The invention concerns a method and a casting and rolling plant for producing hot-rolled metal strip, especially steel strip, of high surface quality from continuously cast slabs or thin slabs, which is subjected to a surface descaling, heated to rolling temperature, and finish rolled to thin strip gauges in a multiple-stand hot-strip rolling train, where the cast strand, after emerging from a strand guide, before entering a soaking furnace and/or after emerging from a soaking furnace and entering the hot-strip rolling train, is sprayed on one or both of its surfaces by several rotating nozzles, from which pressurized liquid is recurrently sprayed onto the same places on the surface with high impact pressure to remove scale and/or casting flux and to deep-clean the oscillation marks.
A similar method is known from DE 43 28 303 C2. However, that method does not start from a continuously cast slab or thin slab cross section, and the rotary descaling is applied essentially to rolling stock and thus does not take into consideration the special production method of continuous casting. In addition, the depth of removal is not sufficient for taking care of not only invisible scale but also all production-related oscillation marks. Furthermore, the very large amount of water that is used causes undesirably strong cooling of the rolling stock.
EP 0 586 823 B1 discloses a descaling device for casting and rolling trains. In this device, a rotary arm with a nozzle is used, and retaining, protective, and recovery plates for the removed scale and the large amount of spray water are proposed.
EP 0 625 383 B1 describes a first descaling device, which can consist of a descaling sprayer of a conventional design, and a second descaling device with rotating nozzles.
EP 0 611 610 B1 describes rotary descaling with low water consumption, which is intended to produce a smaller temperature drop of the rolling stock.
The objective of the invention is to incorporate not only the use of the rotating descaler but also previously unconsidered parameters related to continuous casting.
In accordance with the invention, this objective is achieved, in combination with the aforementioned prior art of this general type, by virtue of the fact that the hydraulically oscillated continuous casting mold is moved in several different oscillation curves and that the deep cleaning of the oscillation marks is carried out by setting the oscillation pattern that is determined to be optimal for each casting material. The advantages are that, besides the actual descaling, the oscillation marks can now be largely cleaned, which is conducive to final rolling to ultrathin final rolling thicknesses of less than or equal to 1.2 mm. This means that, for example, for these dimensions, finish rolling in the austenite range of crystalline structure is possible.
In a modification of the invention, it is proposed that much less pressurized liquid be admitted into the rotating nozzles as pressure medium than has previously been used in so-called descaling sprayers, with parameters of the casting or rolling process that are otherwise the same. This makes it possible to use less pressure medium, e.g., water, while achieving the same or better descaling results.
In accordance with other features of the invention, the temperature losses of the cast strand are kept low by admission of pressure medium to the rotating nozzles under automatic control according to the temperature level of the cast strand or strand of rolling stock. This reduces the temperature losses of the slabs and thin slabs, which results in significantly better conditions for the hot rolling of the ultrathin final rolling thicknesses and in energy savings.
The associated casting and rolling plant, especially a compact casting and rolling plant (CSP), which consists of continuous casting installation for liquid metals, especially liquid steel, whose continuous casting mold is connected with a hydraulic oscillation drive, which is followed in the direction of strand withdrawal by at least a strand guide, a soaking furnace, possibly a furnace transverse conveyor, a multiple-stand hot-strip finishing train, and a coiler, is further developed in such a way that a device with rotating nozzles is arranged between the strand guide and the soaking furnace or between a straightening driver and a shear and/or between the soaking furnace and the hot-strip finishing train and that a pressure medium is recurrently sprayed from these nozzles onto the same places on the surface with high impact pressure. This makes it possible to produce the effects of the process that were described earlier.
As is well known in other connections, several nozzles for pressure medium are installed on a rotor. However, it is also advantageous to provide nozzles of this type for media other than water at standard temperature.
In another embodiment, several rotors with nozzles for pressure medium mounted on the periphery of the rotor are arranged in a row transverse to the direction of travel of the cast strand or strand of rolling stock. This makes it possible to replace some or all of the previously used spray bars of the descaling sprayer.
Finally, the invention provides for the use of the rotary descaling device in a hot-strip rolling train with seven or more finish rolling stands before entry into the first finish rolling stand.
Specific embodiments of the features of the invention are illustrated in the drawings and explained in greater detail below.
A casting and rolling plant 1 (
A device 14 with rotating nozzles 15 (
According to
Several nozzles 15 for the pressure medium are combined on a rotor 20 (
The rotary descaling can be used on a hot-strip rolling train 6 with seven or more finish rolling stands 6a before the entry of the rolling stock into the first finish rolling stand 6a.
1 CSP plant (compact steel plant)
2 slab profile
2
a thin slab profile
2
b cast strand
2
c strand surface
3 strand guide
4 soaking furnace
5 furnace transverse conveyor
6 hot-strip rolling train
6
a finish rolling stand
7 strip of steel
8 coiler
9 hydraulically oscillated continuous casting mold
9
a oscillation drive
10 oscillation curve
11 direction of strand withdrawal
12 straightening driver
13 shear
14 device with rotating nozzles
15 rotating nozzle
16 oscillation curve
16
a pattern of the oscillation curve
17 oscillation curve
17
a pattern of the oscillation curve
18 oscillation curve
18
a pattern of the oscillation curve
19 pressurized liquid
20 rotor
20
a rotor periphery
21 row of rotors
Number | Date | Country | Kind |
---|---|---|---|
10 2006 004 688.9 | Feb 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/012459 | 12/22/2006 | WO | 00 | 12/22/2008 |