The invention relates to a method and arrangement for transmitting and receiving RF signals associated with various radio interfaces of communication systems. The invention finds particular utility in transceivers of general-purpose mobile stations.
Mobile communication systems are developing and expanding rapidly which has led to a situation in which there are in many areas systems complying with several different standards. This has brought about a need for mobile stations that can be used in more than one system. Good examples are the digital systems called GSM (Global System for Mobile communications) and DCS (Digital Cellular System), which operate on different frequency bands but have otherwise similar radio interfaces. In addition, the modulation, multiplexing and coding schemes used may be different. The systems mentioned above use the time division multiple access (TDMA) method; other methods include the frequency division multiple access (FDMA) and code division multiple access (CDMA).
One possible way of making a mobile station capable of operating in multiple systems is to have in the mobile station completely separate signal paths for each system. This, however, would lead to an unreasonable increase in the mobile station size and manufacturing costs. Therefore, the goal is to design a mobile station in which the differences relating to the radio interfaces of the various systems could be largely dealt with by means of programming, instead of having separate signal processing paths.
It is known e.g. from patent application document EP 653851 a transceiver arrangement using one local oscillator the frequency of which falls between the lower operating frequency band and the higher operating frequency band such that one and the same intermediate frequency (IF) can be used for both operating frequency bands. However, the disadvantage of such a solution is that the necessary IF stages make the implementation rather complex, and the manufacturing costs of the device will be high because of the great number of components. Furthermore, the IF stages require filters in order to eliminate spurious responses and spurious emissions. In addition, channel filtering at the intermediate frequency sets great demands on the IF filters.
In a direct-conversion, or zero-IF, receiver the radio-frequency (RF) signal is directly converted into baseband without any intermediate frequencies. Since no IF stages are needed, the receiver requires only a few components, therefore being an advantageous solution for general-purpose mobile stations which have multiple signal branches for different systems. To aid in understanding the problems relating to the direct conversion technique and prior art it is next described in more detail a prior-art solution.
If the received signal is in the DCS frequency band, it is conducted to bandpass filter 106, low-noise amplifier (LNA) 108 and bandpass filter 110. After that the signal is brought to block 112 which produces signal components having a 90-degree phase difference. The in-phase component I and quadrature component Q are further conducted by means of switches 114 and 134 to mixers 116 and 136. The mixers get their mixing signals from a DCS synthesizer 140 the frequency of which corresponds to the received carrier frequency so that the mixing produces the in-phase and quadrature components of the complex baseband signal. The baseband signal is further processed in the receive (RX) signal processing unit, block 139.
If the signal received is a USM signal, switch 104 directs the received signal to the GSM branch which comprises, connected in series bandpass filter 126, low-noise amplifier 128, bandpass filter 130 and phase shifter 132 which generates two signals with a mutual phase difference of 90 degrees. The signals are further conducted by means of switches 114 and 134 to mixers 116 and 136 where the mixing frequency is now determined by a signal coming from the GSM synthesizer 150 via switch 161. The signals produced by the mixers are further conducted to the baseband RX signal processing unit 139.
The DCS synthesizer comprises in a known manner a phase-locked loop (PLL) which includes a voltage-controlled oscillator (VCO) 141 the output signal of which is amplified at amplifier 146 thus producing the synthesizer output signal. The frequency of the signal from oscillator 141 is divided by an integer Y in divider 142 and the resulting signal is conducted to phase comparator 43. Similarly, the frequency of the signal generated by reference oscillator 158 is divided by an integer X in divider 144 and conducted to phase comparator 143. The phase comparator produces a signal proportional to the phase difference of said two input signals, which signal is conducted to a low-pass filter (LPF) 145 producing a filtered signal that controls the voltage-controlled oscillator 141 The phase-locked loop described above operates in a known manner in which the output frequency of the synthesizer becomes locked to the frequency coming to the phase comparator from the reference frequency branch. The output frequency is controlled by varying the divisor Y.
The GSM synthesizer 150 comprises a voltage-controlled oscillator 150, amplifier 156, dividers 152 and 154, phase comparator 153 and a low-pass filter 155. The GSM synthesizer operates like the DCS synthesizer described above, but the output frequency of the GSM synthesizer corresponds to GSM frequency bands.
In the transmitter part, a baseband complex transmit (TX) signal is processed in a TX signal processing unit wherefrom the in-phase and quadrature components of the signal are conducted to mixers 162 and 182 that produce a carrier-frequency signal by multiplying the input signal by the mixing signal. If the transmission is at the DCS frequency, switch 161 selects the DCS synthesizer's output signal as the mixing signal. The carrier-frequency signal is conducted through switch 164 to the DCS branch where a 90-degree phase shift is first produced between the in-phase component and quadrature component, and the resulting signals are then summed, block 166. The resulting DCS signal is conducted to bandpass filter 168, amplifier 170, and bandpass filter 172. The RF signal thus produced is further conducted to the antenna 102 via switch 180.
If the transmission is at the GSM frequency, the output signal of the GSM synthesizer is used as the mixing signal. The resulting carrier-frequency signal is conducted to the GSM branch in which it is processed in the same manner as in the DCS branch blocks 186, 188, 190 and 192. The RF signal thus produced is conducted to the antenna 102 via switch 180. One and the same antenna 102 can be used in both transmission and reception if the TX and RX circuits are coupled to the antenna through a duplex filter, for example. If the apparatus is designed to operate in two or more frequency bands, it needs separate filters for each frequency band.
The circuit arrangement described above has, however, some disadvantages. First, separate carrier-frequency signal branches in the receiver and m the transmitter add to the complexity, size and manufacturing costs of the transceiver. Second, each operating frequency band needs a separate synthesizer of its own.
An object of the invention is to provide a simple solution for realizing a programmable transceiver operating in a plurality of systems in such a manner that the aforementioned disadvantages related to the prior art can be avoided.
In the direct conversion based transceiver according to the invention signal processing can be performed using one and the same signal processing line regardless of the system. This is achieved using the signal processing steps set forth below.
The method according to the invention for processing signals received from different radio interfaces of communication systems is characterized in that it comprises steps in which
The method according to the invention for processing signals transmitted to different radio interfaces of communication systems is characterized in that it comprises steps in which
The direct-conversion receiver according to the invention operating at different interfaces of communication systems is characterized in that it comprises
The direct-conversion transmitter according to the invention operating at different radio interfaces of communication systems is characterized in that it comprises
Other preferred embodiments of the invention are described in the dependent claims.
In the present invention, signal band limiting is advantageously performed at the baseband frequency so that there is no need for “steep” filters and, therefore, system-specific filter lines. Filtering can thus be performed as low-pass filtering using a filter with a controllable cut-off frequency. This way, it is possible to completely avoid separate system-specific channel filtering circuits.
To enable the generation of mixing frequencies of the different operating frequency bands by one and the same synthesizer it is advantageously used frequency division of the synthesizer output signal. If the synthesizer's operating frequency is set higher than the frequencies used in the systems, it is possible to generate, in conjunction with the synthesizer frequency division, two mixing signals with a 90-degree phase difference, thus avoiding the need for phase shifters on the signal line and achieving a good phase accuracy.
Using the solution according to the invention it is possible to realize a general-purpose transceiver which is considerably simpler and more economical to manufacture than prior-art solutions. The circuit arrangement according to the invention requires only one TX signal branch and one RX signal branch. Moreover, one and the same synthesizer may be used to generate the mixing signals. Furthermore, there is no need for channel filters operating at the radio frequency. Therefore, the circuitry can be easily integrated. Since the invention involves only a few components, the advantages of the transceiver according to the invention include small size and low power consumption.
The invention will now be described in more detail with reference to the accompanying drawing wherein
The signal is then conducted to a mixer 5 in which the carrier-frequency signal is mixed with an RX mixing signal at the receive frequency to produce a baseband quadrature signal. The RX mixing signal is advantageously generated by a synthesizer 10 the output signal frequency of which is divided by a divider 11 so as to correspond to the selected receive frequency. The synthesizer 10 operates in a similar manner as the synthesizers depicted in
The synthesizer output signal is divided in divider 11 by N1 so that the RX mixing signal corresponds to the selected receive frequency band. The output frequency of the synthesizer may be e.g. in the 4-GHz band, so that with 2-GHz systems the synthesizer output frequency is divided by two, and with 1-GHz systems it is divided by four (N1). This way, systems operating in the 1-GHz and 2-GHz bands can be covered with a synthesizer the operating frequency band of which is narrow with respect to the operating frequency.
To produce a quadrature baseband signal the mixer needs two mixing signals with a phase shift of 90 degrees. Phase-shifted components may be produced by a phase shifter in connection with the mixer or they may be produced as quotients generated already in the frequency divider 11, thus achieving an accurate phase difference. Therefore, it is advantageous to use a synthesizer operating frequency which is a multiple of the highest system frequency.
The in-phase component 1 and quadrature component Q from the mixer 5 are further conducted to low-pass filters 6. The higher cut-off frequency of the low-pass filters is advantageously controllable with control signal FX3. Thus the filtering can be performed at a bandwidth corresponding to the selected radio interface, and since the filtering is performed at baseband, it is easy to get the filtering function steep. Also, no strict demands are set on the bandpass filtering (2) of the RF signal.
The baseband signal is further conducted to a gain control block 7 which possibly includes an offset voltage correction block. On the other hand, considering the broad bandwidth of the CDMA system, the offset voltage can easily be removed by high-pass filtering. The amplifier advantageously realizes automatic gain control (AGC). Finally, the signal is convened digital in an analog-to-digital converter 8, and the digital baseband signal is further processed in a digital signal processor (DSP) 9. Channel filtering may also be performed digitally in the DSP, whereby the low-pass filtering of the baseband signal may be performed using a fixed cut-off frequency. Then, however, the dynamics of the analog-to-digital converter must be considerably better.
In the transmitter part, a quadrature baseband signal is first digitally generated in block 9 on the basis of the information signal to be sent. The components of the digital signal are converted analog by digital-to-analog converters 14, whereafter the analog signals are low-pass filtered by low-pass filters 15. Advantageously, the cutoff frequency of the low-pass filters can be controlled with control signal FX4 so as to correspond to the specifications of the selected radio interface.
A TX mixing signal at the carrier frequency is generated by a synthesizer 13 and divider 12. The synthesizer 13 operates in a similar manner as the synthesizer 10 in the receiver pan. Moreover, the synthesizers may share a reference oscillator. The frequency of the synthesizer output signal is controlled with control signal S2 within the synthesizer's operating frequency range. The frequency of the output signal from synthesizer 13 is divided in divider 12 so as to correspond to the selected transmission frequency band. Components phase-shifted by 90 degrees are generated from the TX mixing signal in order to perform complex mixing in mixer 16. The phase-shifted components may be generated in the same way as in the receiver part.
The signal at the carrier frequency is then amplified in an amplifier 17, the gain of which is advantageously controllable in order to set the transmission power and realize automatic gain control (AGC). The control signal is marked GX3 in
The RF signal generated is filtered by a bandpass filter 3. The pass band of the bandpass filter is advantageously controllable with control signal FX2. This can be realized in the same way as in the receiver part. The receiver and transmitter part filters 2 and 3 are advantageously realized in duplex filter pairs for each transmit-receive frequency band associated with a given system. The filters may advantageously be surface acoustic wave (SAW) or bulk acoustic wave (BAW) filters so that several filters with their switches may be attached to one component.
The control signals in the mobile station transceiver according to
The implementation of the blocks described above is not illustrated in more detail as the blocks can be realized on the basis of the information disclosed above, applying the usual know-how of a person skilled in the art.
Above it was described embodiments of the solution according to the invention. Naturally, the principle according to the invention may be modified within the scope of the invention as defined by the claims appended hereto, e.g. as regards implementation details and fields of application. It is especially noteworthy that the solution according to the invention may be well applied to communication systems other than the mobile communication systems mentioned above. Apart from the cellular radio interface proper, the solution may be used to realize e.g. a GPS receiver for the location of a mobile station or other apparatus. Furthermore, the operating frequencies mentioned are given by way of example only, and the implementation of the invention is in no way restricted to them.
It is also noteworthy that the solution according to the invention may be applied to all current coding techniques such as the narrow-band FDMA (Frequency Division Multiple Access) and TDMA (Time Division Multiple Access), as well as the broadband CDMA (Code Division Multiple Access) technique. In addition, the solution according to the invention may be used to realize an FM (Frequency Modulation) receiver.
Below is a table listing some of the so-called second generation mobile communication systems to which the present invention may be applied. The table shows the most important radio interface related characteristics of the systems.
Below is another table listing some of the so-called third generation mobile communication systems to which the present invention may be applied. The table shows the most important radio interface related characteristics of the system.
Number | Date | Country | Kind |
---|---|---|---|
982559 | Nov 1998 | FI | national |
This application is a continuation of U.S. application Ser. No. 14/272,191, filed May 7, 2014, which is a continuation of U.S. application Ser. No. 13/614,272, filed Sep. 13, 2012, which is a continuation of U.S. application Ser. No. 12/136,465, filed Jun. 10, 2008, which is a continuation of U.S. application Ser. No. 09/856,746, filed May 24, 2001 (issued as U.S. Pat. No. 7,415,247 on Aug. 19, 2008), which is a U.S. national stage of PCT/FI99/00974, filed Nov. 25, 1999, which is based on and claims priority to Finnish application no. 982559, filed Nov. 26, 1998, all incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4254504 | Lewis et al. | Mar 1981 | A |
4395776 | Naito et al. | Jul 1983 | A |
4731796 | Masterton et al. | Mar 1988 | A |
4736390 | Ward et al. | Apr 1988 | A |
4761798 | Griswold, Jr. et al. | Aug 1988 | A |
4768187 | Marshall | Aug 1988 | A |
4870699 | Garner et al. | Sep 1989 | A |
4972455 | Phillips et al. | Nov 1990 | A |
5187809 | Rich et al. | Feb 1993 | A |
5291516 | Dixon et al. | Mar 1994 | A |
5438692 | Mohindra | Aug 1995 | A |
5465409 | Borras et al. | Nov 1995 | A |
5483691 | Heck et al. | Jan 1996 | A |
5511235 | Duong et al. | Apr 1996 | A |
5519885 | Vaisanen | May 1996 | A |
5548825 | Maemura et al. | Aug 1996 | A |
5557642 | Williams | Sep 1996 | A |
5564076 | Auvray | Oct 1996 | A |
5574985 | Ylikotila | Nov 1996 | A |
5584068 | Mohindra | Dec 1996 | A |
5590412 | Sawai et al. | Dec 1996 | A |
5642378 | Denheyer et al. | Jun 1997 | A |
5694414 | Smith et al. | Dec 1997 | A |
5710998 | Opas | Jan 1998 | A |
5722053 | Kornfeld et al. | Feb 1998 | A |
5732330 | Anderson et al. | Mar 1998 | A |
5734970 | Saito | Mar 1998 | A |
5751249 | Baltus et al. | May 1998 | A |
5752169 | Hareyama et al. | May 1998 | A |
5757858 | Black et al. | May 1998 | A |
5758266 | Kornfeld et al. | May 1998 | A |
5758271 | Rich et al. | May 1998 | A |
5786782 | Ostman et al. | Jul 1998 | A |
5794119 | Evans et al. | Aug 1998 | A |
5794159 | Portin | Aug 1998 | A |
5796772 | Smith et al. | Aug 1998 | A |
5819165 | Hulkko et al. | Oct 1998 | A |
5822366 | Rapeli | Oct 1998 | A |
5825809 | Sim | Oct 1998 | A |
5867535 | Phillips et al. | Feb 1999 | A |
5872810 | Philips et al. | Feb 1999 | A |
5894592 | Brueske et al. | Apr 1999 | A |
5896562 | Heinonen | Apr 1999 | A |
5909643 | Aihara | Jun 1999 | A |
5926749 | Igarashi et al. | Jul 1999 | A |
5926750 | Ishii | Jul 1999 | A |
5953641 | Auvray | Sep 1999 | A |
5955992 | Shattil | Sep 1999 | A |
5963852 | Schlang et al. | Oct 1999 | A |
5983081 | Lehtinen | Nov 1999 | A |
6006080 | Kato et al. | Dec 1999 | A |
6009119 | Jovanovich et al. | Dec 1999 | A |
6009126 | Van Bezooijen | Dec 1999 | A |
6014571 | Enoki | Jan 2000 | A |
6018553 | Sanielevici et al. | Jan 2000 | A |
6028850 | Kang | Feb 2000 | A |
6029052 | Isberg et al. | Feb 2000 | A |
6029058 | Namgoong et al. | Feb 2000 | A |
6049722 | Umemoto et al. | Apr 2000 | A |
6054887 | Horie et al. | Apr 2000 | A |
6075996 | Srinivas | Jun 2000 | A |
6081697 | Haartsen | Jun 2000 | A |
6085075 | Van Bezooijen | Jul 2000 | A |
6125268 | Boesch et al. | Sep 2000 | A |
6134452 | Hufford et al. | Oct 2000 | A |
6151354 | Abbey | Nov 2000 | A |
6163710 | Blaser et al. | Dec 2000 | A |
6167245 | Welland et al. | Dec 2000 | A |
6169733 | Lee | Jan 2001 | B1 |
6175746 | Nakayama et al. | Jan 2001 | B1 |
6188877 | Boesch et al. | Feb 2001 | B1 |
6194947 | Lee et al. | Feb 2001 | B1 |
6208875 | Damgaard et al. | Mar 2001 | B1 |
6215988 | Matero | Apr 2001 | B1 |
6243569 | Atkinson | Jun 2001 | B1 |
6256511 | Brown et al. | Jul 2001 | B1 |
6269253 | Maegawa et al. | Jul 2001 | B1 |
6278864 | Cummins et al. | Aug 2001 | B1 |
6282184 | Lehman et al. | Aug 2001 | B1 |
6298226 | Lloyd et al. | Oct 2001 | B1 |
6308050 | Eklof | Oct 2001 | B1 |
6337976 | Kudou | Jan 2002 | B1 |
6356746 | Katayama | Mar 2002 | B1 |
6366622 | Brown et al. | Apr 2002 | B1 |
6366765 | Hongo et al. | Apr 2002 | B1 |
6411646 | Walley et al. | Jun 2002 | B1 |
6415001 | Li et al. | Jul 2002 | B1 |
6434401 | Recouly | Aug 2002 | B1 |
6438462 | Hanf et al. | Aug 2002 | B1 |
6449264 | Lehtinen et al. | Sep 2002 | B1 |
6484038 | Gore et al. | Nov 2002 | B1 |
6484042 | Loke | Nov 2002 | B1 |
6510310 | Muralidharan | Jan 2003 | B1 |
6516023 | Kveim et al. | Feb 2003 | B1 |
6535499 | Futamura et al. | Mar 2003 | B1 |
6535561 | Boesch et al. | Mar 2003 | B2 |
6535748 | Vuorio et al. | Mar 2003 | B1 |
6584090 | Abdelgany et al. | Jun 2003 | B1 |
6584305 | Sudo et al. | Jun 2003 | B1 |
6600911 | Morishige et al. | Jul 2003 | B1 |
6621853 | Ku | Sep 2003 | B1 |
6697606 | Wagemans et al. | Feb 2004 | B1 |
6813485 | Sorrells et al. | Nov 2004 | B2 |
6826237 | Minnis | Nov 2004 | B1 |
6954624 | Hamalainen | Oct 2005 | B2 |
7065327 | Macnally et al. | Jun 2006 | B1 |
7082293 | Rofougaran et al. | Jul 2006 | B1 |
7415247 | Vaisanen et al. | Aug 2008 | B1 |
7672645 | Kilpatrick et al. | Mar 2010 | B2 |
8102929 | Soliman et al. | Jan 2012 | B2 |
8768408 | Vaisanen et al. | Jul 2014 | B2 |
20060178165 | Vassiliou et al. | Aug 2006 | A1 |
20080176523 | Sutton et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
1148444 | Apr 1997 | CN |
1187270 | Jul 1998 | CN |
19712161 | Sep 1998 | DE |
69735156 | Aug 2006 | DE |
69736793 | Feb 2007 | DE |
69737000 | Jul 2007 | DE |
0581572 | Feb 1994 | EP |
0581573 | Feb 1994 | EP |
0599409 | Jun 1994 | EP |
0631400 | Dec 1994 | EP |
0633674 | Jan 1995 | EP |
653851 | May 1995 | EP |
0782358 | Jul 1997 | EP |
0797311 | Sep 1997 | EP |
0798880 | Oct 1997 | EP |
0800283 | Oct 1997 | EP |
0809366 | Nov 1997 | EP |
0813312 | Dec 1997 | EP |
0823788 | Feb 1998 | EP |
0878974 | Nov 1998 | EP |
2215945 | Sep 1989 | GB |
2287144 | Sep 1995 | GB |
2312107 | Oct 1997 | GB |
2312108 | Oct 1997 | GB |
05075495 | Mar 1993 | JP |
07-059162 | Mar 1995 | JP |
09-130275 | May 1997 | JP |
09-275358 | Oct 1997 | JP |
09-312578 | Dec 1997 | JP |
10-032520 | Feb 1998 | JP |
10-065749 | Mar 1998 | JP |
10-093475 | Apr 1998 | JP |
10-224250 | Aug 1998 | JP |
9221195 | Nov 1992 | WO |
9706604 | Feb 1997 | WO |
9853625 | Nov 1998 | WO |
9901933 | Jan 1999 | WO |
9917445 | Apr 1999 | WO |
Entry |
---|
HTC Corporation and Nokia Corporation, Grounds of Invalidity, Claim No. HC12 F02047, executed May 17, 2012, 2 pages. |
Behzad Razavi, RF Microelectronics, 1998, Prentice Halls, Inc., 10th Edition, pp. 150-153. |
Proof of Publication date (Nov. 6, 1997) of book Razavi, Behzad, RF Microelectronics, Prentice Hall, 1st Edition by amazon.com under product detail section, and paper of when it was received by USPTO (Nov. 23, 1998). |
Weidong, et al., “Software Radio: Technology & Implementation”, ICCT'98. |
UK Revocation action, HTC Corporation v. Nokia Corporation, Claim No. He12F02047 issued May 17, 2012, 50 pages. |
U.S. District Court, District of Delaware (Wilmington), Civil Docket for Case #: 1:12-cv-00549-LPS, Nokia Corporation et al v. HTC Corporation et al, Jul. 2, 2012, 2 pages. |
U.S. International Trade Commission, Docket Report of 337-TA-847, found at <https://edis.usitc.gov/edis3-external/direct.svc>, 8 pages, Jul. 2, 2012. |
Abidi, A.A., Direct Conversion Radio Transceivers for Digital Communications, Dept. of Electr. Eng., California Univ., Los Angeles, CA; Publication date Dec. 1995, pp. 1339-1410, vol. 30, No. 12. |
Gray, P.R., Meyer, R.G., Future Directions in Silicon ICS for RF Personal Communications, Dept. of Electr. Eng. & Comput. Sci., California University, Berkeley, CA; Publication Date May 14, 1995, pp. 83-90. |
Hanusch, T., et al., “Analog Baseband-IC for Dual Mode Direct Conversion receiver”, Proc. ESSCIRC., Sep. 1996, pp. 244-249. |
Fernandez-Duran, A., et al., “Zero-IF Receiver Architecture for Multistandard Compatible Radio Systems. GIRAFE Project”, IEEE 1996, pp. 1052-1056. |
Nguyen, C.T.-C., “Communications Applications of Microelectromechanical Systems”, Proceedings, 1998 Sensors Expo, May 19-21, 1998, pp. 447-455. |
Tham, J.L., et al., “A Direct-Conversion Transceiver Chip Set for 900 MHz (ISM Band) Spread-Spectrum Digital Cordless Telephone”, ISCAS 1996 Conference, May 12-15, vol. 4, 1996, pp. 85-88. |
Kuo, C., “Multi-Standard DSP Based Wireless System”, ICSP'98 Conference, vol. II of II, Oct. 12-16, 1998, pp. 1712-1728. |
Beckwith, B., “Dual Band Integrated Power Amplifier with Switchable Interstage Match”, Motorola, Jun. 1997, pp. 84-85. |
Tham, J.L., e t al., “A 2.7V 900MHz/1.96GHz Dual-Band Transceiver IC for Digital Wireless Communication”, IEEE CICC 1998 Conference, pp. 559-569. |
B. Gilbert, “A Precise Four-Quadrant Multiplier with Subnanosecond Response,” IEEE Journal Solid-State Circuits, Dec. 1968. |
Sergio Graffi, et al., “New Macromodels and Measurements for the Analysis of EMI Effects in 741 Op-Amp Circuits,” IEEE Trans. on Electromagnetic Compatiblity, Feb. 1991. |
Nullity Complaint HTC Europe Co. Ltd. v. Nokia Corporation Re: EP1133831 (DE69942878.5), dated Jan. 17, 2013, with English translation, 59 pages. |
De Response to Nullity Action as filed, dated Oct. 7, 2013, with English translation, 91 pages. |
Translation Statement of Defence Regional Court Dusseldorf, Hogan Lovells, dated Jan. 18, 2013, 26 pages. (redacted). (41 pages not redacted). |
Replik LG Dusseldorf, dated Jun. 7, 2013, with English translation, 49 pages (redacted). (71 pages not redacted). |
Summons to Appear Before the Tribunal De Grande Instance de Paris, Sep. 2013, with English translation, 134 pages. |
Expert Report of James Arthur Crawford, HTC Corporation and Nokia Corporation, executed Jul. 24, 2013, 86 pages. |
Final Expert Report of Professor Bram Nauta (Patents and Prior Art), HTC Corporation and Nokia Corporation, executed Jul. 5, 2013, 106 pages. |
Final Reply Report of Professor Bram Nauta (Patents and Prior Art), HTC Corporation and Nokia Corporation, executed Jul. 25, 2013, 18 pages. |
Grounds of Invalidity, HTC Corporation and Nokia Corporation, executed May 17, 2012, 2 pages. |
Document HTC115, HTC Europe Co. Ltd./Nokia Corporation, dated Jan. 17, 2013, 30 pages (HL4). |
Document HTC115, HTC Europe Co. Ltd./Nokia Corporation, dated Nov. 15, 2013, 36 pages. (HL24). |
International Organisation for Standardisation Organisation Interntionale de Normalisation, ISO/IEC JTC/SC29/WG11, Coding of Moving Pictures and Associated Audio, N0801, Information Technology—Generic Coding of Moving Pictures and Associated Audio: Systems, Recommendation H.222.0, ISO/IEC 13818-1, draft of 1540 Sun Nov. 13, 1994, 161 pages. |
Document, Samson & Partner, HTC Europe Co. Ltd. and Nokia Corporation, dated Oct. 7, 2013, 47 pages, German language (K94). |
Defendant/Counteraction Claimant's Response to Claimant/Counteraction Defendant's Notice to Admit Facts dated Mar. 27, 2013, HTC Corporation and Nokia Corporation, 9 pages. |
RF CASE/CASE 1, HTC's Statements of Case on Validity on EP(UK) 0 998 024 and EP(UK) 1 133 831, HTC Corporation and Nokia Corporation, 6 pages, executed Jan. 14, 2013. |
Public Version of Initial Determination on Violation of Section 337 and Recommended Determination on Remedy and Bond, In the Matter of Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components, Thereof, Investion No. 337-TA-847, dated Sep. 23, 2013, 239 pages. |
Order No. 9: Errata, In the Matter of Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof, Investigation No. 337-TA-847, dated Mar. 25, 2013, 3 pages. |
Order No. 8: Construing Terms of the Asserted Patents, In the Matter of Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof, Investigation No. 337-TA-847, dated Mar. 21, 2013, 84 pages. |
Respondents Htc Corp. and HTC America, Inc's Opening Claim Construction Brief, Investigation No. 337-Ta-847, executed Dec. 20, 2012, 63 pages. |
Complainant's Nokia Corporation, Nokia Inc., and Intellisync Corporation Opening Claim Construction Brief, Investigation No. 337-TA-847, executed Dec. 20, 2012, 106 pages. |
Respondents HTC Corp. and HTC America, Inc.'s Responsive Claim Construction Brief, Investigation No. 337-TA-847, executed Jan. 8, 2013, 42 pages. |
Complainants' Nokia Corporation, Nokia Inc., and Intellisync Corporation Responsive Claim Construction Brief, Investigation No. 337-TA-847, executed Jan. 8, 2013, 48 pages. |
Complainants' Nokia Corporation, Nokia Inc., and Intellisync Corporation Post-Markman-Hearing Brief, Investigation No. 337-TA-847, executed Feb. 13, 2013, 49 pages. |
Respondents HTC Corp. and HTC America, Inc's Supplemental Claim Construction Brief, Investigation No. 337-TA-847, executed Feb. 13, 2013, 43 pages. |
HTC Reply with English Translation dated Nov. 15, 2013, 71 pages. |
Complaint, HTC with English translation, dated May 2, 2012, 92 pages. |
MC 1496 Datasheet, Motorola, Balanced Modulators/Demodulators, 1996, 12 pages. |
Rejoinder EP1133831 B1, Bird & Bird LLP v. Hogan Lovells International LLP, document dated Nov. 15, 2013, 87 pages. |
Number | Date | Country | |
---|---|---|---|
20150094001 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14272191 | May 2014 | US |
Child | 14272820 | US | |
Parent | 13614272 | Sep 2012 | US |
Child | 14272191 | US | |
Parent | 12136465 | Jun 2008 | US |
Child | 13614272 | US | |
Parent | 09856746 | US | |
Child | 12136465 | US |