The present invention concerns a method to establish during down-the-hole drilling communication between the cavity of the drill string and the surrounding material, according to the introduction to claim 1. The establishment of communication makes it possible for media, such as groundwater surrounding the drill rod down in the drill hole, to flow into and fill the cavity of the drill string. The possibility of establishing such communication allows measurements to be carried out rapidly and simply in situ, down in the drill hole. The invention concerns also an arrangement for the execution of the method according to the introduction to claim 5.
During down-the-hole drilling and the formation of drill holes in the ground that are limited by a drill string consisting of a number of drill rods coupled at their ends there arises in many cases a need of achieving communication between the cavity of the tube lining and the material that surrounds the drill string, for example in order to lead media such as water from the surrounding material into the cavity of the drill string. The purpose of this is to carry out after drilling measurement-based investigations down in the material, which investigations may concern temperature, flows and groundwater levels, whereby measuring instruments are passed down in a compartment for measurement, a measurement compartment, that is limited by the cavity of the drill string. This type of measurement normally includes measurement of the permeability of the ground, i.e. the amount of water that must be pumped away in order to obtain a certain lowering of the water level in, for example, a pond or similar collection of water. The permeation through the ground, in situ, is calculated in known manner through measurement of discharge following Darcy's Law: Q=CHK, from which it can be derived that the amount pumped is proportional to the fall of water level H and to the permeability K. This makes it possible to calculate the amount pumped as a function of these two parameters when the coefficient C is known, which can be determined by theoretical or experimental methods using the form of the contact surfaces between the water in the drill hole and the ground, i.e. the surfaces through which water is filtered into a limited measurement compartment. Conversely, it is possible to calculate K with the aid of measurements of the amount pumped and the lowering of the surface of the water in the measurement compartment, which constitutes the value of the permeability from the surrounding ground into the measurement compartment in situ. The equation above thus gives as its result the flow of water in cubic metres per second (m3/s).
The measurement compartment is limited by what is known as a tube liner, which is provided in certain parts of its circumference, in particular at its lower part, with one or several openings with an area of opening that has been determined in advance. The openings allow groundwater to flow into the measurement compartment, and the coefficient C can in this way be determined.
In order to be able to work as rapidly and efficiently as possible, it is desirable that during the procedure known as down-the-hole drilling, in which a drill string consisting of a number of drill rods, coupled to each other at their ends and attached at a down-the-hole hammer drill, is used, to use the drill string to form the desired measurement compartment and the possibility of being able to carry out measurement work at different levels down in the drill hole, without any special tube lining being needed. In other words, it is desirable to have the possibility of being able to lower the required measuring instruments directly down into the drill string in situ without needing to take the circular route of forming a post hoc specially designed tube liner with measurement openings arranged in the outer surface of the tube liner.
Among the many advantages of this are, of course, the saving of time that can be obtained when the measurements required can take place directly down in the drill hole, together with the cost savings achieved through the requirement for equipment for lining of the drill hole being eliminated or reduced. It is, therefore, desirable to make it possible to carry out during down-the-hole drilling measurements in situ down in a drill hole, in particular down in a drill hole in the ground, in order to achieve higher cost efficiency.
A first purpose of the present invention, therefore, is to achieve a method that makes it possible to achieve communication immediately after down-the-hole drilling between the cavity of the drill string and the material that surrounds the drill string, not least in order to be able to carry out measurements in situ down in a drill hole. A second aim of the present invention is to achieve an arrangement for the execution of the method. These two aims of the invention are solved through the method demonstrating the distinctive features and characteristics that are specified in claim 1, and through an arrangement that demonstrates the distinctive features and characteristics that are specified in claim 5. Other advantages of the invention are made clear by the non-independent claims.
The down-the-hole drill may in one design be of single-use type, i.e. the down-the-hole hammer drill can be left down in the drill hole after the drilling and the measurements have been carried out.
The invention will be described in more detail below in the form of a non-limiting embodiment with reference to the attached drawings in which:
a-1c show longitudinal sections in different stages through an arrangement according to the invention, mounted in a drill section that is position farthest forward in a drill string equipped with a down-the-hole drill.
a-2d show schematically in a number of stages that follow one after the other the procedures that are required in order to establish communication between the cavity of the drill string and the material that surrounds it, together with the execution of measurements in situ down in a drill hole in the ground, according to the invention.
With reference to
The technology described above constitutes essentially prior art technology.
Once again with reference to
As is made most clear by
As has been described above, the machine housing 2 comprises a central channel 4 intended to lead driving fluid into the impact mechanism that is located within the machine housing of the impact hammer when the piston 15 is located at its most withdrawn position, in contact with the impact hammer 1 in a manner that allows fluid to flow. A tube muff 30 is arranged at the rear free end of the end piece 8 of the machine housing 2 intended for interaction in a manner that allows fluid to flow with the forward end 21 of the tube of the piston. The tube muff 30 has a ring-shaped cylindrical compartment 31 that surrounds a plastic collar or sealing ring 32 that is seated in a ring groove 33 in the compartment, and through which the forward end 21 of the section of tube interacts in a sealing manner when the section of tube is located inserted into the tube muff, as shown in
The inlet for driving fluid to the piston 15, i.e. the rear relatively short tubular part 22, at the same time forms one of two interacting connectors 40 and 41 that can be united axially, and that are designed as male and female parts. These two connectors 40, 41 are components of a recovery means generally denoted by 45, with the aid of which the piston 15 can be fetched up out of the drill string 10. The said second connector 41, designed as a female part, is fixed to the end of a wire or similar that is a component of a lifting arrangement generally denoted by 42. This second connector 41 is intended to be suspended by a wire or similar and lowered down into the drill hole with the aid of suitable lifting gear located at the surface (not shown in the drawings). The term “lifting arrangement” is used below to denote any lifting crane that is equipped with steel wires, pulley blocks or similar means and that can be used to raise and lower objects.
It should be pointed out that it is the general custom to name objects that have been inserted into a drill hole as “fish”, and a tool designed to recover such an object as a “fishing tool”.
Electrical measurement signals are transferred through a line 47 to and from a measurement tool 50 or a sensor suspended from the lifting arrangement when the present arrangement is used during the execution of measurement-based investigations in a drill hole. These measurements may be constituted by any presently available measurements and may include, for example, temperature, rate of flow, and level of groundwater. The measurement signals obtained may alternatively be transferred by telemetry, i.e. in a wireless manner, using for example, a radio link or an optical link between a transmitter down in the drill hole and a receiver at the surface level.
As is made most clear by
A closer study of
The arrangement described above thus makes it possible to establish communication between the cavity of the drill string and the surrounding material in a drill hole, and thus to carry out measurements in situ in the drill hole.
A down-the-hole drilling unit is shown in
that a first tube section 10:1 intended to form a part of the drill string 10 is assigned one or several openings 17 with a total area of opening at the circumference of the outer surface of the tube section that has been determined in advance,
that a piston 15 demonstrating an inlet 22 and an outlet 21 for leading a flow of driving fluid through the piston is arranged,
that the piston 15 is constructed such that it can glide axially along the cavity of the first tube section 10:1 and that it is oriented such that the outlet of the piston faces the inlet 8 for the flow of driving fluid into the down-the-hole hammer drill 1,
that the inlet 8 of the down-the-hole hammer drill 1 and the outlet 21 of the piston 15 are given such a mutually operative form that they can be connected and disconnected through axial displacement of the piston in the first tube section 10:1 from a situation that allows fluid to flow, whereby the flow of driving fluid from the source of pressurised medium to the down-the-hole hammer drill is led, when fluid is allowed to flow, through the piston,
that the inlet 22 of the piston is assigned one part of a first and second interacting recovery means 40, 41, designed as male and female parts, that allow the piston 15 to be fished up out of the drill string 10 through the second part being lowered down into the drill string.
The arrangement functions in the following manner.
With reference to
The invention is not limited to what has been described above and shown in the drawings: it can be changed and modified in several different ways within the scope of the innovative concept defined by the attached patent claims.
Number | Date | Country | Kind |
---|---|---|---|
1150083-2 | Feb 2011 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2012/050076 | 1/26/2012 | WO | 00 | 10/21/2013 |