Method and casting mold, in particular for use in cold casting methods

Information

  • Patent Grant
  • 10946556
  • Patent Number
    10,946,556
  • Date Filed
    Thursday, July 30, 2015
    8 years ago
  • Date Issued
    Tuesday, March 16, 2021
    3 years ago
Abstract
The invention relates to a casting mold, in particular for use in cold casting methods, which is produced with the aid of a powder-based layering method, the final casting mold having a treated surface.
Description
CLAIM OF PRIORITY

This application is a national phase filing under 35 USC § 371 of PCT Application serial number PCT/DE2015/000378 filed on Jul. 30, 2015, and claims priority therefrom. This application further claims priority to German Patent Application Number DE 10 2014 001 236.5 filed on Aug. 2, 2014. PCT Application Number PCT/DE2015/000378 and German Patent Application Number DE 10 2014 001 236.5 are each incorporated herein by reference in its entirety.


FIELD

The present invention relates to a casting mold that is produced with the aid of a powder-based layering method, a use of the casting mold and a method for the production thereof.


BACKGROUND

A method for producing three-dimensional objects from computer data is described in the European patent specification EP 0 431 924 B1. In this method, a particulate material is applied in a thin layer to a platform, and a fluid is selectively printed on the particulate material with the aid of a print head. In the area onto which the fluid is printed, the particles bind to each other, and the area solidifies under the influence of the fluid and, if necessary, an additional hardener. The platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain, desired height of the object is reached. A three-dimensional object is thereby produced from the printed and solidified areas.


After it is completed, this object produced from solidified particulate material is embedded in loose particulate material and is subsequently removed therefrom. This is done, for example, using an extractor. This leaves the desired objects, from which powder deposits are removed, for example by manual brushing.


Of the layering techniques, 3D printing based on powdered materials and the supply of fluids with the aid of a print head is the fastest method.


This method may be used to process different particulate materials, including natural biological raw materials, polymers, metals, ceramics and sands (not an exhaustive list).


The strengths of the submitted method lie in the high volume capacity and the cost-effective production. However, the material properties often lag behind those known from conventional production.


For example, a material may be produced which uses sand particles as the base material and is bound by cement. This material is a type of concrete. The strength of a material of this type is, however, much lower than that of conventionally produced concrete, due to its porosity.


Sand particles having other binding systems may also be processed by the powder-based 3D printing process. This includes, among other things, cold resin binding, which is used in foundry practice as well as in 3D printing.


Inorganic binders are also state of the art in this area. These are the most environmentally friendly alternative to cold resin binders in foundry practice.


These materials also do not directly achieve strengths that are relevant, e.g., for construction. In principle, only a few materials may be processed into dense and high-strength materials with the aid of the powder-based 3D printing method. These materials are essentially polymers.


The use of two-stage methods is one way around this limitation in 3D printing. In this case, casting in 3D-printed molds is one option. This method is state of the art in the area of metal casting.


In the area of concrete materials or cold-castable polymers, processing with the use of 3D-printed molds is not common practice for casting methods. On the one hand, this is due to the lack of the breakout and core removal capability, which is due to the absence of the solidity-reducing effect of heat in the cold casting process. On the other hand, an undesirable bonding of the casting material to the mold may build up during cold casting, since a 3D-printed casting mold has a relatively high porosity for cold casting methods, into which the casting material may penetrate.


It is known from the prior art that reusable molds may generally be used for casting concrete parts.


For example, coated wooden boards are used as formwork when casting straight walls. These boards are additionally pretreated with a formwork oil, thereby preventing the concrete from sticking to the multiple-use boards.


To remove the formwork, these boards are usually peeled away from the concrete part by pounding them with a hammer after casting.


More complex shapes made of concrete are often produced with the aid of silicone molds. In this case, the silicone mold is in the form of a negative model. The mold must then be laboriously produced using a model, which acts as a positive mold for the silicone casting. A model of this type may be produced, for example, using conventional techniques, such as milling in wood or plastic or using additive methods. To lend the silicone casting mold the necessary strength, an additional substructure is necessary, which makes the method even more complex. Like with the formwork boards, a mold release agent must frequently be applied to the silicone casting mold prior to casting.


The silicone mold may then be removed after the casting material solidifies by simply pulling the part away from the mold. However, the substructure must first be removed for this purpose.


These two methods cannot be used for molds which have been produced by powder-based 3D printing with the aid of cold resin binder.


Due to the porosity of the molds, conventional mold release agents are unable to prevent the casting material from penetrating the mold. Instead, the mold release agents infiltrate the molded part and enter the interior without having any effect on the surface.


SUMMARY

A number of terms in the invention are explained in greater detail below.


Within the meaning of the invention, “3D printing method” relates to all methods known from the prior art which facilitate the construction of components as three-dimensional molds and are compatible with the method components and devices described.


Within the meaning of the invention, “selective binder application” or “selective binder system application” may take place after each particulate material application or irregularly, depending on the requirements of the molded body and for the purpose of optimizing the production of the molded body, i.e., non-linearly and not in parallel after each particulate material application. “Selective binder application” or “selective binder system application” may thus be set individually and during the course of producing the molded body.


“Molded body” or “component” within the meaning of the invention are all three-dimensional objects that are produced with the aid of the method according to the invention and/or the device according to the invention and which have a nondeformability.


All materials known for powder-based 3D printing, in particular sands, ceramic powders, metal powders, plastics, wood particles, fibrous materials, celluloses and/or lactose powders, may be used as “particulate materials.” The particulate material is preferably a dry, free-flowing powder. However, a cohesive, firm powder may also be used.


“Build space” is the geometric place in which the particulate material feedstock grows during the build process by repeated coating with particulate material. The build space is generally delimited by a base, the building platform, by walls and an open cover surface, the build plane.


“Casting material” within the meaning of this invention is any castable material, in particular materials in which no temperatures arise during processing which could weaken a cold resin binding and which thus promote breakout from the mold.


A “concrete material” within the meaning of this invention is a mixture of an additive (e.g., sand and/or gravel or the like) and a hydraulic binder, the mixing water being used up by the solidification reaction. A concrete material is also a possible casting material.


“Porosity” within the meaning of the invention is a labyrinthine structure of cavities which occur between the particles bound in the 3D printing process.


The “seal” acts at the geometric boundary between the printed mold and the cavity to be filled. It superficially closes the pores of the porous molded body.


“Black wash” designates a fluid which contains particles and does not seal the porosity but only reduces the pore diameter on the surface of the mold.


“Hydrostatic pressure” is used as a general term for all pressures which arise by the action of the fluid column of the casting material.


“Low strength” in terms of sealing means that the seal does not resist any strong forces during breakout from the mold.


“Cold casting methods” are understood to be, in particular, casting methods in which the temperature of the casting mold and the core do not reach the decomposition or softening temperature of the molding material before, during and after the casting process. The solidity of the mold is not influenced by the casting process. The opposite thereof would be metal casting methods, in which the mold is, in general, slowly destroyed by the hot casting compound.


The term “treated surface” designates a surface of the casting mold, which is treated in a preferably separate step after the mold is printed and cleaned. This treatment is frequently an application of a substance to the surface and thus also in the areas of the mold or core near the surface. All conceivable methods may be considered for application.


It is desirable from an economical point of view to implement casting molds for cold casting by means of 3D-printed molds, in particular for more complex molds.


The object of the present invention is to provide a casting mold, in particular for use in cold-casting methods, which is produced with the aid of a powder-based layering method, the final casting mold having a treated surface.


The treated surface may, for example, prevent the casting material from penetrating the molded body, due to the hydrostatic pressure or capillary effects.


Moreover, it could also be that the forces are low during the breakout of porous bodies from the mold due to the surface treatment, since the seal may be drawn out of the pores of the porous molded material by the mold breakout process, and air may then subsequently flow through the porous mold.


Preferred specific embodiments are illustrated below.


According to one preferred specific embodiment of the invention, the treated surface (or the surface treatment) comprises a sealing, a coating, a processing and/or another treatment.


The treated surface should preferably have a lower porosity than the casting mold after it is produced.


In another aspect, the invention relates to a use of the casting mold according to the invention to produce cold-cast parts as a lost-wax casting mold and/or as a continuous casting mold.


In particular, the casting molds according to the invention may be used to produce concrete cast parts and/or cold-cast polymer components.


In yet another aspect, the present invention relates to a method for producing casting molds, in particular for use in cold-casting methods, the casting mold being built with the aid of a powder-based layering method, and the surface of the casting mold being treated.


A powder bed-based 3D printing method is preferably used for the layering method, and a cold resin binding system is even more preferably used.


If the surface is additionally sealed with a hydrophobic material, as needed, the penetration of the casting material into the pores of the casting mold may be effectively limited.


Another possibility is to modify the porosity of the surface of the casting mold with the aid of an infiltrate.


This may be done, for example, with the aid of an epoxy resin, a polyurethane, an unsaturated polyester, a phenol/resol resin, an acrylate and/or a polystyrene.


It is furthermore possible to modify the porosity of the surface with the aid of a black wash and/or dispersion, in particular a zirconium oxide-, aluminum oxide-, calcium oxide-, titanium oxide-, chalk- or silicic acid-based black wash and/or a plastic-, cellulose-, sugar-, flour- and/or salt-based solution.


The porosity of the surface may furthermore be modified or sealed with the aid of a grease, oil, wax and/or hot water-soluble substances.





BRIEF DESCRIPTION OF THE DRAWINGS

Brief description of the figures, which represent preferred specific embodiments:



FIG. 1: shows a schematic representation of the components of a powder-based 3D printer in a sectional isometric view;



FIG. 2: shows a representation of a simple cast part without undercuts;



FIG. 3: shows a representation of a complex cast part, including undercuts;



FIG. 4: shows a representation of a set of multiple-use molds for producing the simple cast part;



FIG. 5: shows a sectional representation of ejectors and assembly aids for a multiple-use casting mold;



FIG. 6: shows a representation of a set of single-use molds for producing the complex cast part;



FIG. 7: shows a sectional view of a component treated according to the invention;



FIG. 8: shows an illustration of the mold breakout process with a treatment according to the invention.





DETAILED DESCRIPTION

One example of a device for producing a molded part according to the present invention includes a powder coater (101). Particulate material is applied thereby to a building platform (102) and smoothed (FIG. 1). The applied particulate material may be made from a wide range of materials; according to the invention, however, sand is preferred for reasons of its low cost. This sand is precoated, for example, with an activator component. The height of powder layers (107) is determined by the building platform (102). It is lowered after one layer has been applied. During the next coating operation, the resulting volume is filled and the excess smoothed. The result is a nearly perfectly parallel and smooth layer of a defined height.


After a coating process, a fluid is printed onto the layer with the aid of an ink-jet print head (100). The print image corresponds to the section of the component in the present build height of the device. The fluid strikes and slowly diffuses into the particulate material.


The fluid reacts with the activator in the particulate material to form a polymer. The latter binds the particles to each other.


In the next step, the building platform (102) is lowered by the distance of one layer thickness. The steps of layer construction, printing and lowering are now repeated until the desired component (103) is completely produced.


The component (103) is now complete, and it is located in the powder cake (114). In the final step, the component is freed of the loose particulate material and cleaned with compressed air.


A component produced in this manner forms the basis for the present invention. The use of these molds may be divided into two areas: single-use molds and multiple-use molds. According to the present invention, they may be used in cold-casting methods.



FIG. 2 shows a simple cast part (200). It is economical to achieve multiple castings with the aid of one mold. A larger and more complex component is represented, for example, by a sink (300) in FIG. 3. The sink has a bowl-shaped formation (301) in its middle. An opening (303) for the later drain is situated in its center. Another opening (302) for the faucet is situated in the rectangular part of the basin.


As a single-use mold (600), breakout is achieved by destroying the mold. The mold is expediently produced as a thin bowl. The structure is additionally reinforced by means of ribbing to withstand the hydrostatic pressures. FIG. 6 shows a mold of this type. The mold is designed in two parts (600, 601).



FIG. 4 shows a multiple-use mold. It comprises two halves (400, 401), each of which has a thick-walled design, and into which the cavity (402) for the casting material is introduced. A sprue (403) is also provided.


The mold (400, 401; 600, 601) may be produced, for example, from a sand having an average grain size of 140 μm, which was premixed with a hardener for a so-called cold resin in the amount of 0.3 wt %. The binding process preferably takes place with a concentration of cold resin in the range of 1.0 to 2.5 wt %.


After the printing process, the mold may be removed from the loose sand and cleaned.


Different methods may be used to modify the pore size. For example, an infiltration with a two-component polymer is possible. However, the material must be used in such a way that, according to the invention, pores which facilitate easy mold breakout remain on the surface after treatment. For this purpose, the mold is treated, for example, with an adapted seal, which is processed at room temperature and does not develop high strengths.


It is likewise possible to additionally use a black wash from the metal casting field. Smaller particles are applied to the surface in this case. The effective pore cross section is modified thereby. As a result, it is possible to prevent, for example, the mechanically weak seal according to the invention from being pressed into the mold due to high hydrostatic pressures.


Grease may be used as a simple seal according to the invention. The grease may be applied to the mold by spreading or spraying it on. The grease muse be suitably selected for the task. Too heavy a grease may be difficult to process. Too thin a grease or oil infiltrates the mold and thus no longer provides a sealing function.


After spreading or brushing, the grease may be additionally smoothed. A superficial application of heat is suitable for this purpose. This may be done, for example, with a hot air gun or a blowtorch. Thoroughly heating the mold is not desirable, since this may lead to the possibility of leaks in the seal.


The use of wax is also possible according to the invention. The wax is expediently liquefied by heating for processing. The low viscosity must be increased by means of a thickener; for example, polystyrene microgranulates may be used for this purpose. It is also possible to use hydrophobic solvents, such as the alkanes or benzine, to create a wax solution whose viscosity may be effectively adjusted.


A seal made from hot water-soluble polyvinyl alcohol may also be created. This material is dissolved in hot water and applied to the preheated mold. The mixing water of a concrete is unable to attack the seal.



FIG. 7 shows the process on the microscopic level. The molded body is constructed with the aid of particles (700), which are bonded to each other. Fine particles (702) collect on the geometric component boundary (701) in the event of a black-washed component. The seal (703) seals the surface water-tight.


The molds prepared in this manner are subsequently equipped with additional function components.


For example, ejectors (500, 501) may be inserted into multiple-use molds for easier breakout from the mold. Depending on the expected breakout forces, the seat of the ejectors in the printed mold was reinforced in advance, e.g., using an epoxy resin infiltration. The ejectors may be designed as bolts (501), which engage with a nut (500), which may be countersunk into the printed part. A force is then generated between the mold and the cast part by applying a torque to the bolt.


The mold may also be provided with centering pins. These pins minimize the offset between the mold halves and thus ensure a precise cast part.


Some structures known from metal casting molds may be provided directly on the printed part. Thus, centering elements (603) may be implemented, and labyrinth seals (502) may be mounted for a better sealing action between the mold halves.


The reinforcement is inserted into the mold cavity (402) before the molds are closed. It is expediently held at a distance relative to the mold with the aid of plastic or concrete supports. In this state, empty conduits may also be inserted into the mold for later introduction of electric lines or other media.


The assembly of the molds may be facilitated by bores (503) in the molds. Bolts, which apply the compressive forces onto critical mold areas in a targeted manner, may be guided through these bores. Additional plates may also be screwed on, which reinforce the mold against the casting forces.


Casting takes place through mounted sprues (403) or material shafts. Depending on the technique and casting material used, additional ventilation bores (602) may also be introduced. If a vibrator is to be inserted after casting to compress the casting material, an access is provided in the mold. Mold parts (e.g. 601), which are able to float, due to the pressure of the casting material, must be prevented from changing position, e.g. by being weighted down.


After the casting process, the part rests for up to several days, depending on the binding time of the casting material. The demolding process then takes place.


Due to the low strength of the seal, the latter is easily removed from the pores of the mold during breakout (see FIG. 8). This process may be assisted by heating the mold together with the cast part. As a result of the low separating forces, even delicate cast parts may be safely broken out of the mold.


If a single-use mold is used, the mold may be pre-damaged by hitting it with a hammer in a targeted manner. Depending on the wall thickness of the mold, the actual separation process is carried out with the aid of a putty knife or another flat tool. The mold may also be separated from the cast body by means of sand blasting. The selection of the blasting material and the pressure must be adapted according to the hardness of the casting material, so that the casting material is not damaged.


The multiple-use mold is preferably placed in a furnace before breakout and heated overnight to a temperature of, for example, 60° C. Air circulation should be avoided to prevent drying out if concrete is used as the casting material.


After the furnace process, the bond between the mold and cast part is stressed by tightening the bolts on the ejectors. The mold then usually opens with the aid of slight vibrations or hammer blows.


After the casting process, the sealing medium (801) must be removed from the cast part (800). If grease is used, soaps and washing pastes for cleaning oils and greases are helpful. Hand washing paste that includes cleansing particles is particularly preferred in this case.


After casting, the parts are further processed as in the case of conventional production methods. The usual methods such as grinding or sand blasting are used for surface modification.


LIST OF REFERENCE NUMERALS






    • 100 Print head


    • 101 Coater


    • 102 Building platform


    • 103 Component


    • 104 Build container


    • 105 Print head path


    • 106 Coater path


    • 107 Powder layers


    • 108 Direction of building platform movement\


    • 109 Dosed droplets


    • 110 Powder roll


    • 111 Build space boundary


    • 112 Coater gap


    • 113 Coater stock


    • 114 Powder Cake


    • 200 Simple cast part


    • 300 Complex cast part, sink


    • 301 Bowl-shaped sink area


    • 302 Hole for faucet


    • 303 Hole for drain


    • 400 Casting mold, top box


    • 401 Casting mold, bottom box


    • 402 Cavity for casting material


    • 403 Sprue


    • 500 Nut


    • 501 Bolt


    • 502 Labyrinth seal


    • 503 Bore for assembly bolts


    • 600 Sink mold, bottom box


    • 601 Sink mold, top box


    • 602 Ventilation bores


    • 603 Mold centering element and contact point


    • 604 Mold core for drain


    • 605 Mold core for faucet


    • 606 Mold cores for wall mounting


    • 700 Particle


    • 701 Geometric mold boundary


    • 702 Particle of the black wash


    • 703 Seal


    • 800 Cast part


    • 801 Drawn-out seal




Claims
  • 1. A method comprising the steps of: producing a casting molds for use in cold casting methods at temperatures where the casting mold is not destroyed, wherein the casting mold is built with the aid of a powder-based layering method and has a porous molded body,treating a porous surface of the casting mold with a sealant which closes pores of the molded body and seals the surface water-tight,cold casting a part at a temperature where the casting mold is not destroyed, andremoving the part from the casting mold;wherein the layering method is a powder bed-based 3D printing method and includes:applying a powder-based layer using a coater, wherein the powder-based layer includes a particle precoated with an activator; andselectively printing a fluid on the powder-based layer with a print head.
  • 2. The method of claim 1, wherein the porosity of the surface is modified by an epoxy resin, a polyurethane, an unsaturated polyester, a phenol/resol resin, an acrylate and/or a polystyrene.
  • 3. The method of claim 1, wherein the porous surface is modified by a black wash or dispersion prior to the step of treating with a sealant, wherein the black wash includes a zirconium oxide, aluminum oxide-, calcium oxide-, titanium oxide-, chalk- or silicic acid-based black wash and the dispersion includes a plastic, cellulose, sugar-, flour and/or salt-based solution.
  • 4. The method of claim 1, wherein the porosity of the sealant includes a grease, an oil, a wax, or a hot water-soluble substance.
  • 5. The method of claim 1, wherein a cold resin binding system is used for the layering method.
  • 6. The method of claim 5, wherein the surface is sealed with a hydrophobic material.
  • 7. The method of claim 5, wherein the porosity of the surface is modified by an infiltrate prior to the step of treating with a sealant.
  • 8. The method of claim 5, wherein the porosity of the surface is modified by an epoxy resin, a polyurethane, an unsaturated polyester, a phenol/resol resin, an acrylate and/or a polystyrene.
  • 9. The method of claim 5, wherein the porosity of the surface is modified by a zirconium oxide-, aluminum oxide-, calcium oxide-, titanium oxide-, chalk- or silicic acid-based black wash prior to the step of treating with a sealant.
  • 10. The method of claim 5, wherein the porosity of the surface is modified or sealed by means of a hot water-soluble substance.
  • 11. The method of claim 1, wherein the cold casting methods is for producing a concrete cast part.
  • 12. The method of claim 1, wherein the cold casting method is for producing a cold-cast polymer component.
  • 13. The method of claim 1, wherein the particle is a sand particle.
  • 14. The method of claim 13, wherein the fluid reacts with the activator on the powder-based layer to form a polymer that binds the sand particles together.
  • 15. A method comprising the steps of: producing a casting molds for use in cold casting methods at temperatures where the casting mold is not destroyed, wherein the casting mold is built with the aid of a powder-based layering method,treating a porous surface of the casting mold,cold casting a part at a temperature where the casting mold is not destroyed, andremoving the part from the casting mold;wherein the layering method includes applying a powder-based layer using a coater,wherein the powder-based layer includes a sand particle precoated with an activator; andselectively printing a fluid on the powder-based layer with an ink jet print head;wherein the fluid reacts with the activator on the powder-based layer to form a polymer that binds the sand particles together.
  • 16. The method of claim 15, wherein the casting mold includes a surface modified by an epoxy resin, a polyurethane, an unsaturated polyester, a phenol/resol resin, an acrylate, or a polystyrene, for reducing the porosity of the surface.
  • 17. The method of claim 15, wherein the casting mold includes a surface modified by a black wash or a dispersion, for reducing the porosity of the surface, wherein the black wash includes a zirconium oxide, aluminum oxide, calcium oxide, titanium oxide, a chalk, or a silicic acid, and the dispersion includes a plastic, a cellulose, sugar, flour, or a salt.
Priority Claims (1)
Number Date Country Kind
10 2014 001 236.5 Aug 2014 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/DE2015/000378 7/30/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2016/019937 2/11/2016 WO A
US Referenced Citations (373)
Number Name Date Kind
3913503 Becker Oct 1975 A
4247508 Housholder Jan 1981 A
4575330 Hull Mar 1986 A
4591402 Evans et al. May 1986 A
4600733 Ohashi et al. Jul 1986 A
4665492 Masters May 1987 A
4669634 Leroux Jun 1987 A
4711669 Paul et al. Dec 1987 A
4752352 Feygin Jun 1988 A
4752498 Fudim Jun 1988 A
4863538 Deckard Sep 1989 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
5017753 Deckard May 1991 A
5031120 Pomerantz et al. Jul 1991 A
5047182 Sundback et al. Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5076869 Bourell et al. Dec 1991 A
5120476 Scholz Jun 1992 A
5126529 Weiss et al. Jun 1992 A
5127037 Bynum Jun 1992 A
5132143 Deckard Jul 1992 A
5134569 Masters Jul 1992 A
5136515 Helinski Aug 1992 A
5140937 Yamane et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs et al. Apr 1993 A
5216616 Masters Jun 1993 A
5229209 Gharapetian et al. Jul 1993 A
5248456 Evans, Jr. et al. Aug 1993 A
5252264 Forderhase et al. Oct 1993 A
5263130 Pomerantz et al. Nov 1993 A
5269982 Brotz Dec 1993 A
5284695 Barlow et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5324617 Majima et al. Jun 1994 A
5340656 Sachs et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5352405 Beaman et al. Oct 1994 A
5354414 Feygin Oct 1994 A
5382308 Bourell et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5398193 deAngelis Mar 1995 A
5418112 Mirle et al. May 1995 A
5427722 Fouts et al. Jun 1995 A
5431967 Manthiram et al. Jul 1995 A
5433261 Hinton Jul 1995 A
5482659 Sauerhoefer Jan 1996 A
5490962 Cima et al. Feb 1996 A
5503785 Crump et al. Apr 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5518060 Cleary et al. May 1996 A
5518680 Cima et al. May 1996 A
5555176 Menhennett et al. Sep 1996 A
5573721 Gillette Nov 1996 A
5589222 Thometzek et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5616631 Kiuchi et al. Apr 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5647931 Retallick et al. Jul 1997 A
5658412 Retallick et al. Aug 1997 A
5662956 Knightly Sep 1997 A
5665401 Serbin et al. Sep 1997 A
5717599 Menhennett et al. Feb 1998 A
5730925 Mattes et al. Mar 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5747105 Haubert May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5807437 Sachs et al. Sep 1998 A
5837960 Lewis et al. Nov 1998 A
5851465 Bredt Dec 1998 A
5884688 Hinton et al. Mar 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5904889 Serbin et al. May 1999 A
5934343 Gaylo et al. Aug 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5989476 Lockard et al. Nov 1999 A
5997795 Danforth Dec 1999 A
6007318 Russell et al. Dec 1999 A
6036777 Sachs Mar 2000 A
6042774 Wilkening et al. Mar 2000 A
6048188 Hull et al. Apr 2000 A
6048954 Barlow et al. Apr 2000 A
6112804 Sachs et al. Sep 2000 A
6133353 Bui et al. Oct 2000 A
6146567 Sachs et al. Nov 2000 A
6147138 Hochsmann et al. Nov 2000 A
6155331 Langer et al. Dec 2000 A
6164850 Speakman Dec 2000 A
6165406 Jang et al. Dec 2000 A
6169605 Penn et al. Jan 2001 B1
6175422 Penn et al. Jan 2001 B1
6193922 Ederer Feb 2001 B1
6210625 Matsushita Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6217816 Tang Apr 2001 B1
6259962 Gothait Jul 2001 B1
6270335 Leyden et al. Aug 2001 B2
6305769 Thayer et al. Oct 2001 B1
6316060 Elvidge et al. Nov 2001 B1
6318418 Grossmann et al. Nov 2001 B1
6335052 Suzuki et al. Jan 2002 B1
6335097 Otsuka et al. Jan 2002 B1
6350495 Schriener et al. Feb 2002 B1
6355196 Kotnis et al. Mar 2002 B1
6375874 Russell et al. Apr 2002 B1
6395811 Nguyen et al. May 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 Van Der Geest Jun 2002 B1
6405095 Jang et al. Jun 2002 B1
6416850 Bredt et al. Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6446703 Roder Sep 2002 B1
6460979 Heinzl et al. Oct 2002 B1
6476122 Leyden Nov 2002 B1
6485831 Fukushima et al. Nov 2002 B1
6500378 Smith Dec 2002 B1
6554600 Hofmann et al. Apr 2003 B1
6596224 Sachs et al. Jul 2003 B1
6610429 Bredt et al. Aug 2003 B2
6616030 Miller Sep 2003 B2
6658314 Gothait Dec 2003 B1
6672343 Perret et al. Jan 2004 B1
6713125 Sherwood et al. Mar 2004 B1
6722872 Swanson et al. Apr 2004 B1
6733528 Abe et al. May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6827988 Krause et al. Dec 2004 B2
6830643 Hayes Dec 2004 B1
6838035 Ederer et al. Jan 2005 B1
6855205 McQuate et al. Feb 2005 B2
6896839 Kubo et al. May 2005 B2
6972115 Ballard Dec 2005 B1
6989115 Russell et al. Jan 2006 B2
7004222 Ederer et al. Feb 2006 B2
7037382 Davidson et al. May 2006 B2
7048530 Gaillard et al. May 2006 B2
7049363 Shen May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7137431 Ederer et al. Nov 2006 B2
7153463 Leuterer et al. Dec 2006 B2
7204684 Ederer et al. Apr 2007 B2
7220380 Farr et al. May 2007 B2
7291002 Russell et al. Nov 2007 B2
7296990 Devos et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
7348075 Farr et al. Mar 2008 B2
7378052 Harryson May 2008 B2
7381360 Oriakhi et al. Jun 2008 B2
7387359 Hernandez et al. Jun 2008 B2
7402330 Pfeiffer et al. Jul 2008 B2
7431987 Pfeiffer et al. Oct 2008 B2
7435072 Collins et al. Oct 2008 B2
7435368 Davidson et al. Oct 2008 B2
7455804 Patel et al. Nov 2008 B2
7455805 Oriakhi et al. Nov 2008 B2
7497977 Nielsen et al. Mar 2009 B2
7531117 Ederer et al. May 2009 B2
7550518 Bredt et al. Jun 2009 B2
7578958 Patel et al. Aug 2009 B2
7597835 Marsac Oct 2009 B2
7641461 Khoshnevis Jan 2010 B2
7665636 Ederer et al. Feb 2010 B2
7722802 Pfeiffer et al. May 2010 B2
7807077 Ederer et al. May 2010 B2
7736578 Ederer et al. Jun 2010 B2
7748971 Hochsmann et al. Jul 2010 B2
7767130 Elsner et al. Aug 2010 B2
7795349 Bredt et al. Sep 2010 B2
7799253 Höschmann et al. Sep 2010 B2
7879393 Ederer et al. Feb 2011 B2
7887264 Naunheimer et al. Feb 2011 B2
7927539 Ederer Apr 2011 B2
8020604 Hochsmann et al. Sep 2011 B2
8096262 Ederer et al. Jan 2012 B2
8186415 Marutani et al. May 2012 B2
8349233 Ederer et al. Jan 2013 B2
8506870 Hochsmann et al. Aug 2013 B2
8524142 Unkelmann et al. Sep 2013 B2
8574485 Kramer Nov 2013 B2
8715832 Ederer et al. May 2014 B2
8727672 Ederer et al. May 2014 B2
8741194 Ederer et al. Jun 2014 B1
8911226 Gunther et al. Dec 2014 B2
8951033 Höchsmann et al. Feb 2015 B2
8956140 Hartmann Feb 2015 B2
8956144 Grasegger et al. Feb 2015 B2
8992205 Ederer et al. Mar 2015 B2
9174391 Hartmann et al. Nov 2015 B2
9174392 Hartmann Nov 2015 B2
9242413 Hartmann et al. Jan 2016 B2
9321934 Mögele et al. Apr 2016 B2
9327450 Hein et al. May 2016 B2
9333709 Hartmann May 2016 B2
9358701 Gnuchtel et al. Jun 2016 B2
20010045678 Kubo et al. Nov 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020015783 Harvey Feb 2002 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020079601 Russell et al. Jun 2002 A1
20020090410 Tochimoto et al. Jul 2002 A1
20020111707 Li et al. Aug 2002 A1
20020155254 McQuate et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20030004599 Herbak Jan 2003 A1
20030065400 Beam et al. Apr 2003 A1
20030069638 Barlow et al. Apr 2003 A1
20030083771 Schmidt May 2003 A1
20030113729 DaQuino et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20040003738 Imiolek et al. Jan 2004 A1
20040012112 Davidson et al. Jan 2004 A1
20040025905 Ederer et al. Feb 2004 A1
20040026418 Ederer et al. Feb 2004 A1
20040035542 Ederer et al. Feb 2004 A1
20040036200 Patel et al. Feb 2004 A1
20040038009 Leyden et al. Feb 2004 A1
20040045941 Herzog et al. Mar 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040084814 Boyd et al. May 2004 A1
20040094058 Kasperchik et al. May 2004 A1
20040104515 Swanson et al. Jun 2004 A1
20040112523 Crom Jun 2004 A1
20040138336 Bredt et al. Jul 2004 A1
20040140078 Liu Jul 2004 A1
20040145088 Patel et al. Jul 2004 A1
20040170765 Ederer et al. Sep 2004 A1
20040187714 Napadensky et al. Sep 2004 A1
20040207123 Patel et al. Oct 2004 A1
20040239009 Collins et al. Dec 2004 A1
20050003189 Bredt et al. Jan 2005 A1
20050017386 Harrysson Jan 2005 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050074511 Oriakhi et al. Apr 2005 A1
20050093194 Oriakhi et al. May 2005 A1
20050167872 Tsubaki et al. Aug 2005 A1
20050174407 Johnson et al. Aug 2005 A1
20050179167 Hachikian Aug 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050218549 Farr et al. Oct 2005 A1
20050219942 Wallgren Oct 2005 A1
20050280185 Russell et al. Dec 2005 A1
20050283136 Skarda Dec 2005 A1
20060013659 Pfeiffer et al. Jan 2006 A1
20060105102 Hochsmann et al. May 2006 A1
20060108090 Ederer et al. May 2006 A1
20060159896 Pfeifer et al. Jul 2006 A1
20060175346 Ederer et al. Aug 2006 A1
20060208388 Bredet et al. Sep 2006 A1
20060237159 Hochsmann Oct 2006 A1
20060251535 Pfeifer et al. Nov 2006 A1
20060254467 Farr et al. Nov 2006 A1
20060257579 Farr et al. Nov 2006 A1
20070045891 Martinoni Mar 2007 A1
20070054143 Otoshi Mar 2007 A1
20070057412 Weiskopf et al. Mar 2007 A1
20070065397 Ito et al. Mar 2007 A1
20070126157 Bredt Jun 2007 A1
20070215020 Miller Sep 2007 A1
20070238056 Baumann et al. Oct 2007 A1
20080001331 Ederer Jan 2008 A1
20080018018 Nielsen et al. Jan 2008 A1
20080047628 Davidson et al. Feb 2008 A1
20080138515 Williams Jun 2008 A1
20080187711 Alam et al. Aug 2008 A1
20080233302 Elsner et al. Sep 2008 A1
20080237933 Hochsmann et al. Oct 2008 A1
20080241404 Allaman et al. Oct 2008 A1
20080260945 Ederer et al. Oct 2008 A1
20080299321 Ishihara Dec 2008 A1
20090008055 Marutani Jan 2009 A1
20090011066 Davidson et al. Jan 2009 A1
20090068376 Philippi et al. Mar 2009 A1
20090261497 Ederer et al. Oct 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100026743 Van Thillo et al. Feb 2010 A1
20100152865 Jonsson et al. Jun 2010 A1
20100212584 Ederer et al. Aug 2010 A1
20100207288 Enrico Sep 2010 A1
20100243123 Voxeljet Sep 2010 A1
20100244301 Ederer et al. Sep 2010 A1
20100247742 Shi et al. Sep 2010 A1
20100272519 Ederer et al. Oct 2010 A1
20100279007 Briselden et al. Nov 2010 A1
20100291314 Kashani-Shirazi Nov 2010 A1
20100323301 Tang et al. Dec 2010 A1
20110049739 Uckelmann et al. Mar 2011 A1
20110059247 Kuzusako et al. Mar 2011 A1
20110177188 Bredt et al. Jul 2011 A1
20110223437 Ederer et al. Sep 2011 A1
20110308755 Hochsmann Dec 2011 A1
20120046779 Pax et al. Feb 2012 A1
20120088023 Begun Apr 2012 A1
20120094026 Ederer et al. Apr 2012 A1
20120097258 Hartmann et al. Apr 2012 A1
20120113439 Ederer et al. May 2012 A1
20120126457 Abe et al. May 2012 A1
20120189102 Maurer, Jr. et al. Jul 2012 A1
20120291701 Grasegger et al. Nov 2012 A1
20120329943 Hicks et al. Dec 2012 A1
20130000549 Hartmann et al. Jan 2013 A1
20130004610 Hartmann et al. Jan 2013 A1
20130026680 Ederer et al. Jan 2013 A1
20130029001 Gunther et al. Jan 2013 A1
20130092082 Ederer et al. Apr 2013 A1
20130157193 Moritani et al. Jun 2013 A1
20130189434 Randall et al. Jul 2013 A1
20130199444 Hartmann Aug 2013 A1
20130234355 Hartmann et al. Sep 2013 A1
20130302575 Mogele et al. Nov 2013 A1
20130313757 Kashani-Shirazi Nov 2013 A1
20140004329 Mune Jan 2014 A1
20140048980 Crump et al. Feb 2014 A1
20140202381 Ederer et al. Jul 2014 A1
20140202382 Ederer Jul 2014 A1
20140212677 Gnuchtel et al. Jul 2014 A1
20140227123 Gunster Aug 2014 A1
20140236339 Fagan Aug 2014 A1
20140271961 Khoshnevis Sep 2014 A1
20140306379 Hartmann et al. Oct 2014 A1
20140322501 Ederer et al. Oct 2014 A1
20140332997 Shih Nov 2014 A1
20140339745 Uram Nov 2014 A1
20150035191 McEvoy Feb 2015 A1
20150042018 Gunther et al. Feb 2015 A1
20150069659 Ederer et al. Mar 2015 A1
20150110910 Hartmann et al. Apr 2015 A1
20150165574 Ederer et al. Jun 2015 A1
20150174644 Deters Jun 2015 A1
20150210822 Ederer et al. Jul 2015 A1
20150224718 Ederer et al. Aug 2015 A1
20150266238 Ederer et al. Sep 2015 A1
20150273572 Ederer et al. Oct 2015 A1
20150290881 Ederer et al. Oct 2015 A1
20150375418 Hartmann Dec 2015 A1
20150375419 Gunther et al. Dec 2015 A1
20160001507 Hartmann et al. Jan 2016 A1
20160052165 Hartmann Feb 2016 A1
20160052166 Hartmann Feb 2016 A1
20160107386 Hartmann et al. Apr 2016 A1
20160114533 Grasegger et al. Apr 2016 A1
20160263828 Ederer et al. Sep 2016 A1
20160303762 Gunther Oct 2016 A1
20160303798 Mironets Oct 2016 A1
20160311167 Gunther et al. Oct 2016 A1
20160311210 Gunther et al. Oct 2016 A1
20160318251 Ederer et al. Nov 2016 A1
20160368224 Ooba Dec 2016 A1
20170028630 Ederer et al. Feb 2017 A1
20170050378 Ederer Feb 2017 A1
20170050387 Ederer Feb 2017 A1
20170106595 Gunther et al. Apr 2017 A1
20170136524 Ederer et al. May 2017 A1
20170151727 Ederer et al. Jun 2017 A1
20170157852 Ederer et al. Jun 2017 A1
20170182711 Gunther et al. Jun 2017 A1
20170197367 Gunther et al. Jul 2017 A1
20170217098 Hartmann et al. Aug 2017 A1
Foreign Referenced Citations (62)
Number Date Country
720255 May 2000 AU
3221357 Dec 1983 DE
3930750 Mar 1991 DE
4102260 Jul 1992 DE
4305201 Apr 1994 DE
4 325 573 Feb 1995 DE
29506204 Jun 1995 DE
4440397 Sep 1995 DE
19525307 Jan 1997 DE
19530295 Jan 1997 DE
19528215 Feb 1997 DE
29701279 May 1997 DE
19545167 Jun 1997 DE
69031808 Apr 1998 DE
19853834 May 2000 DE
69634921 Dec 2005 DE
201 22 639 Nov 2006 DE
10 2006 040 305 Mar 2007 DE
102006029298 Dec 2007 DE
102007040755 Mar 2009 DE
102007047326 Apr 2009 DE
102011053205 Mar 2013 DE
102015006363 Dec 2016 DE
102015008860 Jan 2017 DE
102015011503 Mar 2017 DE
102015011790 Mar 2017 DE
0361847 Apr 1990 EP
1415792 May 2004 EP
1457590 Sep 2004 EP
1381504 Aug 2007 EP
1974838 Oct 2008 EP
2297516 Aug 1996 GB
S62275734 Nov 1987 JP
2003136605 May 2003 JP
2004082206 Mar 2004 JP
2009202451 Sep 2009 JP
9728909 Aug 1997 WO
0140866 Jun 2001 WO
2001078969 Oct 2001 WO
2004014637 Feb 2004 WO
2006100166 Sep 2006 WO
2008049384 May 2008 WO
2008061520 May 2008 WO
2011063786 Jun 2011 WO
2013075696 May 2013 WO
2014131388 Apr 2014 WO
2014090207 Jun 2014 WO
2014166469 Oct 2014 WO
2015078430 Jun 2015 WO
2015081926 Jun 2015 WO
2015085983 Jun 2015 WO
2015090265 Jun 2015 WO
2015090567 Jun 2015 WO
2015096826 Jul 2015 WO
2015149742 Oct 2015 WO
2015180703 Dec 2015 WO
2016019937 Feb 2016 WO
2016019942 Feb 2016 WO
2016058577 Apr 2016 WO
2016095888 Jun 2016 WO
2016101942 Jun 2016 WO
2016146095 Sep 2016 WO
Non-Patent Literature Citations (16)
Entry
US 4,937,420 A, 06/1990, Deckard (withdrawn)
International Search Report, Application No. PCT/DE2015/000378, dated Jan. 12, 2015.
Written Opinion of the International Search Authority, Application No. PCT/DE2015/000378, dated Jan. 12, 2015.
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993.
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994.
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-33.
Gebhart, Rapid Prototyping, pp. 118-119, 1996.
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000.
EOS Operating Manual for Laser Sintering Machine with Brief Summary Feb. 22, 2005.
Sachs, E., P. Williams, D. Brancazio, M. Cima, and K. Kremmin, Three dimensional printing: Rapid Tooling and Prototypes Directly from a CAD Model. In Proceedings of Manufacturing International 1990 (Atlanta, GA, Mar. 25-28). ASME, New York, 1990, pp. 131-136.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151, Jan. 1990.
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, abstract only; Sep. 25, 2001.
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012.
Voxeljet's VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013.
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015.
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”.
Related Publications (1)
Number Date Country
20170210037 A1 Jul 2017 US