means for determining a resulting availability from the plurality of actual availabilities, wherein each service plan is adjusted according to each actual availability and according to the resulting availability. Each serviceable technical object can be of the same or similar type.
A method for optimizing the availability of a technical system including a plurality of serviceable technical objects, comprises the steps of defining a service plan for each serviceable technical object; defining a setpoint availability for each serviceable technical object; maintaining each serviceable technical object according to each service plan; determining each actual availability of each serviceable technical object; determining a resulting availability from all determined actual availabilities; and automatically adjusting the service plan according to a difference between the setpoint availability and the actual availability and according to the resulting availability.
Each service plan may include a maintenance schedule including at least one service interval. The service plan may also include a task list. The step of adjusting the service plan may include the step of increasing or decreasing the service interval. The step of adjusting the service plan may include the step of adding or modifying a task. Each serviceable technical object can be of the same or similar type.
Prior art systems do not provide for any means to control and evaluate the availability of a system besides recommending to schedule maintenance of the devices/components of a system according to the manufacturers specification. The effect of maintenance service on the system is today usually unknown. Usually, an operator might merely know the overall downtime of a system, however, the influence of additional maintenance service on the availability of the system is not easily determinable. An operator might define and determine certain maintenance characteristics to evaluate cost effects of the overall maintenance. These characteristics can be the number of unscheduled downtimes, the number and duration of services performed, the productivity per defined interval, etc. However, as explained above these values are merely used to determine the profitability and not used to either improve or evaluate the availability of a system. Even if these numbers are intuitively used to change a maintenance schedule, there is no feedback and documentation about the effect and therefore such measurements are subject to a mere random success or failure. Thus, there is a lack of systematics and lack of consideration of complex interrelationships between the parts and components and no support to actively influence the performance of a system.
However, if the availability is lower than the requested availability then the difference between actual availability and setpoint availability is forwarded to the maintenance service module. The maintenance service module then modifies the existing maintenance schedule and/or task list. For example, one or more specific intervals for specific tasks can be shortened, an additional measurement can be added to the list, etc. Some of these changes can be generated automatically whereas other changes can be performed manually. For example, an additional task to be performed due to special circumstances can be added annually whereas changes in maintenance intervals are computed automatically according to a predefined formula or data base.
If the availability is greater than the requested availability, the scheduled maintenance intervals can be enlarged, thus, reducing overall costs of the system. As explained above, every device, component, or part can have a specific pre-defined maintenance schedule and task list if necessary. Also, the system can provide for a specific or general cost analysis depending on the required availability. The cost analysis may take any increase or decrease in scheduled maintenance into account. In addition, information about the required manpower, time, material, and specific costs can be stored. Such information can be provided for by a respective manufacturer or vendor of the device, part, or component or it can be determined by the operator.
The simplified control circuits do not show any specifically necessary control circuit details, such as a hysteresis or certain control thresholds. However, these can be implemented as necessary.
Preferably, the multiple object control circuit as shown in
In yet another embodiment, any type of control circuit as shown in
Instead of availability other maintenance parameters can be calculated with a system as described above. For example, the number of malfunctions/breakdowns, the required time for unscheduled repairs, etc. Also, costs can be directly assigned to the respective maintenance measurement. Thus, the control circuit can be controlled under pure cost considerations or a combination of cost and efficiency. Furthermore, specific costs, such as hourly rates of maintenance personnel, expendables, etc can be considered. For example, in case of high energy costs, a higher degree of efficiency is more valuable as in case of low energy costs. Thus, a very transparent maintenance can be provided for the operator of a complex system in which according to the respective desire targeted aspects such as costs or efficiency or a combination of it can be considered. The correct maintenance service will, thus, be implemented according to measurable criteria and will be automatically selected. Any random or intuitive measurement will be avoided.
The above described methods can be implemented as a stand alone device, for example on a personal computer, or can be integrated into an existing system such as an automation system or manufacturing execution system with complex control structures and asset management functions.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/23086 | 6/30/2005 | WO | 00 | 12/18/2007 |