METHOD AND CELL LINE FOR PRODUCTION OF PHYTOCANNABINOIDS AND PHYTOCANNABINOID ANALOGUES IN YEAST

Abstract
A method and cell line for producing phytocannabinoids and phytocannabinoid analogues in yeast. The method applies, and the cell line includes, a yeast cell transformed with a polyketide synthase CDS and a cytosolic prenyltransferase CDS. The polyketide synthase enzyme catalyzes synthesis of olivetol or methyl-olivetol, and may include Cannabis sativa olivetolic acid synthase or Dictyostelium discoideum polyketide synthase (“DiPKS”). The yeast cell may be modified to include a phosphopantethienyl transferase for increased activity of DiPKS. The yeast cell may be modified to mitigate mitochondrial acetaldehyde catabolism for increasing malonyl-CoA available for synthesizing olivetol or methyl-olivetol. The prenyltransferase enzyme catalyzes synthesis of cannabigerol or a cannabigerol analogue, and may include an αββα cytosolic prenyltransferase enzyme from Streptomyces sp CL190. The yeast cell may be modified to mitigate depletion of geranyl pyrophosphate for increasing available geranyl pyrophosphate for prenylation.
Description
FIELD

The present disclosure relates generally to production of phytocannabinoids and analogues of phytocannabinoids in yeast.


BACKGROUND

Phytocannabinoids are naturally produced in Cannabis sativa, other plants, and some fungi. Over 105 phytocannabinoids are known to be biosynthesized in C. sativa, or result from thermal or other decomposition from phytocannabinoids biosynthesized in C. sativa. While the C. sativa plant is also a valuable source of grain, fiber, and other material, growing C. sativa for phytocannabinoid production, particularly indoors, is costly in terms of energy and labour. Subsequent extraction, purification, and fractionation of phytocannabinoids from the C. sativa plant is also labour and energy intensive.


Phytocannabinoids are pharmacologically active molecules that contribute to the medical and psychotropic effects of C. sativa. Biosynthesis of phytocannabinoids in the C. sativa plant scales similarly to other agricultural projects. As with other agricultural projects, large scale production of phytocannabinoids by growing C. sativa requires a variety of inputs (e.g. nutrients, light, pest control, CO2, etc.). The inputs required for cultivating C. sativa must be provided. In addition, cultivation of C. sativa, where allowed, is currently subject to heavy regulation, taxes, and rigorous quality control where products prepared from the plant are for commercial use, further increasing costs. Phytocannabinoid analogues are pharmacologically active molecules that are structurally similar to phytocannabinoids. Phytocannabinoid analogues are often synthesized chemically, which can be labour intensive and costly. As a result, it may be economical to produce the phytocannabinoids and phytocannabinoid analogues in a robust and scalable, fermentable organism. Saccharomyces cerevisiae is an example of a fermentable organism that has been used to produce industrial scales of similar molecules.


The time, energy, and labour involved in growing C. sativa for production of naturally-occurring phytocannabinoids provides a motivation to produce transgenic cell lines for production of phytocannabinoids in yeast. One example of such efforts is provided in United States Patent Application Publication no. US 2016/0010126 to Poulos and Farnia.


SUMMARY

It is an object of the present disclosure to obviate or mitigate at least one disadvantage of previous approaches to producing phytocannabinoids in yeast, and of previous approaches to producing phytocannabinoid analogues. Many of the 105 phytocannabinoids found in Cannabis sativa may be synthesized in yeast, and it may be desirable to improve yeast-based production. Similarly, an approach that allows for production of phytocannabinoid analogues without the need for labour-intensive synthesis may be desirable.


The methods and cells lines provided herein may apply and include transgenic Saccharomyces cerevisiae that have been transformed with a gene coding for the NphB prenyltransferase enzyme from Streptomyces coelicolor (“CL190”) (“AltPT”). AltPT is an αββα (“ABBA”) type prenyltransferase enzyme. AltPT catalyzes synthesis of cannabigerolic acid (“CBGa”) from olivetolic acid and geranyl pyrophosphate (“GPP”). AltPT also catalyzes synthesis of cannabigerol (“CBG”) from olivetol and GPP. In C. sativa, a prenyltransferase enzyme catalyzes synthesis of CBGa from olivetolic acid and GPP. The C. sativa prenyltransferase is membrane-bound, complicating expression in S. cerevisiae. In contrast, AltPT is cytosolic and expresses at greater levels than the C. sativa prenyltransferase in S. cerevisiae. AltPT may provide advantages over membrane-bound C. sativa prenyltransferase when expressed in S. cerevisiae to catalyze synthesis of CBGa from olivetolic acid and GPP or CBG from olivetol and GPP. The S. cerevisiae may have one or more mutations in Erg20, Maf1 or UPC2, or other genes for enzymes or other proteins that support metabolic pathways that deplete GPP, the one or more mutations being for increasing available GPP. Alternatively, other species of yeast, including Yarrowia lipolytica, Kluyveromyces marxianus, Kluyveromyces lactis, Rhodosporidium toruloides, Cryptococcus curvatus, Trichosporon pullulan and Lipomyces lipoferetc, may be applied.


In some methods and cell lines provided herein, the transgenic S. cerevisiae includes a gene for C. sativa polyketide synthase (also called olivetolic acid synthase or “OAS”). OAS catalyzes synthesis of olivetol from malonyl-CoA and hexanoyl-CoA. The reaction has a 2:1:1 stoichiometric ratio of malonyl-CoA to hexanoyl-CoA to olivetolic acid. In C. sativa, the olivetol is carboxylated in the presence of olivetolic acid cyclase (“OAC”) or another polyketide cyclase into olivetolic acid, which feeds into the CBGa synthesis metabolic pathway described above in relation to AltPT and other cytosolic prenyltransferase enzymes, catalyzed by in C. sativa by a membrane-bound prenyltransferase. The OAC enzyme from C. sativa may be excluded from the transgenic S. cerevisiae to drive synthesis of CBG rather than CBGa by AltPT.


In some methods and cell lines provided herein, the transgenic S. cerevisiae includes a gene for Dictyostelium discoideum polyketide synthase (“DiPKS”). DiPKS is a fusion protein consisting of both a type I fatty acid synthase (“FAS”) and a polyketide synthase and is referred to as a hybrid “FAS-PKS” protein. DiPKS catalyzes synthesis of methyl-olivetol from malonyl-CoA. The reaction has a 6:1 stoichiometric ratio of malonyl-CoA to methyl-olivetol. AltPT catalyzes synthesis of methyl cannabigerol (“meCBG”) from methyl-olivetol, similarly to synthesis of CBG from olivetol described above. Hexanoic acid is toxic to S. cerevisiae. When applying OAS, hexanoyl-CoA is a necessary precursor for synthesis of olivetol. When using DiPKS to produce methyl-olivetol rather than OAS to produce olivetol or olivetolic acid (if the, hexanoic acid need not be added to the growth media. The absence of hexanoic acid in growth media may result in increased growth of the S. cerevisiae cultures and greater yield of meCBG compared with yields of CBG when using OAS.


For some applications, meCBG and methylated downstream phytocannabinoid analogues that can be synthesized from meCBG (similarly to downstream phytocannabinoids being synthesized from CBGa in C. sativa) may be valuable. In other cases, phytocannabinoids structurally identical to the decarboxylated forms of naturally-occurring phytocannabinoids may be more desirable. For production of phytocannabinoids that are structurally identical to the decarboxylated forms of naturally-occurring phytocannabinoids, DiPKS may be modified relative to wild type DiPKS to reduce methylation of olivetol, resulting in synthesis of CBG rather than meCBG. The S. cerevisiae may include a co-factor loading enzyme to increase the activity of DiPKS.


Synthesis of olivetol and methyl-olivetol may be facilitated by increased levels of malonyl-CoA in the cytosol. The S. cerevisiae may have overexpression of native acetaldehyde dehydrogenase and expression of a mutant acetyl-CoA synthase or other gene, the mutations resulting in lowered mitochondrial acetaldehyde catabolism. Lowering mitochondrial acetaldehyde catabolism by diverting the acetaldehyde into acetyl-CoA production increases malonyl-CoA available for synthesizing olivetol. Acc1 is the native yeast malonyl CoA synthase. The S. cerevisiae may have over-expression of Acc1 or modification of Acc1 for increased activity and increased available malonyl-CoA. The S. cerevisiae may include modified expression of Maf1 or other regulators of tRNA biosynthesis. Overexpressing native Maf1 has been shown to reduce loss of isopentyl pyrophosphate (“IPP”) to tRNA biosynthesis and thereby improve monoterpene yields in yeast. IPP is an intermediate in the mevalonate pathway. Upc2 is an activator for sterol biosynthesis in S. cerevisiae, and a Glu888Asp mutation of Upc2 may increase monoterpene production in yeast.


In a first aspect, herein provided is a method and cell line for producing phytocannabinoids and phytocannabinoid analogues in yeast. The method applies, and the cell line includes, a yeast cell transformed with a polyketide synthase CDS and a cytosolic prenyltransferase CDS. The polyketide synthase enzyme catalyzes synthesis of olivetol or methyl-olivetol, and may include Cannabis sativa olivetolic acid synthase or Dictyostelium discoideum polyketide synthase (“DiPKS”). The yeast cell may be modified to include a phosphopantethienyl transferase for increased activity of DiPKS. The yeast cell may be modified to mitigate mitochondrial acetaldehyde catabolism for increasing malonyl-CoA available for synthesizing olivetol or methyl-olivetol. The prenyltransferase enzyme catalyzes synthesis of cannabigerol or a cannabigerol analogue, and may include an αββα cytosolic prenyltransferase enzyme from Streptomyces sp CL190. The yeast cell may be modified to mitigate depletion of geranyl pyrophosphate for increasing available geranyl pyrophosphate for prenylation.


In a further aspect, herein provided is a method of producing phytocannabinoids or phytocannabinoid analogues, the method comprising: providing a yeast cell comprising a first polynucleotide coding for a polyketide synthase enzyme and a second polynucleotide coding for a cytosolic prenyltransferase enzyme, and propagating the yeast cell for providing a yeast cell culture. The polyketide synthase enzyme is for producing at least one precursor chemical from malonyl-CoA, the precursor chemical having structure I:




embedded image


On structure I, R1 is an alkyl group with a chain length of 1, 2, 3, 4, or 5 carbons, R2 is H, carboxyl, or methyl, and R3 is H, carboxyl, or methyl. The cytosolic prenyltransferase enzyme is for prenylating the at least one precursor chemical, providing at least one species of phytocannabinoid or phytocannabinoid analogue.


In some embodiments, the yeast cell comprises a third polynucleotide coding for a hexanoyl synthase enzyme; the polyketide synthase enzyme comprises an OAS enzyme from C. sativa; and propagating the yeast cell comprises propagating the yeast cell in a nutrient preparation comprising hexanoic acid. In some embodiments, the yeast cell does not include a C. sativa polyketide cyclase enzyme and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a decarboxylated phytocannabinoid or phytocannabinoid analogue. In some embodiments, the first polynucleotide comprises a coding sequence for the OAS enzyme from C. sativa with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 3841 to 4995 of SEQ ID NO: 45. In some embodiments the first polynucleotide has between 80% and 100% base sequence homology with bases 3841 to 4995 of SEQ ID NO: 45. In some embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 3841 to 4995 of SEQ ID NO: 45.


In some embodiments, R1 is an alkyl group with a chain length of 3 carbons, R2 is H, and R3 is H.


In some embodiments, R1 is an alkyl group with a chain length of 3 carbons, R2 is carboxyl, and R3 is H.


In some embodiments, R1 is an alkyl group with a chain length of 3 carbons, R2 is methyl, and R3 is H.


In some embodiments, R1 is an alkyl group with a chain length of 3 carbons, R2 is carboxyl, and R3 is methyl.


In some embodiments, the polyketide synthase enzyme comprises a DiPKS polyketide synthase enzyme from D. discoideum. In some embodiments, the first polynucleotide comprises a coding sequence for the DiPKS polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 535 to 9978 of SEQ ID NO: 46. In some embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 535 to 9978 of SEQ ID NO: 46. In some embodiments, the at least one precursor chemical comprises a methyl group at R2 and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a methylated phytocannabinoid analogue. In some embodiments, the DiPKS polyketide synthase enzyme comprises a mutation affecting an active site of a C-Met domain for mitigating methylation of the at least one precursor chemical, resulting in the at least one precursor chemical comprising a first precursor chemical wherein R2 is methyl and R3 is H, and a second precursor chemical wherein R2 is H and R3 is H; and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a methylated phytocannabinoid analogue and an unmethylated phytocannabinoid. In some embodiments, the DiPKS polyketide synthase comprises a DiPKSG1516D; G1518A polyketide synthase enzyme. In some embodiments, the first polynucleotide comprises a coding sequence for the DiPKSG1516D; G1518A polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 37. In some embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 523 to 9966 of SEQ ID NO: 37. In some embodiments, the DiPKS polyketide synthase comprises a DiPKSG1516R polyketide synthase enzyme. In some embodiments, the first polynucleotide comprises a coding sequence for the DiPKSG1516R polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 38. In some embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 523 to 9966 of SEQ ID NO: 38. In some embodiments, the DiPKS polyketide synthase enzyme comprises a mutation reducing activity at an active site of a C-Met domain of the DiPKS polyketide synthase enzyme, for preventing methylation of the at least one precursor chemical, resulting in the at least one precursor chemical having a hydrogen R2 group and a hydrogen R3 group; and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a decarboxylated phytocannabinoid or phytocannabinoid analogue. In some embodiments, the yeast cell comprises a third polynucleotide coding for a phosphopantetheinyl transferase enzyme for increasing the activity of DiPKS. In some embodiments, the phosphopantetheinyl transferase comprises NpgA phosphopantetheinyl transferase enzyme from A. nidulans. In some embodiments, the third polynucleotide comprises a coding sequence for the NpgA phosphopantetheinyl transferase enzyme from A. nidulans with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 1170 to 2201 of SEQ ID NO: 10. In some embodiments, the third polynucleotide has between 80% and 100% base sequence homology with bases 1170 to 2201 of SEQ ID NO: 10.


In some embodiments, the polyketide synthase enzyme comprises an active site for synthesizing the at least one precursor chemical from malonyl-CoA without a longer chain ketyl-CoA. In some embodiments, the at least one precursor chemical comprises a pentyl group at R1 and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a pentyl-phytocannabinoid or methylated pentyl-phytocannabinoid analogue. In some embodiments, the at least one precursor chemical comprises at least one of olivetol olivetolic acid, methyl-olivetol, or methyl-olivetolic acid, and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises at least one of CBG, CBGa, meCBG, or meCBGa.


In some embodiments, the cytosolic prenyltransferase enzyme comprises an NphB prenyltransferase enzyme from Streptomyces sp CL190. In some embodiments, the second polynucleotide comprises a coding sequence for NphB prenyltransferase enzyme from Streptomyces sp CL190 with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 987 to 1913 of SEQ ID NO: 44. In some embodiments, the second polynucleotide has between 80% and 100% base sequence homology with bases 987 to 1913 of SEQ ID NO: 44.


In some embodiments, R1 is an alkyl group with a chain length of 5 carbons, R2 is H, and R3 is H.


In some embodiments, R1 is an alkyl group with a chain length of 5 carbons, R2 is carboxyl, and R3 is H.


In some embodiments, R1 is an alkyl group with a chain length of 5 carbons, R2 is methyl, and R3 is H.


In some embodiments, R1 is an alkyl group with a chain length of 5 carbons, R2 is carboxyl, and R3 is methyl.


In some embodiments, the yeast cell comprises a genetic modification to increase available geranylpyrophosphate. In some embodiments, the genetic modification comprises an inactivation of the Erg20 enzyme. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Erg20K197E with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by SEQ ID NO: 3. In some embodiments, the third polynucleotide has between 80% and 100% base sequence homology with SEQ ID NO: 3.


In some embodiments, the yeast cell comprises a genetic modification to increase available malonyl-CoA. In some embodiments, the genetic modification comprises increased expression of Maf1. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Maf1 with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 936 to 2123 of SEQ ID NO: 8. In some embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 8. In some embodiments, the genetic modification comprises a modification for increasing cytosolic expression of an aldehyde dehydrogenase and an acetyl-CoA synthase. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for AcsL641P from S. enterica with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 3938 to 5893 of SEQ ID NO: 4, and a coding sequence for Ald6 from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 1494 to 2999 of SEQ ID NO 4. In some embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with bases 51 to 7114 SEQ ID NO: 4. In some embodiments, the genetic modification comprises a modification for increasing malonyl-CoA synthase activity. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Acc1S659A; S1167A from S. cerevisiae. In some embodiments, the third polynucleotide includes a coding sequence for the Acc1S659A; S1167A enzyme, with a portion thereof having a primary structure with between 80% and 100% amino acid residue sequence homology with a protein portion coded for by a reading frame defined by bases 9 to 1716 of SEQ ID NO: 7. Acc1S659A; S1167A. In some embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 7. In some embodiments, the yeast cell comprises a third polynucleotide including the coding sequence for Acc1 from S. cerevisiae under regulation of a constitutive promoter. In some embodiments, the constitutive promoter comprises a PGK1 promoter from S. cerevisiae. In some embodiments, the PGK1 promoter has between 80% and 100% nucleotide homology with bases 7 to 750 of SEQ ID NO: 6. In some embodiments, the genetic modification comprises increased expression of an activator for sterol biosynthesis. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Upc2E888D from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 975 to 3701 of SEQ ID NO: 9. In some embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 9.


In some embodiments, the second polynucleotide comprises a coding sequence for a cytosolic prenyltransferase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with any one of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35 or SEQ ID NO: 36.


In some embodiments, the method includes extracting the at least one species of phytocannabinoid or phytocannabinoid analogue from the yeast cell culture.


In a further aspect, herein provided is yeast cell for producing phytocannabinoids or phytocannabinoid analogues, the yeast cell comprising: a first polynucleotide coding for a polyketide synthase enzyme; and a second polynucleotide coding for a cytosolic prenyltransferase enzyme.


In some embodiments, features of one or more of the yeast cell, the first polynucleotide, or the second polynucleotide described herein are included in the yeast cell.


In a further aspect, herein provided is a method of transforming a yeast cell for production of phytocannabinoids or phytocannabinoid analogues. The method comprises introducing a first polynucleotide coding for a polyketide synthase enzyme into the yeast cell line; and introducing a second polynucleotide coding for a cytosolic prenyltransferase enzyme into the yeast


In some embodiments, features of one or more of the yeast cell, the first polynucleotide, or the second polynucleotide described herein are applied in transforming the yeast cell.


In a further aspect, herein provided is a phytocannabinoid analogue having the following structure II:




embedded image


On structure II, R1 is an alkyl group with a chain length of 1, 2, 3, 4, or 5 carbons. R2 is a methyl group. R3 is H, a carboxyl group, or a methyl group.


In some embodiments, R1 has a chain length of 5 carbons and R3 is H.


In some embodiments, the phytocannabinoid analogue is produced by biosynthesis in yeast.


In a further aspect, herein provided is a phytocannabinoid analogue having the following structure III:




embedded image


On structure III, R1 is pentyl group; R2 is a methyl group; and R3 is H.


Other aspects and features of the present disclosure will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure will now be described, by way of example only, with reference to the attached Figures.



FIG. 1 is a schematic of biosynthesis of olivetolic acid and related compounds with different alkyl group chain lengths in C. sativa;



FIG. 2 is a schematic of biosynthesis of CBGa from hexanoic acid, malonyl-CoA, and geranyl pyrophosphate in C. sativa;



FIG. 3 is a schematic of biosynthesis of downstream phytocannabinoids in the acid form from CBGa in C. sativa;



FIG. 4 is a schematic of biosynthesis of CBG in a transformed yeast cell by OAS and AltPT;



FIG. 5 is a schematic of biosynthesis of downstream phytocannabinoids in a transformed yeast cell from CBG;



FIG. 6 is a schematic of biosynthesis of meCBG in a transformed yeast cell by DiPKS and AltPT;



FIG. 7 is a schematic of biosynthesis of downstream methylated phytocannabinoid analogues in a transformed yeast cell from meCBG;



FIG. 8 is a schematic of biosynthesis of downstream methylated phytocannabinoid analogues in a transformed yeast cell from meCBG;



FIG. 9 is a schematic of functional domains in DiPKS, with mutations to a C-methyl transferase that for lowering methylation of olivetol;



FIG. 10 is a schematic of biosynthesis of meCBG and CBG in a transformed yeast cell by DiPKSG1516D; G1518A and AltPT;



FIG. 11 is a schematic of biosynthesis of CBG in a transformed yeast cell by DiPKSG1516R and AltPT;



FIG. 12 shows S. cerevisiae growth at different concentrations of hexanoic acid;



FIG. 13 shows S. cerevisiae growth and olivetol production before and after hexanoic acid is introduced;



FIG. 14 shows yeast growth and CBG production before and after hexanoic acid is introduced;



FIG. 15 shows yeast growth and hexanoic acid consumption in S. cerevisiae before and after hexanoic acid is introduced;



FIG. 16 shows cytosolic expression in S. cerevisiae of C. sativa membrane-bound prenyltransferase and of AltPT;



FIG. 17 shows production in S. cerevisiae of CBG with C. sativa OAS and AltPT, and of meCBG with DiPKS and AltPT;



FIG. 18 shows production of methyl-olivetol by DiPKS, and of both methyl-olivetol and olivetol by DiPKSG1516D; G1518A;



FIG. 19 shows production of methyl-olivetol by DiPKS in two separate strains of S. cerevisiae;



FIG. 20 shows production of methyl-olivetol by DiPKS in two separate strains of S. cerevisiae;



FIG. 21 shows production of meCBG by AltPT in two separate strains of S. cerevisiae;



FIG. 22 shows production of methyl-olivetol by DiPKS, and of both methyl-olivetol and olivetol by DiPKSG1516R in two separate strains of S. cerevisiae;



FIG. 23 shows production of olivetol by DiPKSG1516R, in three separate strains of S. cerevisiae; and



FIG. 24 shows production of CBG by C. sativa OAS and AltPT, meCBG by DiPKS and AltPT, and CBG by DiPKSG1516R and AltPT in three strains of S. cerevisiae.





DETAILED DESCRIPTION

Generally, the present disclosure provides methods and yeast cell lines for producing phytocannabinoids that are naturally biosynthesized in the Cannabis sativa plant and methylated phytocannabinoid analogues biosynthesized from methyl-olivetol. The phytocannabinoids and phytocannabinoid analogues are produced in transgenic yeast. The methods and cell lines provided herein include application of genes for enzymes absent from the C. sativa plant. Application of genes other than the complete set of genes in the C. sativa plant that code for enzymes in the biosynthetic pathway resulting in phytocannabinoids may provide one or more benefits including biosynthesis of decarboxylated phytocannabinoids, biosynthesis of methylated phytocannabinoid analogues, and biosynthesis production of phytocannabinoids without an input of hexanoic acid, which is toxic to Saccharomyces cerevisiae and other species of yeast.


The qualifier “decarboxylated” as used herein references a form of a phytocannabinoid or phytocannabinoid analogue lacking an acid group at, e.g. positions 2 or 4 of Δ9-tetrahydrocannabinol (“THC”), or an equivalent location in other phytocannabinoids or analogues corresponding to position 4 of olivetolic acid, which is the precursor to biosynthesis of cannabigerolic acid (“CBGa”) in C. sativa. Acid forms of phytocannabinoids are biosynthesized from olivetolic acid in C. sativa. When the acid forms of phytocannabinoids are heated, the bond between the aromatic ring of the phytocannabinoid and the carboxyl group is broken. Decarboxylation results from heating carboxylated phytocannabinoids produced in C. sativa, which occurs rapidly during combustion or heating to temperatures generally above about 110° C. For simplicity, as used herein, “decarboxylated” refers to phytocannabinoids lacking the acid groups whether or not the phytocannabinoid included an acid group that was lost during true decarboxylation, or was biosynthesized without the carboxyl group.



FIG. 1 shows biosynthesis of olivetolic acid from polyketide condensation products of malonyl-CoA and hexanoyl-CoA, as occurs in C. sativa. Olivetolic acid is a metabolic precursor to CBGa. CBGa is a precursor to a large number of downstream phytocannabinoids as described in further detail below. In most varieties of C. sativa, the majority of phytocannabinoids are pentyl-cannabinoids, which are biosynthesized from olivetolic acid, which is in turn synthesized from malonyl-CoA and hexanoyl-CoA at a 2:1 stoichiometric ratio. Some propyl-cannabinoids are observed, and are often identified with a “v” suffix in the widely-used three letter abbreviations (e.g. tetrahydrocannabivarin is commonly referred to as “THCv”, cannabidivarin is commonly referred to as “CBDv”, etc.). FIG. 1 also shows biosynthesis of divarinolic acid from condensation of malonyl-CoA with n-butyl-CoA, which would provide downstream propyl-phytocannabinoids.



FIG. 1 also shows biosynthesis of orsellinic acid from condensation of malonyl-CoA with acetyl-CoA, which would provide downstream methyl-phytocannabinoids. The term “methyl-phytocannabinoids” in this context means their alkyl side chain is a methyl group, where most phytocannabinoids have a pentyl group on the alkyl side chain and varinnic phytocannabinoids have a propyl group on the alkyl side chain. The context in which meCBG and other methylated phytocannabinoid analogues are called “methylated” is different from and parallel to use of “methyl” as a prefix in “methyl-phytocannabinoids” and in FIG. 1. Similarly, since olivetol has a side chain of defined length (otherwise it would be one of the other three polyketides shown in FIG. 1 and not “olivetol”), methyl-olivetol is a reference to methylation on the ring and not to a shorter side chain



FIG. 1 also shows biosynthesis of 2,4-diol-6-propylbenzenoic acid from condensation of malonyl-CoA with valeryl-CoA, which would provide downstream butyl-phytocannabinoids.



FIG. 2 shows biosynthesis of CBGa from hexanoic acid, malonyl-CoA, and geranyl pyrophosphate (“GPP”) in C. sativa, including the olivetolic acid biosynthesis step shown in FIG. 1. Hexanoic acid is activated with coenzyme A by hexanoyl-CoA synthase (“Hex1; Reaction 1 in FIG. 2). OAS (also called olivetolic acid synthase despite synthesizing olivetol and not olivetolic acid) and OAC together catalyze production of olivetolic acid from hexanoyl CoA and malonyl-CoA (Reaction 2 in FIG. 2). Prenyltransferase combines olivetolic acid with GPP, providing CBGa Step 3 in FIG. 2).



FIG. 3 shows biosynthesis of downstream acid forms of phytocannabinoids in C. sativa from CBGa. CBGa is oxidatively cyclized into Δ9-tetrahydrocannabinolic acid (“THCa”) by THCa synthase. CBGa is oxidatively cyclized into cannabidiolic acid (“CBDa”) by CBDa synthase. Other phytocannabinoids are also synthesized in C. sativa, such as cannabichromenic acid (“CBCa”), cannabielsoinic acid (“CBEa”), iso-tetrahydrocannabinolic acid (“iso-THCa”), cannabicyclolic acid (“CBLa”), or cannabicitrannic acid (“CBTa”) by other synthase enzymes, or by changing conditions in the plant cells in a way that affects the enzymatic activity in terms of the resulting phytocannabinoid structure. The acid forms of each of these general phytocannabinoid types are shown in FIG. 3 with a general “R” group to show the alkyl side chain, which would be a 5-carbon chain where olivetolic acid is synthesized from hexanoyl-CoA and malonyl-CoA. In some cases, the carboxyl group is alternatively found on a ring position opposite the R group from the position shown in FIG. 3 (e.g. positions 4 of THC rather than position 2 as shown in FIG. 3, etc.). The decarboxylated forms of the phytocannabinoids shown in FIG. 3 are, respectively, THC, cannabidiol (“CBD”), cannabichromene (“CBC”), cannabielsoin (“CBE”), iso-tetrahydrocannabinol (“iso-THC”), cannabicyclol (“CBL”), or cannabicitran (“CBT”).


United States Publication No. 2016/0010126 to Poulos et al. describes expression of the five native C. sativa genes in S. cerevisiae and in K. marxianus. Expression of genes from the native C. sativa pathway in yeast for phytocannabinoid production may carry drawbacks. C. sativa OAS uses hexanoyl-CoA as a polyketide substrate. Hexanoic acid is toxic to S. cerevisiae and some other strains of yeast. In addition, synthesis of CBGa from olivetolic acid requires the membrane-bound C. sativa prenyltransferase enzyme, which may express poorly in fungi.


Methods and yeast cells as provided herein for production of phytocannabinoids and phytocannabinoid analogues may apply and include S. cerevisiae transformed with the gene for prenyltransferase NphB from Streptomyces sp CL 190. The Streptomyces sp CL 190 NphB prenyltransferase provides an alternative to the C. sativa prenyl transferase enzyme and is referred to below as “AltPT”. AltPT is an αββα (“ABBA”) type prenyltransferase enzyme. AltPT is highly promiscuous, accepting most polyketides as a substrate for prenylation. AltPT is specific for GPP as a terpenoid donor. AltPT is a cytosolic enzyme expressed in Streptomyces sp CL 190, a gram positive bacteria, in contrast with the membrane-bound prenyltransferase expressed in C. sativa, a plant. The bacterial cytosolic enzyme expresses at greater levels in yeast than the plant membrane bound enzyme. AltPT will prenylate olivetolic acid to CBGa, similarly to the reaction catalyzed by the membrane-bound prenyltransferase in C. sativa. AltPT will also prenylate olivetol to cannabigerol (“CBG”), or methyl-olivetol to methyl cannabigerol (“meCBG”). A synthetic sequence for AltPT that is codon optimized for yeast is included here at SEQ ID NO: 1. A complete coding DNA sequence (“CDS”) for AltPT is available at the NCBI GenBank online database under accession number NCBI-AB187169.



FIG. 4 shows a biosynthetic pathway in transgenic yeast for production of CBG from hexanoic acid, malonyl-CoA, and GPP. A strain of yeast as provided herein for producing CBG as shown in FIG. 4 may include genes coding for Streptomyces sp CL190 AltPT, C. sativa Hex1, and C. sativa OAS. Examples of such a yeast strain are provided as “HB37” and as “HB88”, each of which are described in Table 7.



FIG. 5 shows biosynthesis of downstream phytocannabinoids from CBG. CBG is oxidatively cyclized into THC, CBD, CBC, CBE, iso-THC, CBL, or CBT. The decarboxylated forms of each of these general phytocannabinoid types are shown in FIG. 5 with a general “R” group to show the alkyl side chain, which would be a 5-carbon chain in phytocannabinoids that are biosynthesized from olivetol.



FIG. 4 shows production of hexanoyl-CoA from hexanoic acid by Hex1. Hexanoic acid is activated with coenzyme A by Hex1 (Reaction 1 in FIG. 4). OAS catalyzes production of olivetol from hexanoyl CoA and malonyl-CoA (Reaction 2 in FIG. 4). AltPT condenses olivetolic acid with GPP, providing CBG (Reaction 3 in FIG. 4).


The pathway shown in FIG. 4 includes C. sativa HEx1 and C. sativa OAS. The pathway shown in FIG. 4 does not include C. sativa OAC. A transgenic yeast cell for carrying out the pathway of FIG. 4 would correspondingly include a gene for OAS but not a gene for C. sativa OAC. C. sativa OAC carboxylates olivetol to olivetolic acid during biosynthesis of olivetolic acid. With OAS and without OAC or another polyketide cyclase, olivetol is produced rather than olivetolic acid, which is produced in C. sativa. As a result, the reaction catalyzed by AltPT results in CBG rather than CBGa. Downstream reactions to produce phytocannabinoids would then correspondingly produce decarboxylated species of the phytocannabinoids, including the phytocannabinoids in FIG. 5, while acid forms, including the phytocannabinoids in FIG. 3, would be produced where OAC or another polyketide cyclase is also present, such as in C. sativa.


Conversion of hexanoyl-CoA to olivetol catalyzed by OAS at Reaction 2 of FIG. 4 was identified as a metabolic bottleneck in the pathway of FIG. 4. In order to increase yield at Reaction 2 of FIG. 4, multiple enzymes were functionally screened and one enzyme, a polyketide synthase from Dictyostelium discoideum called “DiPKS” was identified that could produce methyl-olivetol directly from malonyl-CoA. A synthetic sequence for DiPKS that is codon optimized for yeast is included here at SEQ ID NO: 2. A CDS for DiPKS is available at the NCBI GenBank online database under Accession Number NC_007087.3.



FIG. 6 shows a biosynthetic pathway in transgenic yeast for production of meCBG from malonyl-CoA and GPP. A strain of yeast as provided herein for producing CBG as shown in FIG. 6 may include the gene for AltPT and a gene for DiPKS that supports production of polyketides from malonyl-CoA only, with no requirement for hexanoic acid in the media. DiPKS includes functional domains similar to domains found in a fatty acid synthase, a methyltransferase domain, and a Pks III domain (see FIG. 9). Examples of yeast strains including a codon optimized synthetic sequence coding for the wildtype DiPKS gene are provided as “HB84”, “HB90”, and “HB105”, each of which are described in Table 7.



FIG. 6 shows production of methyl-olivetol from malonyl-CoA (Reaction 1 in FIG. 6), which is catalyzed by DiPKS. AltPT prenylates the methyl-olivetol with GPP as a prenyl group donor, providing meCBG (Reaction 2 in FIG. 6). Application of DiPKS rather than OAS facilitates production of phytocannabinoids and phytocannabinoid analogues without hexanoic acid supplementation. Since hexanoic acid is toxic to S. cerevisiae, eliminating a requirement for hexanoic acid in the biosynthetic pathway for CBG or meCBG may provide greater yields of CBG or meCBG than the yields of CBG in a yeast cell expressing OAS and Hex1.



FIGS. 7 and 8 show downstream methylated phytocannabinoid analogues corresponding to methyl-tetrahydrocannabinol (“meTHC”), methyl-cannabidiol (“meCBD”), methyl-cannabichromene (“meCBC”), methyl-cannabielsoin (“meCBE”), iso-methyl-tetrahydrocannabinol (“iso-meTHC”), methyl-cannabicyclol (“meCBL”), or methyl-cannabicitran (“meCBT”), which are methylated analogues of THC, CBD, CBC, CBE, iso-THC, CBL, and CBT, respectively, that may be prepared when methyl-olivetol is provided as a precursor chemical rather than olivetolic acid or olivetol. The decarboxylated forms of each of these methylated phytocannabinoid analogues are shown in FIGS. 7 and 8 with a general “R” group to show the alkyl side chain, which would be a 5-carbon chain where synthesis results from hexanoyl-CoA and malonyl-CoA, or malonyl-CoA only.


Other than meCBD, a portion of the structure each of the downstream phytocannabinoid anaologues shown in FIGS. 7 and 8 includes rotationally constrained groups bonded with the aromatic ring. As a result, each of the downstream phytocannabinoid analogues shown in FIGS. 7 and 8 other than meCBD may be synthesized from meCBG in one of two rotational isomers. Depending on the rotational isomer of meCBG during synthesis, the methyl group in the resulting cyclized methylated phytocannabinoid analogues may be at the positions shown for the isomers of meTHC, meCBC, meCBE, iso-meTHC, meCBL, or meCBT in FIG. 7, or at the at the positions shown for the isomers of meTHC, meCBC, meCBE, iso-meTHC, meCBL, or meCBT in FIG. 8. References to meTHC, meCBC, meCBE, iso-meTHC, meCBL, or meCBT herein include either or both of the isomers shown in FIGS. 7 and 8.


DiPKS includes a C-methyltransferase domain that methylates olivetol at position 4 on the aromatic ring. As a result, AltPT prenylates methyl-olivetol, resulting in meCBG, a phytocannabinoid analogue, rather than CBGa, which is known to be synthesized in C. sativa. Any downstream reactions that may produce phytocannabinoids when using CBGa or CBG as an input would correspondingly produce the decarboxylated species of methylated phytocannabinoid analogues shown in FIGS. 7 and 8, whereas unmethylated acid form of phytocannabinoids would be produced in C. sativa (as in FIG. 3). If OAC or another polyketide cyclase were included, the methyl-olivetol may be converted by the OAC or the other polyketide cyclase into meCBGa, as the methylation and carboxylation carbons may be at differing positions. For example, meTHC synthesized from meCBG may be methylated at carbon 4, and could be carboxylated to methyl-tetrahydrocannabinolic acid (“meTHCa”) with the carboxyl group of THCa may be at position 2. Alternatively, meTHC synthesized from meCBG may be methylated at carbon 2, in which case the carboxyl group of THCa may be at position 4. THCa is observed in C. sativa with the carboxyl group at the 2 position, or at the 4 position.



FIG. 9 is a schematic of the functional domains of DiPKS showing β-ketoacyl-synthase (“KS”), acyl transacetylase (“AT”), dehydratase (“DH”), C-methyl transferase (“C-Met”), enoyl reductase (“ER”), ketoreductase (“KR”), and acyl carrier protein (“ACP”). The “Type III” domain is a type 3 polyketide synthase. The KS, AT, DH, ER, KR, and ACP portions provide functions typically associated with a fatty acid synthase, speaking to DiPKS being a FAS-PKS protein. The C-Met domain provides the catalytic activity for methylating olivetol at carbon 4. The C-Met domain is crossed out in FIG. 9, schematically illustrating modifications to DiPKS protein that inactivate the C-Met domain and mitigate or eliminate methylation functionality. The Type III domain catalyzes iterative polyketide extension and cyclization of a hexanoic acid thioester transferred to the Type III domain from the ACP.



FIG. 10 shows a biosynthetic pathway in transgenic yeast for production of both meCBG and CBG from malonyl-CoA and GPP. A strain of yeast as provided herein for producing both CBG and meCBG as shown in FIG. 10 may include the gene for AltPT and a gene for a mutant DiPKS with a lowered activity at the C-Met domain, as shown schematically in FIG. 9. The C-Met domain of the DiPKS protein includes amino acid residues 1510 to 1633 of DiPKS. The C-Met domain includes three motifs. The first motif includes residues 1510 to 1518. The second motif includes residues 1596 to 1603. The third motif includes residues 1623 to 1633. Disruption of one or more of these three motifs may result in lowered activity at the C-Met domain.


An example of a yeast strain expressing a modified DiPKS with lowered activity in the C-Met domain is provided as “HB80A” in Example V below. HB80A includes a modification in a yeast-codon optimized gene coding for the wildtype DiPKS protein. HB80A includes modifications in the DiPKS gene such that the DiPKS protein is modified in the first motif of the C-Met domain. As a result of these modifications to the DiPKS gene, the DiPKS protein has substitutions of Gly1516Asp and Gly1518Ala. HB80A includes only the DiPKSG1516D; G1518A and not AltPT, and as a result catalyzes only steps 1A and 1B of FIG. 10, and neither reaction 2A nor 2B. HB80A produces methyl-olivetol and olivetol. The HB80A strain may be modified to include AltPT, such as by transforming HB80A with the pAltPT plasmid (see Table 6).



FIG. 10 shows production of both methyl-olivetol from malonyl-CoA (Reaction 1A in FIG. 10) and of olivetol from malonyl-CoA (Reaction 1B in FIG. 10). Reactions 1A and 1B are each catalyzed by DiPKSG1516D; G1518A. The Gly1516Asp and Gly1518Ala substitutions are in the active site of the C-Met domain and diminish catalysis by DiPKSG1516D; G1518A of methylation on the 4 position of the olivetol ring, allowing a portion of the input malonyl-CoA to be catalyzed according to reaction 1B rather than reaction 1A. AltPT, a promiscuous ABBA prenyltransferase, catalyzes prenylation of both the methyl-olivetol with GPP and the olivetol with GPP. Production of both meCBG (Reaction 2A in FIG. 10) and CBG (Reaction 2B in FIG. 10) follows. Any downstream reactions to produce other phytocannabinoids would then correspondingly produce a mixture of methylated phytocannabinoid analogues and species with no functional group at the 4 position on the aromatic ring of CBG (or a corresponding position in downstream phytocannabinoids), whereas acid forms would be produced in C. sativa.



FIG. 11 shows a biosynthetic pathway in transgenic yeast for production of CBG only from malonyl-CoA and GPP. A strain of yeast as provided herein for producing CBG only as shown in FIG. 11 may include the gene for AltPT and a gene for a mutant DiPKS with a lowered activity at the C-Met domain, as shown schematically in FIG. 9.


Examples of yeast strains expressing a modified DiPKS with essentially no activity in the C-Met domain are provided as “HB135”, “HB137”, “HB138” and “HB139” in Examples VIII, IX and X below. Each of HB135, HB137, HB138 and HB139 includes a modification in a yeast-codon optimized gene coding for the wildtype DiPKS protein. HB135, HB137, HB138 and HB139 each include a modification of the DiPKS gene such that the DiPKS protein is modified in the first motif of the C-Met domain. As a result of this modification to the DiPKS gene, the DiPKS protein has substitutions of Gly1516Arg.


DiPKSG1516R catalyzes reaction 1 in FIG. 11. The Gly1516Arg substitution is in the active site of the C-Met domain and diminish catalysis by DiPKSG1516R of methylation on the 4 position of the olivetol ring. The input of malonyl-CoA is catalyzed according to reaction 1 of FIG. 11. HB139 also includes AltPT, and production of olivetol and CBG (reaction 2 in FIG. 11) follows. Any downstream reactions to produce other phytocannabinoids would then correspondingly produce phytocannabinoid species with no functional group at the 4 position on the aromatic ring of CBG, or a corresponding position in downstream phytocannabinoids, whereas acid forms would be produced in C. sativa.


Increasing Availability of Biosynthetic Precursors


The biosynthetic pathways shown in FIGS. 4, 6, 10 and 11 each require malonyl-CoA and GPP to produce CBGa, CBG, or meCBG, respectively. Yeast cells may be mutated, genes from other species may be introduced, genes may be upregulated or downregulated, or the yeast cells may be otherwise genetically modified, other than introduction of a polyketide synthase such as OAS or DiPKS, and other than introduction of a cytosolic prenyltransferase such as AltPT, to increase the availability of malonyl-CoA, GPP, or other input metabolites required to support the biosynthetic pathways of any of FIGS. 4, 6, 10 and 11.


The yeast cells may be modified for increasing available GPP. S. cerevisiae may have one or more other mutations in Erg20 or other genes for enzymes that support metabolic pathways that deplete GPP. Erg20 catalyzes GPP production in the yeast cell. Erg20 also adds one subunit of 3-isopentyl pyrophosphate (“IPP”) to GPP, resulting in farnesyl pyrophosphate (“FPP”), a metabolite used in downstream sesquiterpene and sterol biosynthesis. Some mutations in Erg20 have been demonstrated to reduce conversion of GPP to FPP, increasing available GPP in the cell. A substitution mutation Lys197Glu in Erg20 lowers conversion of GPP to FPP by Erg20. As shown in Table 4 below, all modified base strains express the Erg20K197E mutant protein (“HB42”, “HB82”, “HB100”, “HB106”, and “HB110”). Similarly, each modified yeast strain based on any of HB42, HB82, HB100, HB106, or HB110 includes a integrate polynucleotide coding for the Erg20K197E mutant integrated into the yeast genome. SEQ ID NO: 3 is a CDS coding for the Erg20K197E protein and flanking sequences for homologous recombination.


The yeast strain may be modified for increasing available malonyl-CoA. Lowered mitochondrial acetaldehyde catabolism results in diversion of the acetaldehyde from ethanol catabolism into acetyl-CoA production, which in turn drives production of malonyl-CoA and downstream polyketides and terpenoids. S. cerevisiae may be modified to express an acetyl-CoA synthase from Salmonella enterica with a substitution modification of Leucine to Proline at residue 641 (“AcsL641P”), and with aldehyde dehydrogenase 6 from S. cerevisiae (“Ald6”). The Leu641Pro mutation removes downstream regulation of Acs, providing greater activity with the ACSL641P mutant than the wild type Acs. Together, cytosolic expression of these two enzymes increases the concentration of acetyl-CoA in the cytosol. Greater acetyl-CoA concentrations in the cytosol result in lowered mitochondrial catabolism, bypassing mitochondrial pyruvate dehydrogenase (“PDH”), providing a PDH bypass. As a result, more acetyl-CoA is available for malonyl-CoA production. SEQ ID NO: 4 is plasmid based on the pGREG plasmid and including a DNA sequence coding for the genes for Ald6 and SeAcsL641P, promoters, terminators, and integration site homology sequences for integration into the S. cerevisiae genome at Flagfeldt-site 19 by recombination applying clustered regularly interspaced short palindromic repeats (“CRISPR”). As shown in Table 4 below (by the term “PDH bypass”), base strains HB82, HB100, HB106, and HB110 have a portion of SEQ ID NO: 4 from bases 1494 to 2999 that code for Ald6 under the TDH3 promoter, and a portion of SEQ ID NO: 4 from bases 3948 to 5893 that code for SeAcsL641P under the Tef1P promoter. Similarly, each modified yeast strain based on any of HB82, HB100, HB106, or HB110 includes a polynucleotide coding for Ald6 and SeAcsL641P.


Another approach to increasing cytosolic malonyl-CoA is to upregulate Acc1, which is the native yeast malonyl-CoA synthase. The promoter sequence of the Acc1 gene was replaced by a constitutive yeast promoter for the PGK1 gene. The promoter from the PGK1 gene allows multiple copies of Acc1 to be present in the cell. The native Acc1 promoter allows only a single copy of the protein to be present in the cell at a time. The native promoter region is shown in SEQ ID NO: 5. The modified promoter region is shown in SEQ ID NO: 6.


In addition to upregulating expression of Acc1, S. cerevisiae may include one or more modifications of Acc1 to increase Acc1 activity and cytosolic acetyl-CoA concentrations. Two mutations in regulatory sequences were identified in literature that remove repression of Acc1, resulting in greater Acc1 expression and higher malonyl-CoA production. SEQ ID NO: 7 is a polynucleotide that may be used to modify the S. cerevisiae genome at the native Acc1 gene by homologous recombination. SEQ ID NO: 7 includes a portion of the coding sequence for the Acc1 gene with Ser659Ala and Ser1167Ala modifications. As a result, the S. cerevisiae transformed with this sequence will express Acc1S659A; S1167A. A similar result may be achieved, for example, by integrating a sequence with the Tef1 promoter, the Acc1 with Ser659Ala and Ser1167Ala modifications, and the Prm9 terminator at any suitable site. The end result would be that Tef1, Acc1S659A; S1167A and Prm9 are flanked by genomic DNA sequences for promoting integration into the S. cerevisiae genome. This was attempted at Flagfeldt site 18 but due to the size of the construct, the approach with SEQ ID NO: 7 described above was followed instead.



S. cerevisiae may include modified expression of Maf1 or other regulators of tRNA biosynthesis. Overexpressing native Maf1 has been shown to reduce loss of IPP to tRNA biosynthesis and thereby improve monoterpene yields in yeast. IPP is an intermediate in the mevalonate pathway. SEQ ID NO: 8 is a polynucleotide that was integrated into the S. cerevisiae genome at Maf1-site 5 for genomic integration of Maf1 under the Tef1 promoter. SEQ ID NO: 8 includes the Tef1 promoter, the native Maf1 gene, and the Prm9 terminator. Together, Tef1, Maf1, and Prm9 are flanked by genomic DNA sequences for promoting integration into the S. cerevisiae genome. As shown in Table 4 below, base strains HB100, HB106, and HB110 express Maf1 under the Tef1 promoter. Similarly, each modified yeast strain based on any of HB100, HB106, or HB110 includes a polynucleotide including a coding sequence for Maf1 under the Tef1 promoter.


Upc2 is an activator for sterol biosynthesis in S. cerevisiae. A Glu888Asp mutation of Upc2 increases monoterpene production in yeast. SEQ ID NO: 9 is a polynucleotide that may be integrated into the genome to provide expression of Upc2E888D under the Tef1 promoter. SEQ ID NO: 9 includes the Tef1 promoter, the Upc2E888D gene, and the Prm9 terminator. Together, Tef1, Upc2E888D, and Prm9 are flanked by genomic DNA sequences for promoting integration into the S. cerevisiae genome.


Any of the above genes, Erg20K197E, AcsL641P, Ald6, Maf1, Acc1S659A; S1167A or Upc2E888D, may be expressed from a plasmid or integrated into the genome of S. cerevisiae. Genome integration may be through homologous recombination, including CRISPR recombination, or any suitable approach. The promoter of Acc1 may be similarly modified through recombination. The coding and regulatory sequences in each of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9 may be included in a plasmid for expression (e.g. pYES, etc.) or a linear polynucleotide for integration into the S. cerevisiae genome. Each of base strains HB42, HB82, HB100, HB106, or HB110 includes one or more integrated SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, or SEQ ID NO: 10 (see below). Integration of SEQ ID NO: 7, or SEQ ID NO: 9 may be applied by similar approaches.


Increased DiPKS Function


As shown in FIG. 9, DiPKS includes an ACP domain. The ACP domain of DiPKS requires a phosphopantetheine group as a co-factor. NpgA is a 4′-phosphopantethienyl transferase from Aspergillus nidulans. A codon-optimized copy of NpgA for S. cerevisiae may be introduced into S. cerevisiae and transformed into the S. cerevisiae, including by homologous recombination. An NpgA gene cassette was integrated into the genome of Saccharomyces cerevisiae at Flagfeldt site 14 to create strain HB100. The sequence of the integrated DNA is shown in SEQ ID NO: 10, and includes the Tef1 Promoter, the NpgA coding sequence and the Prm9 terminator. Together the Tef1p, NpgA, and Prm9t are flanked by genomic DNA sequences promoting integration into Flagfeldt site 14 in the S. cerevisiae genome. As shown in Table 4 below, base strains HB100, HB106, and HB110 include this integrated cassette. Alternatively, bases 636 to 2782 of SEQ ID NO: 10 may be included on an expression plasmid as in strain HB98.


Expression of NpgA provides the A. nidulans phosphopantetheinyl transferase for greater catalysis of loading the phosphopantetheine group onto the ACP domain of DiPKS. As a result, the reaction catalyzed by DiPKS (reaction 1 in FIG. 6) may occur at greater rate, providing a greater amount of methyl-olivetol for prenylation to meCBG.


Other Prenyltransferase Enzymes


NphB variants were defined based on a DELTA BLAST search for ABBA prenyltransferase structures. The list was refined by looking for a binding pocket appropriate for GPP and not IPP, dimethyl allyl pyrophosphate, or other prenyl groups. SEQ ID NO: 12 to SEQ ID NO: 33 provide primary structure amino acid residue sequences for cytosolic prenyltransferase enzymes from fungi and bacteria that were located in the DELTA BLAST search. DELTA BLAST searches of the C. sativa genome were also conducted and membrane-bound prenyltransferase enzymes were located in these searches. Some C. sativa membrane-bound prenyltransferase enzymes express poorly in some species of yeast and would not be introduced into the yeast strains provided herein to prepare phytocannabinoids or phytocannabinoid analogues.


SEQ ID NO: 33 to SEQ ID NO: 36 provide primary structure amino acid residue sequences for cytosolic prenyl transferase enzymes from fungi and bacteria that were located in a manual literature search. SEQ ID NO: 33 to SEQ ID NO: 36 are primary structure amino acid residue sequences for cytosolic prenyl transferase enzymes named FNQ26, FNQ28, FUR7, and NAPT9, respectively.


Any of SEQ ID NO: 11 to SEQ ID NO: 36 may be applied to the yeast strains described herein as the cytosolic prenyltransferase. Each of these prenyltransferases are summarized in Table 1.









TABLE 1







Prenyltransferases








SEQ



ID



NO:
Comments





11
640387779 ATEG_00821 predicted protein [Aspergillus terreus]


12
2515835839 B100DRAFT_06502 Aromatic prenyltransferase



NphB. [Streptomyces sp. CL190]


13
2516097927 B121DRAFT_00516 Aromatic prenyltransferase



NphB. [Streptomyces sp. CL190]


14
2516101115 B121DRAFT_03712 Aromatic prenyltransferase



NphB. [Streptomyces sp. CL190]


15
2516101748 B121DRAFT_04345 Aromatic prenyltransferase



NphB. [Streptomyces sp. CL190]


16
2516099186 B121DRAFT_01777 Aromatic prenyltransferase



NphB. [Streptomyces sp. CL190]


17
2516104298 B121DRAFT_06901 Aromatic prenyltransferase



NphB. [Streptomyces sp. CL190]


18
2585297016 EW57DRAFT_01164 Aromatic prenyltransferase



NphB [Streptomycesatratus]


19
2585373487 putative prenyltransferase [Streptomyces




cinnamonensis]



20
2585373644 aromatic prenyltransferase [Streptomyces iakyrus]


21
2585378108 ABBA prenyltransferase Ptf_St [Streptomyces




tendae]



22
2585708813 JD81DRAFT_01144 Aromatic prenyltransferase



NphB [Micromonospora sagamiensis]


23
2516111586 B105DRAFT_07016 Aromatic prenyltransferase



NphB. [Streptomyces sp. CL190]


24
2517160389 SacsaDRAFT_00895 Aromatic prenyltransferase



NphB. [Saccharomonospora saliphila]


25
2521683528 H294DRAFT_07929 Aromatic prenyltransferase



NphB [Streptomyces sp. CL190]


26
2521683684 H294DRAFT_08085 Aromatic prenyltransferase



NphB [Streptomyces sp. CL190]


27
2524586714 H299DRAFT_04355 Aromatic prenyltransferase



NphB [Streptomyces sp. CL190]


28
2528491298 I003DRAFT_05612 Aromatic prenyltransferase



NphB [Streptomyces sp. CL190]


29
2585378750 SPLIT WT5.12c [Streptomyces sp. WT5:



JN402323]


30
2585373485 SPLIT putative prenyltransferase [Streptomyces




cinnamonensis DSM 1042: AM384985]



31
2552198934 SPLIT Aromatic prenyltransferase NphB



[Nocardia concava NBRC 100430:



NoneDRAFT_BAFX01000066_1.66]


32
2521987056 SPLIT Aromatic prenyltransferase NphB



[Myxococcus stipitatus DSM 14675: CP004025]


33
FNQ26 from Streptomyces cinnamonensis


34
FNQ28 from S. cinnamonensis


35
FUR7 from Streptomyces sp. (strain KO-3988)


36
NAPT9 from Streptomyces aculeolatus









Modification of DiPKS


DiPKS may be modified to reduce or eliminate the activity of C-Met.


SEQ ID NO: 37 is a modified form of a synthetic sequence for DIPKS that is codon optimized for yeast in which DiPKS includes a Gly1516Asp substitution and a Gly1518Ala substitution that together disrupt the activity of the C-met domain. Results of DiPKSG1516D, G1518A expression in S. cerevisiae cultures are provided below in relation to Example IV which includes strain HB80A. Other modifications may be introduced into DiPKS to disrupt or eliminate the entire active site of C-Met or all of C-Met. Each of these modified DiPKS enzymes may be introduced into S. cerevisiae as described for wild type DiPKS.


SEQ ID NO: 38 is a modified form of a synthetic sequence for DIPKS that is codon optimized for yeast in which DiPKS includes a Gly1516Arg substitution that disrupts the activity of the C-met domain. Results of DiPKSG1516R expression in S. cerevisiae cultures are provided below in relation to Example VIII, which includes strain HB135 and Example IX, which includes strains HB135, HB137 and HB138.


In addition to DiPKSG1516D,G1518A and DiPKSG1516R specifically, other modifications were introduced into DiPKS to disrupt or eliminate the entire active site of C-Met or all of C-Met: (a) substitution of motif 1 with GGGSGGGSG, (b) a Gly1516Arg substitution in motif 1 and substitution of motif 2 with GGGSGGGS, (c). a Glu1634Ala, which is just outside motif 3 and disrupts tertiary structure at an active site in the C-Met domain, and (d). disruption of an active site in the C-Met domain by a His1608Gln substitution. Codon optimized sequences for each of (a) to (d) were introduced into yeast on expression plasmids, similarly to expression of DiPKSG1516D,G1518A and DiPKSG1516R, into base strain HB100. In each case, no production of olivetol was observed. Substitution of either motif 1 or motif 2 with GGGSGGGS eliminated production of methyl-olivetol as well. A culture of yeast expressing the DiPKSG1634A mutant provided 2.67 mg methyl-olivetol per I of culture in one example batch. A culture of yeast expressing the DiPKSH1608N mutants provided 3.19 mg methyl-olivetol per I of culture in one example batch.


Transforming and Growing Yeast Cells


Details of specific examples of methods carried out and yeast cells produced in accordance with this description are provided below as Examples I, to X. Each of these ten specific examples applied similar approaches to plasmid construction, transformation of yeast, quantification of strain growth, and quantification of intracellular metabolites. These common features across the ten examples are described below, followed by results and other details relating to one or more of the ten examples.


Plasmid Construction


Plasmids assembled to apply and prepare examples of the methods and yeast cells provided herein are shown in Table 2. In Table 2, for the expression plasmids pYES, and pYES2, SEQ ID NOs 39 and 40 respectively provide the plasmids as a whole without an expression cassette. The expression cassettes of SEQ ID NOs: 10, 37, 38, and 41 to 47 can be included in to prepare the plasmids indicated in Table 2. SEQ ID NO: 4 is the pGREG plasmid including a cassette for the PDH bypass genes.









TABLE 2







Plasmids and Cassettes Used to Prepare Yeast Strains









Plasmid
Cassette
Description





pYES
(none)
LEU auxotroph; ampicillin resistance; SEQ ID NO: 39


pYES2
(none)
URA auxotroph; ampicillin resistance; SEQ ID NO: 40


pPDH
Bases 1 to
High copy amplification plasmid with PDH Bypass genes



7214 from
for acetaldehyde dehydrogenase (Ald6) and acetyl-CoA



SEQ ID NO: 4
synthase (AcsL641P) assembled in pGREG 505/G418




flanked by integration site homology sequences as follows:




C1-506-BclV-Site 19 UP region-L0




L0-TDH3P-L1-Ald6-L2-Adh1T-LTP1




LTP1-Tef1P-L3-AcsL641P-L4-Prm9T-LTP2




LTP2-Site 19 down region-C6-506


pNPGa
SEQ ID NO: 10
High copy NpgA expression plasmid in pYES2 with:




LV3-Tef1P-L1-NpgA-L2-Prm9T-LV5


pDiPKSm1
SEQ ID NO: 37
High copy DiPKSG1516D;G1518A expression plasmid in pYES2




with:




LV3-Gal1-L1-DiPKSG1516D;G1518A-L2-Prm9T-LV5


pDIPKSm2
SEQ ID NO: 38
High copy DIPKSG1516R expression plasmid in pYES2 with:




LV3-Gal1-L1-DiPKSG1516R-L2-Prm9tT-LV5


pGFP
SEQ ID NO: 41
High copy GFP expression plasmid in pYES2 with:




LV3-Tef1P-GFP-CycT-LV5


pPTGFP
SEQ ID NO: 42
High copy C. sativa prenyltransferase fused with GFP




expression plasmid in pYES2 with:




LV3-Tef1P-CS.PT_GFP-CycT-LV5


pAPTGFP
SEQ ID NO: 43
High copy AltPT fused with GFP expression plasmid in




pYES2 with:




LV3-Tef1P-APT_GFP-CycT-LV5


pAltPT
SEQ ID NO: 44
High copy AltPT expression plasmid in pYES with:




LV3-PMA1P-L1-AltPT-L2-Eno2T-LV5


pH1OAS
SEQ ID NO: 45
High copy Hexl and OAS expression plasmid in pYES2




with:




LV3-TDH3P-L1-Hex1-L2-Adh1T-LTP1




TP1-Tef1P-L3-OAS-L4-Prm9T-LV5


pDiPKS
SEQ ID NO: 46
High copy DiPKS expression plasmid in pYES2 with:




LV3-Gal1-L1-DiPKS-L2-Prm9T-LV5


pCRISPR
SEQ ID NO: 47
High copy Cas9 endonuclease and targeted gRNA




expression plasmid in pYES2 with:




LV3-Tef1P-Cas9-Adh1T-LTP1




LTP1-gRNA-LV5









Plasmids for introduction into S. cerevisiae were amplified by polymerase chain reaction (“PCR”) with primers from Operon Eurofins and Phusion HF polymerase (ThermoFisher F-530S) according to the manufacturer's recommended protocols using an Eppendorf Mastercycler ep Gradient 5341.


All plasmids were assembled using overlapping DNA parts and transformation assisted recombination in S. cerevisiae. The plasmids were transformed into S. cerevisiae using the lithium acetate heat shock method as described by Gietz, R. D. and Schiestl, R. H., “High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method.” Nat. Protoc. 2, 31-34 (2007). The base yeast strains used for assembling plasmids are shown in Table 3:









TABLE 3







Base Yeast Strains










Strain
Background
Modification
Comments





HB24
-LEU
None
Unmodified yeast with Leucine





auxotrophy used to assemble plasmids


HB25
-URA
None
Unmodified yeast with Uracil





auxotrophy used to assemble plasmids









The pAltPT plasmid was assembled in the HB24 leucine auxotroph. The pNPGA, pDiPKSm1, pDiPKSm2, pGFP, pPTGFP, pAPTGFP, pH1OAS, pDiPKS, pCRISPR, and pPDH plasmids were assembled in the HB25 uracil auxotroph. Transformed S. cerevisiae cells were selected by auxotrophic selection on agar petri dishes. Colonies recovered from the petri dishes were grown up in liquid selective media for 16 hrs at 30° C. while being shaken at 250 RPM.


After growth in liquid selective media, the transformed S. cerevisiae cells were collected and the plasmid DNA was extracted. The extracted plasmid DNA was transformed into Escherichia coli. Transformed E. coli were selected for by growing on agar petri dishes including ampicillin. The E. coli were cultured to amplify the plasmid. The plasmid grown in the E. coli was extracted and sequenced with Sanger dideoxy sequencing to verify accurate construction. The sequence-verified plasmid was then used for genome modification or stable transformation of the S. cerevisiae.


Genome Modification of S. cerevisiae


The S. cerevisiae strains described herein may be prepared by stable transformation of plasmids or genome modification. Genome modification may be accomplished through homologous recombination, including by methods leveraging CRISPR.


Methods applying CRISPR were applied to delete DNA from the S. cerevisiae genome and introduce heterologous DNA into the S. cerevisiae genome. Guide RNA (“gRNA”) sequences for targeting the Cas9 endonuclease to the desired locations on the S. cerevisiae genome were designed with Benchling online DNA editing software. DNA splicing by overlap extension (“SOEing”) and PCR were applied to assemble the gRNA sequences and amplify a DNA sequence including a functional gRNA cassette.


The functional gRNA cassette, a Cas9-expressing gene cassette, and the pYes2 (URA) plasmid were assembled into the pCRISPR plasmid and transformed into S. cerevisiae for facilitating targeted DNA double-stranded cleavage. The resulting DNA cleavage was repaired by the addition of a linear fragment of target DNA.


The CDS for the Erg20K197E protein shown in SEQ ID NO: 3 was integrated into the genome of HB13 by homologous recombination, resulting in the HB42 base strain.


Bases 51 to 7114 of SEQ ID NO: 4 were integrated into the HB42 strain by CRISPR to provide the HB82 base strain with the PDH bypass genes in S. cerevisiae. The pPDH plasmid was sequence verified after assembly in S. cerevisiae. The sequence-verified pPDH plasmid was grown in E. coli, purified, and digested with BciV1 restriction enzymes. As in Table 2, digestion by BciV1 provided a polynucleotide including the genes for Ald6 and SeAcsL641P, promoters, terminators, and integration site homology sequences for integration into the S. cerevisiae genome at PDH-site 19 by Cas9. The resulting linear PDH bypass donor polynucleotide, shown in bases 51 to 7114 of SEQ ID NO: 4, was purified by gel separation.


With both PDH bypass genes (Ald6 and AcsL641P) on the single PDH bypass polynucleotide, the PDH bypass donor polynucleotide was co-tranformed into S. cerevisiae with pCRISPR. Transformation was by the lithium acetate heat shock method as described by Gietz. The pCRISPR plasmid expresses Cas9, which is targeted to a selected location of S. cerevisiae the genome by a gRNA molecule. At the location, the Cas9 protein creates a double stranded break in the DNA. The PDH bypass donor polynucleotide was used as a donor polynucleotide in the CRISPR reaction. The PDH bypass donor polynucleotide including Ald6, AcsL641P, promoters, and terminators was integrated into the genome at the site of the break, Site 19, by homologous recombination, resulting in strain HB82.


The NpgA donor polynucleotide shown in SEQ ID NO: 10 was prepared and amplified. DNA SOEing was used to create a single donor DNA fragment from three polynucleotides for NpgA integration. The first polynucleotide was the 5′ region of genomic homology that allows the donor to recombine into the genome at a specific locus. The second polynucleotide coded for the NpgA gene cassette. The NpgA gene cassette includes the Tef1 promoter, the NpgA coding sequence and the Prm9 terminator. The third polynucleotide included the 3′ region for genomic homology to facilitate targeted integration into the S. cerevisiae genome.


The NpgA donor polynucleotide was co-transformed with the pCRISPR plasmid into strain HB82. The pCRISPR plasmid was expressed and endonuclease Cas9 was targeted to a location on the S. cerevisiae genome by a gRNA molecule. At the location, the Cas9 protein created a double stranded break in the DNA and the NpgA donor polynucleotide was integrated into the genome at the break by homologous recombination to provide the HB100 base strain.


The Maf1 donor polynucleotide shown in SEQ ID NO: 8 was prepared and amplified. DNA SOEing was used to create a single donor DNA fragment from three polynucleotides for Maf1 integration. The first polynucleotide was the 5′ region of genomic homology that allows the donor to recombine into the genome at a specific locus. The second polynucleotide coded for the Maf1 gene cassette. The Maf1 gene cassette includes the Tef1 promoter, the Maf1 coding sequence and the Prm9 terminator. The third polynucleotide included the 3′ region for genomic homology to facilitate targeted integration into the S. cerevisiae genome.


The Maf1 donor polynucleotide was co-transformed with the pCRISPR plasmid into the HB100 strain. The pCRISPR plasmid may be expressed and endonuclease Cas9 was targeted to a location on the S. cerevisiae genome by a gRNA molecule. At the location, the Cas9 protein may create a double stranded break in the DNA and the Maf1 donor polynucleotide may be integrated into the genome at the break by homologous recombination. Stable transformation of the Maf1 donor polynucleotide into the HB100 strain provides the HB106 base strain.


The Acc1-PGK1p donor polynucleotide shown in SEQ ID NO: 6 was prepared and amplified. DNA SOEing was used to create a single donor DNA fragment from three polynucleotides for Acc1-PGK1 integration. The first polynucleotide was the 5′ region of genomic homology that allows the donor to recombine into the genome at a specific locus.


The second polynucleotide coded for the PGK1 promoter region. The third polynucleotide included the 3′ region for genomic homology to facilitate targeted integration into the S. cerevisiae genome.


The Acc1-PGK1 donor polynucleotide was co-transformed with the pCRISPR plasmid. The pCRISPR plasmid was expressed and endonuclease Cas9 was targeted to a location on the S. cerevisiae genome by a gRNA molecule. At the location, the Cas9 protein created a double stranded break in the DNA and the Acc1-PGK1 donor polynucleotide was integrated into the genome at the break by homologous recombination. Stable transformation of donor polynucleotide into the HB100 strain provides the HB110 base strain with Acc1 under regulation of the PGK1 promoter.


Table 4 provides a summary of the base strains that were prepared by genome modification of S. cerevisiae. Each base strain shown in Table 4 is a leucine and uracil auxotroph, and none of them include a plasmid.









TABLE 4







Base Transformed Strains Prepared for Confirming Protein


Expression and for Phytocannabinoid Production









Strain
Modification
Integration





HB42
Erg20K197E
SEQ ID NOs: 3


HB82
Erg20K197E, PDH bypass
SEQ ID NOs: 3, 4


HB100
Erg20K197E, PDH bypass,
SEQ ID NOs: 3, 4, 10



NPGa (site 14)



HB106
Erg20K197E, PDH bypass,
SEQ ID NOs: 3, 4, 10, 8



NPGa (site 14), Maf1 (site 5)



HB110
Erg20K197E, PDH bypass,
SEQ ID NOs: 3, 4, 10,



NPGa (site 14), Maf1 (site 5),
8, 6



Acc1 promoter replaced with PGK1p









Stable Transformation for Strain Construction


Plasmids were transformed into S. cerevisiae using the lithium acetate heat shock method as described by Gietz.


Transgenic S. cerevisiae strains HB1, HB6, and HB7 were prepared from the HB25 base strain by introducing the plasmids from Table 2 into HB25 as indicated below in Table 5. Strains HB1, HB6, and HB7 were used for comparing protein expression levels in S. cerevisiae of C. sativa prenyltransferase and AltPT.









TABLE 5







Transformed Yeast Strains Including Expression


Plasmids Prepared for Confirming Protein


Expression and for Phytocannabinoid Production











Strain
Base Strain
Plasmid






HB1
HB25
pGFP



HB6
HB25
pPTGFP



HB7
HB25
pAPTGFP



HB13
HB25
pEV









Transgenic S. cerevisiae HB80, HB80A, HB98, HB102, HB135, HB137 and HB138 were prepared from the HB42, HB100, HB106 and HB110 bases strain by transformation of HB42 with expression plasmids, and HB80A was prepared by transformation of HB80, as shown below in Table 6. HB80, HB98 and HB102 each include and express DiPKS. HB80A includes and expresses DiPKSG1516D; G1518A. HB135, HB137 and HB138 each include and express DiPKSG1516R. HB98 includes and expresses DiPKS and NPGa from a plasmid.









TABLE 6







Strains including plasmids expressing polyketide synthase











Strain
Base Strain
Plasmid






HB80
HB42
pDiPKS



HB80A
HB80
pDIPKSm1



HB98
HB42
pDiPKS





pNPGa



HB102
HB100
pDIPKS



HB135
HB100
pDIPKSm2



HB137
HB106
pDIPKSm2



HB138
HB110
pDIPKSm2









Transgenic S. cerevisiae HB37, HB84, HB88, HB90, HB105 and HB130 were prepared from base strains indicated in Table 7 by transformation the base strains with the expression plasmids as shown below in Table 7. HB37 and HB88 each include and express AltPT and OAS. HB80, HB90 and HB105 each include and express AltPT and DiPKS. HB139 includes and expresses AltPT and DiPKSG1516R.









TABLE 7







Strains including plasmids expressing cytosolic prenyltransferase












Strain
Base Strain
Plasmid 1
Plasmid 2






HB37
HB42
pAltPT
pH1OAS



HB84
HB42
pAltPT
pDiPKS



HB88
HB82
pAltPT
pH1OAS



HB90
HB82
pAltPT
pDiPKS



HB105
HB100
pAltPT
pDIPKS



HB139
HB106
pAltPT
pDIPKSm2









Yeast Growth and Feeding Conditions


Yeast cultures were grown in overnight cultures with selective media to provide starter cultures. The resulting starter cultures were then used to inoculate triplicate 50 ml cultures to an optical density at having an absorption at 600 nm (“A600”) of 0.1. Table 6 shows details of the media used to grow each strain.









TABLE 8







Growth media used for Yeast








Strain
Growth Media





HB13-HA
YNB + 2% glucose + 1.6 g/L 4DO* + 0.5 mM hexanoic



Acid


HB13-No
YNB + 2% raffinose + 2% galactose + 1.6 g/L 4DO*


HB37-HA
YNB + 2% glucose + 1.6 g/L 4DO* + 0.5 mM hexanoic



acid


HB84-No
YNB + 2% raffinose + 2% galactose + 1.6 g/L 4DO*









In Table 8, “4DO*” refers to yeast synthetic dropout media supplement lacking leucine and uracil. With respect to strain HB13, “HB13-HA” refers to HB13 grown in the presence of 0.5 mM hexanoic acid and “HB13-No” refers to HB13 grown in the absence of hexanoic acid. In Table 8, “YNB” is a nutrient broth including the chemicals listed in the first two columns side of Table 9. The chemicals listed in the third and fourth columns of Table 9 are included in the 4DO* supplement.









TABLE 9







YNB Nutrient Broth and 4DO* Supplement








YNB











Con-
4DO*










Chemical
centration
Chemical
Concentration















Ammonium Sulphate
5
g/L
Adenine
18
mg/L


Biotin
2
μg/L
p-Aminobenzoic acid
8
mg/L


Calcium pantothenate
400
μg/L
Alanine
76
mg/ml


Folic acid
2
μg/L
Arginine
76
mg/ml


Inositol
2
mg/L
Asparagine
76
mg/ml


Nicotinic acid
400
μg/L
Aspartic Acid
76
mg/ml


p-Aminobenzoic acid
200
μg/L
Cysteine
76
mg/ml


Pyridoxine HCl
400
μg/L
Glutamic Acid
76
mg/ml


Riboflavin
200
μg/L
Glutamine
76
mg/ml


Thiamine HCL
400
μg/L
Glycine
76
mg/ml


Citric acid
0.1
g/L
Histidine
76
mg/ml


Boric acid
500
μg/L
myo-Inositol
76
mg/ml


Copper sulfate
40
μg/L
Isoleucine
76
mg/ml


Potassium iodide
100
μg/L
Lysine
76
mg/ml


Ferric chloride
200
μg/L
Methionine
76
mg/ml


Magnesium sulfate
400
μg/L
Phenylalanine
76
mg/ml


Sodium molybdate
200
μg/L
Proline
76
mg/ml


Zinc sulfate
400
μg/L
Serine
76
mg/ml


Potassium phosphate
1.0
g/L
Threonine
76
mg/ml


monobasic







Magnesium sulfate
0.5
g/L
Tryptophan
76
mg/ml


Sodium chloride
0.1
g/L
Tyrosine
76
mg/ml


Calcium chloride
0.1
g/L
Valine
76
mg/ml









Quantification of Metabolites


Intracellular metabolites were extracted from the S. cerevisiae cells using methanol extraction. One mL of liquid culture was spun down at 12,000×g for 3 minutes. 250 μL of the resulting supernatant was used for extracellular metabolite quantification. The resulting cell pellet was suspended in 200 μl of −40° C. 80% methanol. The mixture was vortexed and chilled on ice for 10 minutes. After chilling on ice for 10 minutes, the mixture was spun down at 15,000×g at 4° C. for 14 minutes. The resulting supernatant was collected. An additional 200 μl of −40° C. 80% methanol was added to the cell debris pellet and the mixture was vortexed and chilled for 10 minutes on ice. After chilling on ice for 10 minutes, the mixture was spun down at 15,000×g at 4° C. for 14 minutes. The resulting 200 μl of supernatant was added to the previously collected 200 μl of supernatant, providing a total of 400 μl of 80% methanol with intracellular metabolites.


Intracellular metabolites were quantified using high performance liquid chromatography (“HPLC”) and mass spectrometry (“MS”) methods. An Agilent 1260 autosampler and HPLC system connected to a ThermoFinnigan LTQ mass spectrometer was used. The HPLC system included a Zorbax Eclipse C18 2.1 μm×5.6 mm×100 mm column.


The metabolites were injected in 10 μl samples using the autosampler and separated on the HPLC using at a flow rate of 1 ml/min. The HPLC separation protocol was 20 mins total with (a) 0-2 mins of 98% Solvent A and 2% Solvent B; (b) 2-15 mins to get to 98% solvent B; (c) 15-16.5 minutes at 98% solvent B; (d) 16.5-17.5 minutes to get to 98% A; and (e) a final 2.5 minutes of equilibration at 98% Solvent A. Solvent A was acetonitrile+0.1% formic acid in MS water and solvent B was 0.1% formic acid in MS water.


After HPLC separation, samples were injected into the mass spectrometer by electrospray ionization and analyzed in positive mode. The capillary temperature was held at 380° C. The tube lens voltage was 30 V, the capillary voltage was 0 V, and the spray voltage was 5 kV. After HPLC-MS/MS, CBG was analyzed as a parent ion at 317.2 and a daughter ion at 193.1, while meCBG was analyzed as a parent ion of 331.2. Similarly, after HPLC-MS/MS, olivetol was analyzed as a parent ion at 181.2 and a daughter ion at 111, while methyl-olivetol analyzed as a parent ion at 193.2 and a daughter ion at 125.


Different concentrations of known standards were injected to create a linear standard curve. Standards for CBG and meCBG were purchased from Toronto Research Chemicals. The meCBG was custom prepared by request because Toronto Research Chemicals had not synthesized that chemical prior to being asked for the standard. Olivetol and methyl-olivetol standards were purchased from Sigma Aldrich.


Effects of Hexanoic Acid on S. cerevisiae Growth


The genes coding for enzymes required for hexanoic acid biosynthesis were not introduced into S. cerevisiae. Instead, in yeast cells including the OAS gene, such as HB37, hexanoic acid was included in the growth media.



FIG. 12 shows the effect of hexanoic acid supplementation on growth of S. cerevisiae. HB13 was cultured in YNB+2% glucose+1.6 g/L 4DO*+0.5 mM hexanoic acid. Hexanoic acid was added at 36 hours of culture. The hexanoic acid was added to separate culture samples at concentrations of 0, 0.5, 1.0 and 3.0 mM. Hexanoic acid is toxic to S. cerevisiae. Decreased growth was observed in the presence of hexanoic acid. The magnitude of the decrease in S. cerevisiae growth corresponds to the concentration of hexanoic acid in the growth media. The A600 value of culture suspensions quantifies the growth rate, which is shown at hexanoic acid concentrations of 0, 0.5, 1.0 and 3.0 mM in FIG. 12.


In the presence of 0.5 mM hexanoic acid, HB13 and HB37 were grown for 96 hours with samples taken at the 24h, 36h, 48h, 60, 72h, 84h and 96h points. In the absence of hexanoic acid, HB13 and HB84 were grown and a single time point was taken at 72 hours. HB13 was used as a control in both experiments. The growth media are described above in relation to Tables 8 and 9.









TABLE 10







HB13 and HB37 (0.5 mM hexanoic acid) and


HB13 and HB84 (no hexanoic acid) growth













Time Point
HB13-HA
HB13-No
HB37-HA
HB84-No







24 h
5.33
(no data)
3.33
(no data)



36 h
5.80
(no data)
3.43
(no data)



48 h
4.67
(no data)
3.33
(no data)



60 h
6.07
(no data)
3.53
(no data)



72 h
8.96
10.7
4.48
6.9



84 h
7.23
(no data)
4.13
(no data)



96 h
8.28
(no data)
4.33
(no data)










As shown in Table 10, HB84, outgrew HB37. In addition, HB84 does not require hexanoic acid to produce meCBG, while HB37 requires hexanoic acid to produce CBG. Similarly, HB13 showed better growth at 72h in the absence of hexanoic acid compared with the presence of 0.5 mM hexanoic acid, consistent with the data shown in FIG. 12.



FIGS. 13 to 15 each show the A600 values of the HB37 culture listed in Table 10 (dashed lines with triangle data points). In addition, each of FIGS. 13 to 15 shows another data series by solid lines with circle data points.



FIG. 13 shows olivetol production (μg olivetol per L of culture media) in solid lines with circle data points.



FIG. 14 shows CBG production (μg CBG per L of culture media) in solid lines with circle data points.



FIG. 15 shows hexanoic acid present in the culture (mg hexanoic acid per L of culture media) in solid lines with circle data points.


Together, FIGS. 13 to 15 are consistent with a dioxic shift occurring at between 50 and 60 hours. The dioxic shift includes a metabolic shift from glucose catabolism to acetic acid and ethanol catabolism. With the dioxic shift, many secondary metabolic pathways become more active, and the AltPT and OAS activities similarly increase.



FIGS. 12 to 15 and Table 10 show data consistent with hexanoic acid toxicity not appearing to have been mitigated to any great extent by consumption of hexanoic acid to produce phytocannabinoids until the hexanoic acid levels dropped between 50 and 60 hours, then continued to drop. As shown in FIGS. 12 and 13, olivetol and CBG were being produced beginning with the introduction of hexanoic acid. However, while CBG was produced and the hexanoic acid was converted to olivetol, the A600 of the culture did not increase drastically as the olivetol and CBG were produced. The A600 increased only after the hexanoic acid began to deplete as shown in FIG. 15 between 50 and 60 hours. The depletion is a result at least in part of olivetol production. However, no significant increase in culture A600 was observed during production of olivetol and CBG following introduction of hexanoic acid at 36 hours, until hexanoic acid concentrations were depleted.


Expression of Cytosolic and Membrane-Bound Prenyltransferase



C. sativa prenyltransferase is a membrane-bound plant protein while AltPT is a cytosolic bacterial protein. Application of AltPT in S. cerevisiae rather than C. sativa prenyltransferase provides greater protein expression levels in the yeast cells. Each of HB1, HB6, HB7, and HB13 as shown in Table 5 were grown in YNB, 2% glucose, and 1.6 g/L 4DO* overnight. The resulting culture, after being grown overnight, was normalized to 1.0 A600 and then grown for four hours in YNB, 2% glucose, and 1.6 g/L 4DO*. Fluorescence was measured from each culture suspension using a BD Acuri C6 flow cytometer.


HB1 expresses green fluorescent protein (“GFP”). Each of HB6 and HB7 express a GFP-prenyltransferase fusion protein. Neither HB6 nor HB7 include genes from the pDiPKS or pH1OAS plasmids. Correspondingly neither HB6 nor HB7 expresses a polyketide synthase gene or includes all the enzymes to complete the biosynthetic pathways in any of FIG. 4, 6, or 9.



FIG. 16 shows mean fluorescence levels from cell culture samples of HB13 (“negative”), HB1 (“positive”), HB6 (“Prenyltransferase_C. sativa”), and HB7 (“Prenyltransferase_Alt”). The fluorescence levels correspond to protein expression levels, showing relative expression levels of the C. sativa prenyltransferase by HB6 and of AltPT by HB7. The ordinarily membrane-bound C. sativa prenyltransferase has low expression in the cytosol of S. cerevisiae. The cytosolic AltPT is expressed in the cytosol of S. cerevisiae at a higher level than the ordinarily membrane-bound C. sativa prenyltransferase.


Example I

The yeast strain HB37 as described above in Table 7 was cultured in the YNB+2% glucose+1.6 g/L 4DO*+0.5 mM hexanoic acid media. Production of CBG from glucose and hexanoic acid was observed, demonstrating direct production in yeast of CBG.


CBG was produced at a concentration of 10 μg/L with 0.85 mM hexanoic acid. After optimizing the hexanoic acid feeding and growth conditions, 50 μg/L of CBG was produced with 0.5 mM hexanoic acid.


Example II

The yeast strain HB84 as described above in Table 7 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of meCBG from raffinose and galactose was observed, demonstrating direct production in yeast of meCBG without hexanoic acid. The meCBG was produced at 42.63 mg/L. The yield of meCBG produced by HB84 represents a nearly 1,000× increase compared with the yield of CBG from HB37.



FIG. 17 shows the yields of meCBG from HB84 (“HB_CBG_me”) in Example II compared with yields of CBG from HB37 (“CBG_C_sativa”) in Example I.


Example III

The yeast strain HB80 as described above in Table 6 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of methyl-olivetol from raffinose and galactose was observed, demonstrating direct production in yeast of methyl-olivetol without conversion to meCBG, as HB80 lacks AltPT. The methyl-olivetol was produced at concentrations of 3.259 mg/L Conversion to meCBG would be expected to follow in a strain that includes the features of HB80 and AltPT or another prenyltransferase, such as HB139.


Example IV

The yeast strain HB80A as described above in Table 6 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of both olivetol and methyl-olivetol from raffinose and galactose, catalyzed by DiPKSG1516D; G1518A was observed. This data demonstrates direct production in yeast of both olivetol and methyl-olivetol without inclusion of hexanoic acid. Conversion to CBG and meCBG did not follow as HB80A lacks AltPT. Conversion to CBG and meCBG would be expected to following a strain that included the features of HB80A and AltPT or another prenyltransferase, such as by transforming HB80A with pAltPT.



FIG. 18 shows concentrations of methyl-olivetol produced by HB80 (“Methyl_Olivetol HB80”) from Example III, and of both olivetol and methyl-olivetol produced by HB80A (“Methyl_Olivetol HB80A” and “Olivetol HB80A”, respectively). Samples of culture were taken at 72 hours. HB80A produces a majority of methyl-olivetol (1.4 mg methyl-olivetol per L of culture compared with 0.010 mg per L of culture olivetol), and produced less methyl-olivetol and olivetol combined than methyl-olivetol that is produced by HB80 (3.26 mg/L).


Example V

The yeast strain HB98 as described above in Table 6 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of methyl-olivetol from raffinose and galactose, catalyzed by DiPKS, was observed. This data demonstrates increased methyl-olivetol production compared with HB80 as described in Example III, and also without inclusion of hexanoic acid. Conversion to meCBG did not follow as HB80A lacks AltPT. Conversion to meCBG would be expected to following a strain that included the features of HB98 and AltPT or another prenyltransferase, such as by transforming HB98 with pAltPT or by transforming HB84 with pNPGa.



FIG. 19 shows concentrations of methyl-olivetol produced by HB80 (“Methyl_Olivetol HB80”) from Example III, and of methyl-olivetol produced by HB98 (“Methyl_Olivetol HB98”) from Example V. Samples of culture were taken at 72 hours. HB98 produced 29.85 mg/L methyl-olivetol while HB80 produced only 3.26 mg methyl-olivetol per L of culture. HB98 produced nearly 10× as much methyl-olivetol as HB80.


Example VI

The yeast strain HB102 as described above in Table 6 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of methyl-olivetol from raffinose and galactose was observed, demonstrating an increased production in yeast of methyl-olivetol at 42.44 mg/L as compared to strain HB98, which produced only 29.85 mg/L methyl-olivetol. This demonstrated that the genomically integrated version of NpgA is functional. Conversion to meCBG did not follow as HB102 lacks AltPT. Conversion to meCBG would be expected to following a strain that included the features of HB102 and AltPT or another prenyltransferase, such as HB105.



FIG. 20 shows concentrations of methyl-olivetol produced by HB102 (“Methyl_olivetol HB102”) from Example VI as compared to the production of methyl-olivetol from strain HB98 in Example V (“Methyl_olivetol HB98”).


Example VII

The yeast strain HB105 as described above in Table 7 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of meCBG from raffinose and galactose was observed at titres of 66.3 mg/L, demonstrating an increased production of meCBG compared with the yield of CBG from HB84. This demonstrates the positive effect of the PDH bypass and the integrated NpgA on meCBG titres.



FIG. 21 shows titres of meCBG produced by HB105 (“Methyl_CBG HB105”) from Example VII as compared to the production of meCBG from strain HB84 in Example II (“Methyl_CBG HB84”).


Example VIII

The yeast strain HB135 as described above in Table 6 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of olivetol from raffinose and galactose was observed, demonstrating an production in yeast of olivetol without any hexanoic acid and at high titres of 49.24 mg/L and no production of methyl-olivetol. This is comparable to the production of methyl-olivetol by strain HB102 demonstrating that the mutation of DIPKS was effective in production of Olivetol as opposed to methyl-Olivetol. Conversion to CBG and meCBG did not follow as HB135 lacks AltPT. Conversion to CBG and meCBG would be expected to following a strain that includes the features of HB135 and AltPT or another prenyltransferase.



FIG. 22 shows concentrations of olivetol and methyl-olivetol produced by HB135 (“Methyl_olivetol HB135” and “Olivetol HB135 respectively) from Example VIII as compared to the production of methyl-olivetol from strain HB102 in Example VI (“Methyl_olivetol HB102”).


Example IX

The yeast strains HB137 and HB138 as described above in Table 6 were cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of olivetol from raffinose and galactose was observed in both strains. Strain HB137 produced 61.26 mg/L of olivetol and strain HB138 produced 74.26 mg/L of olivetol demonstrating the positive effect of Maf1 integration and Acc1-promoter swap on olivetol titres. Conversion to CBG did not follow as HB137 and HB138 lack AltPT. Conversion to CBG would be expected to following strains that included the features of HB137 and HB138 and AltPT or another prenyltransferase.



FIG. 23 shows the concentrations of olivetol produced by HB137 (“Olivetol HB137”) and HB138 (“Olivetol HB138”) from Example IX as compared to olivetol produced by HB135 (“Olivetol HB135”) in Example VIII.


Example X

The yeast strain HB139 as described above in Table 7 was cultured in the YNB+2% raffinose+2% galactose+1.6 g/L 4DO* media. Production of CBG from raffinose and galactose directly was observed at titres of 0.03 mg/L. This is much lower than the titre of meCBG produced by strain HB105.



FIG. 24 shows the concentration of CBG produced by HB139 directly from galactose and raffinose (“CBG HB139”) from Example X as compared to the production of meCBG (“meCBG HB105”) by HB105 from Example VII and production of CBG by HB37 (“CBG HB37”) in Example I.


REFERENCES



  • M. B. Austin, T. Saito, M. E. Bowman, S. Haydock, A. Kato, B. S. Moore, R. R. Kay and Noel, J. P. (2006) “Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase” Nature chemical biology, 2(9), 494.

  • S. W. Baba, G. I. Belogrudov, J. C. Lee, P. T. Lee, J. Strahan, J. N. Shepherd and C. F. Clarke (2003) “Yeast Coq5 C-Methyltransferase Is Required for Stability of Other Polypeptides Involved in Coenzyme Q Biosynthesis” The Journal of Biological Chemistry, 279(11): 10052-10059.

  • C. Chambon, V. Ladeveze, A. Oulmouden, M. Servouse and E Karst (1990) “Isolation and properties of yeast mutants affected in farnesyl diphosphate synthetase” Curr Genet, 18: 41-46.

  • M. J. C. Fischer, S. Meyer, P. Claudel, M. Bergdoll and F. Karst (2011) “Metabolic Engineering of Monoterpene Synthesis in Yeast” Biotechnology and Bioengineering, 108(8): 1883-1892.

  • Bai Flagfeldt, D., Siewers, V., Huang, L. and Nielsen, J. (2009) “Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae” Yeast, 26, 545-551.

  • S. Gagne. “The Polyketide Origins of Cannabinoids in Cannabis Sativa.” Diss. U of Saskatchewan, 2013.

  • R. Ghosh, A. Chhabra, P. A. Phatale, S. K. Samrat, J. Sharma, A. Gosain, D. Mohanty, S. Saran and R. S. Gokhale (2008) “Dissecting the Functional Role of Polyketide Synthases in Dictyostelium discoideum biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol” Journal of Biological Chemistry, 283(17), 11348-11354.

  • C. Huang, H. Wu, Z. Liu, J. Cai, W. Lou and M. Zong (2012) “Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans” Biotechnology for Biofuels, 5:4.

  • Z. Hunkova and Z. Fencl (1977) “Toxic Effects of Fatty Acids on Yeast Cells: Dependence of Inhibitory Effects on Fatty Acid Concentration” Biotechnology and Bioengineering, XIX: 1623-1641.

  • J. Kaminska, K. Grabinska, M. Kwapisz, J. Sikora, W. J. Smagowicz, G. Palamarczyk, T. Zoladek and M. Boguta, “The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis” (2002) FEMS Yeast Research 2: 31-37.

  • D. Ro, E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Y. Chang, S. T. Withers, Y. Shiba, R. Sarpong and J. D. Keasling (2006) “Production of the antimalarial drug precursor artemisinic acid in engineered yeast” Nature Letters 440: 930-943.

  • S. Shi, Y. Chen, V. Siewers and J. Nielsen, “Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1” (2014) American Society for Microbiology 5(3): e01130-14. doi: 10.1128/mBio.01130-14.

  • Y. Shiba, E. M. Paradise, J. Kirby, D. Ro and J. D. Keasling “Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids” (2007) Metabolic Engineering 9: 160-168.

  • M. A. Skiba, A. P. Sikkema, W. D. Fiers, W. H. Gerwick, D. H. Sherman, C. C. Aldrich and J. L. Smith “Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase” ACS Chem. Biol.; Just Accepted Manuscript⋅DOI: 10.1021/acschembio.6b00759⋅Publication Date (Web): 10 Oct. 2016. Downloaded from http://pubs.acs.org on Oct. 11, 2016.

  • M. Telloa, T. Kuzuyamab, L. Heidec, J. P. Noela, and S. B. Richarda (2008) “The ABBA family of aromatic prenyltransferases: broadening natural product diversity” Cell Mol Life Sci.; 65(10): 1459-1463.

  • C. A. Viegas, M. F. Rosa, I. Sa-Correia and J. M. Novais “Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation” (1989) Applied and Environmental Microbiology 55(1): 21-28.



Sequences

The following sequences were filed electronically with this application but are also included here.












SEQUENCE LISTING















<110> Hyasynth Biologicals Inc.





<120> METHOD AND CELL LINE FOR PRODUCTION OF PHYTOCANNABINOIDS AND


PHYTOCANNABINOID ANALOGUES IN YEAST


<130> PAT 85146W-90


<140> U.S. Pat. No. 62/460,526


<141> 2017-Feb.-17


<160>   47


<170> PatentIn version 3.5


<210>     1


<211>   927


<212> DNA


<213> Streptomyces coelicolor species 190


<400>     1








atgtctgaag ccgctgatgt cgaaagagtt tacgccgcta tggaagaggc cgctggtttg
60


ttgggtgttg cctgtgctag agacaagatt tacccattgt tatccacctt ccaagatact
120


ttggttgaag gtggttctgt tgtcgttttc tctatggcct ccggtagaca ctccaccgaa
180


ttggacttct ctatttctgt tccaacttct catggtgatc catacgccac tgtcgttgaa
240


aagggtttat ttcctgctac tggtcaccca gttgacgatt tgttagctga cactcaaaag
300


cacttacctg tttctatgtt cgctattgac ggtgaagtta ccggtggttt caaaaagact
360


tacgccttct tcccaactga caatatgcca ggtgttgctg aattgtctgc tatcccatcc
420


atgccaccag ccgttgccga gaatgctgaa ttgttcgctc gttatggttt ggacaaggtc
480


caaatgacct ccatggacta caagaaaaga caagtcaact tgtatttctc cgaattgtct
540


gctcaaactt tagaagccga atctgttttg gctttggtta gagaattagg tttgcacgtt
600


ccaaacgaat tgggtttgaa gttttgtaaa cgttctttct ctgtttatcc aactttgaac
660


tgggaaaccg gtaaaatcga cagattgtgc ttcgctgtca tctctaacga cccaaccttg
720


gtcccatcct ccgatgaagg tgatatcgaa aagttccaca actacgccac taaggctcct
780


tacgcttacg tcggtgagaa acgtaccttg gtctatggtt tgactttatc cccaaaggag
840


gaatactaca agttgggtgc ttactaccac attaccgacg tccaaagagg tttgttaaag
900


gccttcgact ctttagaaga cggctga
927










<210>     2


<211> 9444


<212> DNA


<213> Dictyosteliumdiscoideum


<220> 


<221> Motif 1


<222> (4528) . . . (4554)


<220> 


<221> C-methyltransferase domain


<222> (4528) . . . (4890)


<220> 


<221> Motif 2


<222> (4787) . . . (4809)


<220> 


<221> Motif 3


<222> (4867) . . . (4899)


<400>     2








atgaacaaga actccaaaat ccagtcccca aactcttctg atgttgctgt tattggtgtt
60


ggttttagat tcccaggtaa ctctaatgac ccagaatctt tgtggaacaa cttgttggat
120


ggtttcgatg ctattaccca agtcccaaaa gaaagatggg ctacttcttt tagagagatg
180


ggtttgatca agaacaagtt cggtggtttc ttgaaggatt ctgaatggaa gaatttcgac
240


cctttgttct ttggtatcgg tccaaaagaa gctccattca ttgatccaca acaaaggttg
300


ttgttgtcca tcgtttggga atctttggaa gatgcttaca tcagaccaga tgaattgaga
360


ggttctaaca ctggtgtttt catcggtgtt tctaacaacg attacaccaa gttgggtttc
420


caagacaact actctatttc tccatacact atgaccggct ctaactcttc attgaactcc
480


aacagaattt cctactgctt cgattttaga ggtccatcca ttactgttga taccgcttgt
540


tcttcttcct tggtttctgt taatttgggt gtccaatcca tccaaatggg tgaatgtaag
600


attgctattt gcggtggtgt taacgctttg tttgatccat ctacatctgt tgccttttcc
660


aagttgggtg ttttgtctga aaatggcaga tgcaactctt ttagtgatca agcctctggt
720


tacgttagat ctgaaggtgc tggtgttgtt gttttgaagt ctttggaaca agctaagttg
780


gatggtgata gaatctacgg tgttatcaag ggtgtttcct ctaatgaaga tggtgcttct
840


aatggtgaca agaactcttt gactactcca tcttgtgaag cccaatccat taacatttct
900


aaggctatgg aaaaggcctc cttgtctcca tctgatatct attacattga agcccatggt
960


actggtactc cagttggtga tccaattgaa gttaaggcct tgtccaagat cttctccaac
1020


tctaacaaca accagttgaa caacttctct accgatggta atgataacga tgatgatgat
1080


gacgataaca cctctccaga accattattg attggctcat tcaagtccaa catcggtcat
1140


ttggaatctg ctgctggtat tgcttctttg attaagtgtt gcttgatgtt gaagaacagg
1200


atgttggttc catccattaa ctgctctaat ttgaacccat ccattccatt cgatcagtac
1260


aacatctccg ttatcagaga aatcagacaa ttcccaaccg ataagttggt taacatcggt
1320


atcaattctt tcggtttcgg tggttctaac tgccatttga ttattcaaga gtacaacaac
1380


aacttcaaga acaactctac catctgcaat aacaacaaca acaacaataa caacatcgac
1440


tacttgatcc caatctcctc taagactaag aagtccttgg ataagtactt gattttgatc
1500


aagaccaact ccaactacca caaggatatt tctttcgatg acttcgtcaa gttccaaatc
1560


aagtctaagc agtacaactt gtccaacaga atgactacca ttgctaacga ttggaactcc
1620


ttcattaagg gttctaacga attccacaac ttgatcgaat ctaaggatgg tgaaggtggt
1680


tcttcatctt ctaacagagg tattgattcc gccaatcaaa tcaacactac tactacctct
1740


accatcaacg atatcgaacc tttgttggtt ttcgttttct gtggtcaagg tccacaatgg
1800


aatggtatga ttaagacctt gtacaactcc gagaacgttt tcaagaacac cgttgatcat
1860


gttgacagca tcttgtacaa gtacttcggt tactccattt tgaacgtctt gtctaagatc
1920


gatgataacg acgattccat caaccatcca atagttgctc aaccatcttt gttcttgttg
1980


caaattggtt tggtcgagtt gtttaagtac tggggtatct acccatctat ctctgttggt
2040


cattctttcg gtgaagtctc ttcttattac ttgtccggta tcatctcttt ggaaaccgct
2100


tgtaaaatcg tctacgtcag atcctctaat cagaacaaaa ctatgggttc cggtaagatg
2160


ttggttgttt ctatgggttt taagcaatgg aacgatcaat tctctgctga atggtccgat
2220


attgaaattg cttgttacaa cgctccagat tccatagttg ttactggtaa cgaagaaaga
2280


ttgaaagaat tgtccatcaa gttgtccgac gaatccaatc aaattttcaa caccttcttg
2340


aggtccccat gttcttttca ttcttcccat caagaagtca tcaagggttc tatgttcgaa
2400


gagttgtcta acttgcaatc tactggtgaa accgaaatcc ctttgttctc tactgttact
2460


ggtagacaag ttttgtctgg tcatgttact gctcaacaca tctacgataa tgttagagaa
2520


ccagtcttgt tccaaaagac gattgaatcc attacctcct acatcaagtc tcactaccca
2580


tccaatcaaa aggttatcta cgttgaaatt gctccacacc caaccttgtt ttcattgatc
2640


aaaaagtcca tcccatcctc caacaagaat tcctcttctg ttttgtgtcc attgaacaga
2700


aaagaaaact ccaacaactc ctacaagaag ttcgtttctc agttgtactt caacggtgtt
2760


aacgttgact tcaacttcca gttgaactcc atttgcgata acgttaacaa cgatcaccat
2820


ttgaacaacg tcaagcaaaa ctccttcaaa gagactacca attccttgcc aagataccaa
2880


tgggaacaag atgaatattg gtccgaacca ttgatctcca gaaagaatag attggaaggt
2940


ccaactactt ccttgttggg tcatagaatt atctacagct tcccagtttt ccaatccgtt
3000


ttggacttgc aatctgacaa ctacaaatac ttgttggacc acttggttaa cggtaagcca
3060


gtttttccag gtgctggtta tttggatatc atcatcgaat tcttcgacta ccaaaagcag
3120


cagttgaatt cctctgattc ctctaactcc tacatcatca acgttgacaa gatccaattc
3180


ttgaacccaa ttcacttgac cgaaaacaag ttgcaaacct tgcaatcttc tttcgaacct
3240


atcgttacta agaagtctgc cttctctgtt aacttcttca tcaaggatac cgtcgaggat
3300


caatctaagg ttaagtctat gtctgacgaa acttggacta acacttgtaa ggctaccatt
3360


tccttggaac aacaacagcc atctccatct tctactttga ctttgtctaa gaagcaagac
3420


ttgcagatct tgagaaacag atgcgatatt agcaagctag acaagtttga gttgtacgac
3480


aagatctcta agaatttggg cttgcagtac aactccttgt ttcaagttgt tgataccatc
3540


gaaactggta aggattgctc ttttgctact ttgtctttgc cagaagatac tttgttcacc
3600


accattttga acccatgctt gttggataac tgtttccatg gtttgttgac cttgatcaac
3660


gaaaagggtt ctttcgttgt cgagtccatt tcttctgttt ctatctactt ggagaacatc
3720


ggttccttca atcaaacttc tgttggtaac gtccagttct acttgtacac cactatttct
3780


aaagccacct cctttagttc tgaaggtact tgtaagttgt tcaccaagga tggttccttg
3840


attttgtcta tcggtaagtt catcatcaag tccaccaatc caaagtctac taagaccaac
3900


gaaactatcg aatctccatt ggacgaaacc ttctctattg aatggcaatc taaggattct
3960


ccaattccaa ccccacaaca aatccaacaa caatctccat tgaactctaa cccatccttc
4020


attagatcta ccatcttgaa ggacatccag ttcgaacaat actgctcctc cattatccac
4080


aaagaattga tcaaccacga aaagtacaag aaccagcaat ccttcgatat caactccttg
4140


gaaaaccact tgaacgatga ccaattgatg gaatccttgt ccatctccaa agaatacttg
4200


agattcttca ccaggatcat ctccatcatt aagcaatacc caaagatctt gaacgaaaaa
4260


gagctaaaag aattgaaaga aatcatcgaa ttgaagtacc catccgaagt tcagttgttg
4320


gaattcgaag ttatcgagaa ggtgtccatg attatcccaa agttgttgtt cgaaaacgac
4380


aagcaatctt ccatgacctt gttccaagat aacttgttga ccaggttcta ctccaattct
4440


aactctacca gattctactt ggaaagggtt tccgaaatgg tcttggaatc tattagacca
4500


atcgtcagag aaaagagggt gttcagaatt ttggaaattg gtgctggtac aggctctttg
4560


tctaatgttg ttttgactaa gttgaacacc tacttgtcca ccttgaattc taatggtggt
4620


tctggttaca acatcatcat tgagtacacc ttcaccgata tttccgccaa cttcattatt
4680


ggtgaaatcc aagaaaccat gtgcaacttg tacccaaacg ttactttcaa gttctccgtc
4740


ttggacttgg agaaagagat tattaactcc tccgatttct tgatgggtga ttacgatata
4800


gttttgatgg cctacgttat ccatgccgtt tctaacatta agttctccat cgaacagttg
4860


tacaagttgt tgtctccaag aggttggttg ttgtgtattg aacctaagtc caacgttgtg
4920


ttctccgatt tggttttcgg ttgttttaat cagtggtgga actactacga tgatattaga
4980


actacccact gctccttgtc tgaatctcaa tggaatcagt tgttgttgaa ccagtccttg
5040


aacaacgaat cctcttcttc ttctaactgt tacggtggtt tctccaacgt ttcttttatt
5100


ggtggtgaaa aggatgtcga ctcccattct ttcatattgc actgccaaaa agaatccatc
5160


tcccaaatga agttagccac cactattaac aacggtttgt catctggttc catcgttatc
5220


gttttgaact ctcaacaatt gaccaacatg aagtcctacc caaaggttat tgagtatatt
5280


caagaggcta cctctttgtg caagaccatt gaaattatcg attccaagga cgtcttgaac
5340


tctaccaatt cagttttgga aaagatccaa aagtccttgt tggtgttctg tttgttgggt
5400


tatgacttgt tggagaacaa ctaccaagaa cagtctttcg aatacgttaa gttgttgaac
5460


ttgatctcta ctaccgcctc ttcatctaat gataagaaac caccaaaggt cttgttgatc
5520


accaagcaat ctgaaagaat ctccaggtct ttctactcca gatccttgat tggtatttcc
5580


agaacctcta tgaacgagta cccaaatttg tccattacct ctatcgattt ggataccaac
5640


gactactcat tgcagtcttt gttgaagcca atcttcagca actctaagtt ttccgacaac
5700


gagttcatct tcaaaaaggg cttgatgttc gtgtccagga tctttaagaa caagcagttg
5760


ctagaatcct ccaacgcttt tgaaactgac tcttctaact tgtactgtaa ggcctcttct
5820


gacttgtctt acaagtacgc tattaagcag tctatgttga ccgaaaatca gatcgaaatc
5880


aaggttgaat gcgtcggtat taacttcaag gacaacctat tctacaaggg cttgttgcca
5940


caagaaattt tcagaatggg tgacatctac aatccaccat atggtttgga atgctctggt
6000


gttattacca gaattggttc taacgtcacc gaatactcag ttggtcaaaa tgtttttggt
6060


ttcgccagac attctttggg ttctcatgtt gttaccaaca aggatttggt tatcttgaag
6120


ccagatacca tctcattttc tgaagctgct tctatcccag ttgtttactg tactgcttgg
6180


tactccttgt tcaacattgg tcagttgtct aacgaagaat ccatcctaat tcattctgct
6240


actggtggtg taggtttggc ttctttgaat ttgttgaaaa tgaagaatca gcaacagcaa
6300


ccattgacca atgtttatgc tactgttggc tctaacgaga agaagaagtt cttgatcgat
6360


aacttcaaca acttgttcaa agaggacggc gaaaacattt tctctaccag agacaaagaa
6420


tactccaacc agttggaatc caagatcgat gttattttga acaccttgtc cggtgaattc
6480


gtcgaatcta atttcaagtc cttgagatcc ttcggtagat tgattgattt gtctgctact
6540


cacgtttacg ccaatcaaca aattggtcta ggtaacttca agttcgacca cttgtattct
6600


gctgttgact tggaaagatt gatcgacgaa aaacctaagt tgttgcagtc catcttgcaa
6660


agaattacca actctatcgt caacggttcc ttggaaaaaa ttccaattac catcttccca
6720


tccaccgaaa ctaaggatgc tatcgaatta ttgtccaaga gatcccatat cggtaaagtt
6780


gttgtagatt gcaccgatat ctctaagtgt aatcctgttg gtgatgtgat caccaacttc
6840


tctatgagat tgccaaagcc aaactaccag ttgaatttga actccacctt gttgattact
6900


ggtcagtctg gtttgtctat ccctttgttg aattggttgt tgtctaagtc tggtggtaac
6960


gttaagaacg ttgtcatcat ttctaagtcc accatgaagt ggaagttgca gactatgatt
7020


tcccatttcg tttccggttt cggtatccat tttaactacg ttcaagtcga catctccaac
7080


tacgatgctt tgtctgaagc tattaagcaa ttgccatctg atttgccacc aatcacctct
7140


gtttttcatt tggctgctat ctacaacgat gttccaatgg atcaagttac catgtctacc
7200


gttgaatctg ttcataaccc taaagttttg ggtgccgtta acttgcatag aatctctgtt
7260


tcttttggtt ggaagttgaa ccacttcgtc ttgttctctt ctattactgc tattaccggt
7320


tacccagacc aatctatcta caattctgcc aactctattt tggacgcttt gtccaacttt
7380


agaaggttta tgggtttgcc atccttctcc attaacttgg gtccaatgaa ggatgaaggt
7440


aaggtttcta ccaacaagag catcaagaag ctattcaagt ctagaggttt gccaagccta
7500


tccttgaaca agttatttgg tttgttggag gtcgtcatca acaacccatc taatcatgtt
7560


atcccatccc aattgatttg ctccccaatc gatttcaaga cctacatcga atctttctca
7620


actatgaggc caaagttgtt acacttgcaa cctaccattt ccaagcagca atcttctatc
7680


attaacgatt ctaccaaggc ttcctccaac atttcattgc aagataagat cacctccaag
7740


gtgtctgatt tgttgtccat tccaatctcc aagatcaact tcgatcatcc attgaaacac
7800


tacggcttgg attctttgtt gaccgttcaa ttcaaatcct ggatcgacaa agaattcgaa
7860


aagaacttgt tcacccatat ccaattggcc accatctcta ttaactcatt cttggaaaag
7920


gtgaacggct tgtctacaaa caataacaac aacaacaatt ccaacgtcaa gtcctctcca
7980


tccattgtca aagaagaaat cgttaccttg gacaaggatc aacaaccatt gctattgaaa
8040


gaacaccagc acattatcat ctccccagat attagaatca acaagccaaa gagggaatcc
8100


ttgattagaa ccccaatctt gaacaaattc aaccagatca ccgaatccat tatcactcca
8160


tctacaccat ctttgtccca atccgatgtt ttgaaaactc caccaatcaa gtctttgaac
8220


aacactaaga actccagctt gattaacacc ccaccaattc aatctgtcca acaacatcaa
8280


aagcaacaac aaaaggtcca agtcatccaa caacagcaac aaccattatc cagattgtcc
8340


tacaagagca acaacaactc tttcgttttg ggtatcggta tttctgttcc aggtgaacct
8400


atttcccaac aatccttgaa agactccatc tccaatgact tttctgataa ggctgaaact
8460


aacgagaagg tcaagagaat ctttgagcaa tctcaaatca agaccagaca cttggttaga
8520


gattacacta agccagagaa ctccatcaag ttcagacatt tggaaaccat taccgatgtg
8580


aacaaccagt tcaagaaagt tgttccagat ttggctcaac aagcctgttt gagagctttg
8640


aaagattggg gtggtgataa gggtgatatt acccatatag tttctgttac ctccaccggt
8700


attatcatcc cagatgttaa tttcaagttg atcgacttgt tgggcttgaa caaggatgtt
8760


gaaagagtgt ctttgaacct aatgggttgt ttggctggtt tgagttcttt gagaactgct
8820


gcttctttgg ctaaggcttc tccaagaaat agaattttgg ttgtctgtac cgaagtctgc
8880


tccttgcatt tttctaatac tgatggtggt gatcaaatgg tcgcctcttc tatttttgct
8940


gatggttctg ctgcttacat tattggttgt aacccaagaa ttgaagaaac cccattatac
9000


gaagtcatgt gctccattaa cagatctttc ccaaataccg aaaacgccat ggtttgggat
9060


ttggaaaaag aaggttggaa cttgggtttg gatgcttcta ttccaattgt cattggttct
9120


ggtattgaag ccttcgttga tactttgttg gataaggcta agttgcaaac ttccactgct
9180


atttctgcta aggattgcga attcttgatt catactggtg gcaagtccat cttgatgaac
9240


atcgaaaatt ccttgggtat cgacccaaag caaactaaga atacttggga tgtttaccat
9300


gcctacggca atatgtcatc tgcctctgtt attttcgtta tggatcatgc cagaaagtcc
9360


aagtctttgc caacttactc aatttctttg gcttttggtc caggtttggc ttttgaaggt
9420


tgtttcttga agaacgtcgt ctaa
9444










<210>     3


<211>  1059


<212> DNA


<213> Saccharomycescerevisiae


<400>     3








atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta
60


gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat
120


gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg
180


gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa
240


aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttacttctt ggtcgccgat
300


gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa
360


gttggggaaa ttgccatcaa tgacgcattc atgttagagg ctgctatcta caagcttttg
420


aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc
480


accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc
540


gacttgagta agttctccct aaagaagcac tccttcatag ttactttcga gactgcttac
600


tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag
660


gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat
720


gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa
780


gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga
840


aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag
900


attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag
960


gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta
1020


actgcgttct tgaacaaagt ttacaagaga agcaaataa
1059










<210>     4


<211> 14025


<212> DNA


<213> Artificial Sequence


<220> 


<223> Plasmid


<220> 


<221> C1: p506 primer homology


<222> (1) . . . (50)


<220> 


<221> 19 UP


<222> (51) . . . (761)


<220> 


<221> L0


<222> (762) . . . (800)


<220> 


<221> THD3p


<222> (801) . . . (1453)


<220> 


<221> L1


<222> (1454) . . . (1493)


<220> 


<221> ALD6


<222> (1494) . . . (2999)


<220> 


<221> L2


<222> (3000) . . . (3039)


<220> 


<221> LTP1


<222> (3364) . . . (3403)


<220> 


<221> Tef1p


<222> (3404) . . . (3897)


<220> 


<221> L3


<222> (3898) . . . (3937)


<220> 


<221> Acs L641P


<222> (3938) . . . (5893)


<220> 


<221> L4


<222> (5894) . . . (5933)


<220> 


<221> PRM9t


<222> (5934) . . . (6471)


<220> 


<221> LTP2


<222> (6472) . . . (6511)


<400>     4








taaccctcac taaagggaac aaaagctgga gctcgtttaa acggcgcgcc caccggagct
60


tggatatgat aaacgaaata ttcttgaatc gtgagatcgc ctgttttcaa aaccgttgga
120


ggcagaaaca attttgtcac aagatgggca ttctacccca tccttgctgt attattgtag
180


tctcgctttc ttttatgctg gacaaatgag actactgcac atttttatac gttcttggtt
240


ttttttaaag gtgtggtttc ggcattatcc tgccgcacgt ttcttggata attcatcctg
300


attctctatt ttaaacgctt cagcctatca ggatttggtt ttgatacata ctgcaagagt
360


gtatctcggg aacagtcatt tattccgcaa caaacttaat tgcggaacgc gttaggcgat
420


ttctagcata tatcaaatac cgttcgcgat ttcttctggg ttcgtctctt ttcttttaaa
480


tacttattaa cgtactcaaa caactacact tcgttgtatc tcagaatgag atccctcagt
540


atgacaatac atcattctaa acgttcgtaa aacacatatg aaacaacttt ataacaaagc
600


gaacaaaatg ggcaacatga gatgaaactc cgcgtccctt agctgaacta cccaaacgta
660


cgaatgcctg aacaattagt ttagatccga gattccgcgc ttccatcatt tagtataatc
720


catattttat ataatatata ggataagtaa cagcccgcga aaaacaacaa ataatcataa
780


aaattttaga actagacata tcgagtttat cattatcaat actgccattt caaagaatac
840


gtaaataatt aatagtagtg attttcctaa ctttatttag tcaaaaaatt agccttttaa
900


ttctgctgta acccgtacat gcccaaaata gggggcgggt tacacagaat atataacatc
960


gtaggtgtct gggtgaacag tttattcctg gcatccacta aatataatgg agcccgcttt
1020


ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa aatattgttt tcttcaccaa
1080


ccatcagttc ataggtccat tctcttagcg caactacaga gaacaggggc acaaacaggc
1140


aaaaaacggg cacaacctca atggagtgat gcaacctgcc tggagtaaat gatgacacaa
1200


ggcaattgac ccacgcatgt atctatctca ttttcttaca ccttctatta ccttctgctc
1260


tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca gttccctgaa attattcccc
1320


tacttgacta ataagtatat aaagacggta ggtattgatt gtaattctgt aaatctattt
1380


cttaaacttc ttaaattcta cttttatagt tagtcttttt tttagtttta aaacaccaag
1440


aacttagttt cgactagaaa atttattata aaaggaagag aaataattaa acaatgacta
1500


agctacactt tgacactgct gaaccagtca agatcacact tccaaatggt ttgacatacg
1560


agcaaccaac cggtctattc attaacaaca agtttatgaa agctcaagac ggtaagacct
1620


atcccgtcga agatccttcc actgaaaaca ccgtttgtga ggtctcttct gccaccactg
1680


aagatgttga atatgctatc gaatgtgccg accgtgcttt ccacgacact gaatgggcta
1740


cccaagaccc aagagaaaga ggccgtctac taagtaagtt ggctgacgaa ttggaaagcc
1800


aaattgactt ggtttcttcc attgaagctt tggacaatgg taaaactttg gccttagccc
1860


gtggggatgt taccattgca atcaactgtc taagagatgc tgctgcctat gccgacaaag
1920


tcaacggtag aacaatcaac accggtgacg gctacatgaa cttcaccacc ttagagccaa
1980


tcggtgtctg tggtcaaatt attccatgga actttccaat aatgatgttg gcttggaaga
2040


tcgccccagc attggccatg ggtaacgtct gtatcttgaa acccgctgct gtcacacctt
2100


taaatgccct atactttgct tctttatgta agaaggttgg tattccagct ggtgtcgtca
2160


acatcgttcc aggtcctggt agaactgttg gtgctgcttt gaccaacgac ccaagaatca
2220


gaaagctggc ttttaccggt tctacagaag tcggtaagag tgttgctgtc gactcttctg
2280


aatctaactt gaagaaaatc actttggaac taggtggtaa gtccgcccat ttggtctttg
2340


acgatgctaa cattaagaag actttaccaa atctagtaaa cggtattttc aagaacgctg
2400


gtcaaatttg ttcctctggt tctagaattt acgttcaaga aggtatttac gacgaactat
2460


tggctgcttt caaggcttac ttggaaaccg aaatcaaagt tggtaatcca tttgacaagg
2520


ctaacttcca aggtgctatc actaaccgtc aacaattcga cacaattatg aactacatcg
2580


atatcggtaa gaaagaaggc gccaagatct taactggtgg cgaaaaagtt ggtgacaagg
2640


gttacttcat cagaccaacc gttttctacg atgttaatga agacatgaga attgttaagg
2700


aagaaatttt tggaccagtt gtcactgtcg caaagttcaa gactttagaa gaaggtgtcg
2760


aaatggctaa cagctctgaa ttcggtctag gttctatggg tatcgaaaca gaatctttga
2820


gcacaggttt gaaggtggcc aagatgttga aggccggtac cgtctggatc aacacataca
2880


acgattttga ctccagagtt ccattcggtg gtgttaagca atctggttac ggtagagaaa
2940


tgggtgaaga agtctaccat gcatacactg aagtaaaagc tgtcagaatt aagttgtaaa
3000


gacataaaac tgaaacaaca ccaattaata atagactttt ggacttcttc gccagaggtt
3060


tggtcaagtc tccaatcaag gttgtcggct tgtctacctt gccagaaatt tacgaaaaga
3120


tggaaaaggg tcaaatcgtt ggtagatacg ttgttgacac ttctaaataa gcgaatttct
3180


tatgatttat gatttttatt attaaataag ttataaaaaa aataagtgta tacaaatttt
3240


aaagtgactc ttaggtttta aaacgaaaat tcttattctt gagtaactct ttcctgtagg
3300


tcaggttgct ttctcaggta tagcatgagg tcgctcttat tgaccacacc tctaccggca
3360


tggcttaaat aacatactca tcactaaaca ttcttaacaa tcaaagcaac aggcgcgttg
3420


gacttttaat tttcgaggac cgcgaatcct tacatcacac ccaatccccc acaagtgatc
3480


ccccacacac catagcttca aaatgtttct actccttttt tactcttcca gattttctcg
3540


gactccgcgc atcgccgtac cacttcaaaa cacccaagca cagcatacta aatttcccct
3600


ctttcttcct ctagggtgtc gttaattacc cgtactaaag gtttggaaaa gaaaaaagag
3660


accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa aatttttatc acgtttcttt
3720


ttcttgaaaa tttttttttt tgattttttt ctctttcgat gacctcccat tgatatttaa
3780


gttaataaac ggtcttcaat ttctcaagtt tcagtttcat ttttcttgtt ctattacaac
3840


tttttttact tcttgctcat tagaaagaaa gcatagcaat ctaatctaag ttttaataca
3900


tctaccagtc aacagccaac aattaactaa ttaaacaatg tcccaaactc ataagcacgc
3960


tattccagct aatattgctg atagatgctt gatcaaccca gaacagtacg aaactaagta
4020


caagcaatcc atcaacgatc cagatacttt ttggggtgaa caaggtaaga ttttggattg
4080


gattacccca taccaaaagg tcaagaatac ttcttttgct ccaggcaacg tttccattaa
4140


gtggtatgaa gatggtactt tgaacttggc tgctaactgt ttggatagac acttgcaaga
4200


aaacggtgat agaaccgcta ttatttggga aggtgatgat acctcccaat ccaaacatat
4260


ctcttacaga gaattgcaca gagatgtctg tagattcgct aacactttgt tggatttggg
4320


catcaaaaag ggtgatgttg ttgctatcta tatgccaatg gttcctgaag ctgctgttgc
4380


tatgttggct tgtgctagaa ttggtgctgt tcattctgtt attttcggtg gtttttcacc
4440


agaagctgtt gccggtagaa ttatcgattc ttcatccaga ttggttatca ccgctgatga
4500


aggtgttaga gctggtagat ctattccatt gaaaaagaac gttgatgacg ccttgaagaa
4560


cccaaatgtt acttctgttg aacacgtcat cgttttgaag agaactggtt ctgatatcga
4620


ttggcaagag ggtagagatt tgtggtggag agatttgatt gaaaaggctt ctccagaaca
4680


tcaaccagaa gctatgaacg ctgaagatcc tttgtttatc ttgtacactt ctggttctac
4740


tggtaagcca aaaggtgttt tacacactac tggtggttat ttggtttacg ctgctactac
4800


tttcaagtac gttttcgatt atcacccagg tgatatctat tggtgtactg ctgatgttgg
4860


ttgggttact ggtcattctt atttgttgta tggtccattg gcttgtggtg ctactacatt
4920


gatgtttgaa ggtgttccaa attggccaac tccagctaga atgtgtcaag ttgttgacaa
4980


acaccaagtc aacatcttgt atactgctcc aactgctatt agagctttga tggctgaagg
5040


tgataaggct attgaaggta ctgatagatc ctccttgaga atcttgggtt ctgttggtga
5100


acctattaac cctgaagcct gggaatggta ttggaagaaa attggtaaag aaaagtgccc
5160


agttgttgat acttggtggc aaactgaaac tggtggtttt atgattactc cattgccagg
5220


tgctattgaa ttgaaagctg gttctgctac tagaccattt tttggtgttc aaccagcttt
5280


ggttgataac gaaggtcatc cacaagaagg tgctactgaa ggtaatttgg ttattactga
5340


ttcttggcca ggtcaagcta gaactttgtt tggtgatcac gaaagattcg aacagactta
5400


cttctctacc ttcaagaaca tgtacttctc tggtgatggt gctagaagag atgaagatgg
5460


ttactattgg attaccggta gagttgatga tgtcttgaat gtttctggtc acagattagg
5520


tactgccgaa attgaatctg ctttggttgc tcatccaaag attgctgaag ctgcagttgt
5580


tggtattcca catgctatta agggtcaagc tatctacgct tacgttactt tgaatcatgg
5640


tgaagaacca tctccagaat tatacgctga agttagaaac tgggtcagaa aagaaattgg
5700


tccattagct accccagatg ttttacattg gactgattct ttgccaaaga ccagatcagg
5760


taagatcatg agaagaatct tgagaaagat tgctgctggt gatacttcta acttgggtga
5820


tacttcaaca ttagctgatc caggtgttgt tgaaaagcct ttggaagaaa aacaagctat
5880


tgccatgcca tcctaataat taaatactat tttcaaaatt ctacttaaaa ataacagaag
5940


acgggagaca ctagcacaca actttaccag gcaaggtatt tgacgctagc atgtgtccaa
6000


ttcagtgtca tttatgattt tttgtagtag gatataaata tatacagcgc tccaaatagt
6060


gcggttgccc caaaaacacc acggaacctc atctgttctc gtactttgtt gtgacaaagt
6120


agctcactgc cttattatca cattttcatt atgcaacgct tcggaaaata cgatgttgaa
6180


aatgcctcta gagatgaaaa acaatcgtaa aagggtcctg cgtaattgaa acatttgatc
6240


agtatgcagt ggcacagaaa caaccaggaa tactatagtc ataggcaata caaggtatat
6300


attggctatg cagacccctc cagaaagtac cgacgtcaag ttagatacac ttaacgaacc
6360


tagtgcacat ttaattgaga aaaatgtggc tcttcctaag gacatattcc gttcgtactt
6420


gagttattgg atctatgaaa tcgctcgcta tacaccagtc atgattttgt cattgcgaag
6480


actatactga tatatgaatt taaactagag cggaccaact atcatccgct aattactgac
6540


attaccaaat gagatctgtg aatgggcaag ataaaaaaca aaaattgaaa tgtttgacgt
6600


tatgtaaaac tattaattcc ttcgctttcg gcggtcacag aatttgcgtg tagctgactc
6660


ttgttcaatc aatatcattt gttactttat ttgaaagtct gtattactgc gcctattgtc
6720


atccgtacca aagaacgtca aaaagaaaca agataatttt tgtgcttaca ccatttatag
6780


atcactgagc ccagaatatc gctggagctc agtgtaagtg gcatgaacac aactctgact
6840


gatcgcacat attgccgtta tcataaatac tagttgtact tgtcaatgcg acgaatggca
6900


tcatgcctat tattacgttc ctctttttcc gtttcatgtt tccagaatgc tattgaatct
6960


aacacttcaa ttataaaaaa gaataaatcc gcaataattt taggctaatt gttgtactgt
7020


caagcgaacc taatggttaa aattcagagg aaccttcgac gtagtctgat cgctacttct
7080


atatcttatg ttcccagtca atcaaaagtt gatactataa tagctgccat ttatacctgt
7140


tagttatggc gatcgtttat cacggcggcc gcggtaccta ataacttcgt atagcataca
7200


ttatacgaag ttatattaag ggttctcgac gttttcgaca ctggatggcg gcgttagtat
7260


cgaatcgaca gcagtatagc gaccagcatt cacatacgat tgacgcatga tattactttc
7320


tgcgcactta acttcgcatc tgggcagatg atgtcgaggc gaaaaaaaat ataaatcacg
7380


ctaacatttg attaaaatag aacaactaca atataaaaaa actatacaaa tgacaagttc
7440


ttgaaaacaa gaatcttttt attgtcagta ctgattagaa aaactcatcg agcatcaaat
7500


gaaactgcaa tttattcata tcaggattat caataccata tttttgaaaa agccgtttct
7560


gtaatgaagg agaaaactca ccgaggcagt tccataggat ggcaagatcc tggtatcggt
7620


ctgcgattcc gactcgtcca acatcaatac aacctattaa tttcccctcg tcaaaaataa
7680


ggttatcaag tgagaaatca ccatgagtga cgactgaatc cggtgagaat ggcaaaagct
7740


tatgcatttc tttccagact tgttcaacag gccagccatt acgctcgtca tcaaaatcac
7800


tcgcatcaac caaaccgtta ttcattcgtg attgcgcctg agcgagacga aatacgcgat
7860


cgctgttaaa aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg aacactgcca
7920


gcgcatcaac aatattttca cctgaatcag gatattcttc taatacctgg aatgctgttt
7980


tgccggggat cgcagtggtg agtaaccatg catcatcagg agtacggata aaatgcttga
8040


tggtcggaag aggcataaat tccgtcagcc agtttagtct gaccatctca tctgtaacat
8100


cattggcaac gctacctttg ccatgtttca gaaacaactc tggcgcatcg ggcttcccat
8160


acaatcgata gattgtcgca cctgattgcc cgacattatc gcgagcccat ttatacccat
8220


ataaatcagc atccatgttg gaatttaatc gcggcctcga aacgtgagtc ttttccttac
8280


ccatggttgt ttatgttcgg atgtgatgtg agaactgtat cctagcaaga ttttaaaagg
8340


aagtatatga aagaagaacc tcagtggcaa atcctaacct tttatatttc tctacagggg
8400


cgcggcgtgg ggacaattca acgcgtctgt gaggggagcg tttccctgct cgcaggtctg
8460


cagcgaggag ccgtaatttt tgcttcgcgc cgtgcggcca tcaaaatgta tggatgcaaa
8520


tgattataca tggggatgta tgggctaaat gtacgggcga cagtcacatc atgcccctga
8580


gctgcgcacg tcaagactgt caaggagggt attctgggcc tccatgtcgc tggccgggtg
8640


acccggcggg gacgaggcaa gctaaacaga tctctagacc taataacttc gtatagcata
8700


cattatacga agttatatta agggttgtct taattaaggg tgcccaattc gccctatagt
8760


gagtcgtatt acgcgcgctc actggccgtc gttttacaac gtcgtgactg ggaaaaccct
8820


ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc
8880


gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc
8940


gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc
9000


gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc ctttctcgcc
9060


acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt
9120


agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc acgtagtggg
9180


ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt ctttaatagt
9240


ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc ttttgattta
9300


taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta acaaaaattt
9360


aacgcgaatt ttaacaaaat attaacgttt acaatttcct gatgcggtat tttctcctta
9420


cgcatctgtg cggtatttca caccgcatag atccgtcgag ttcaagagaa aaaaaaagaa
9480


aaagcaaaaa gaaaaaagga aagcgcgcct cgttcagaat gacacgtata gaatgatgca
9540


ttaccttgtc atcttcagta tcatactgtt cgtatacata cttactgaca ttcataggta
9600


tacatatata cacatgtata tatatcgtat gctgcagctt taaataatcg gtgtcaatgt
9660


ctgcccctat gtctgcccct aagaagatcg tcgttttgcc aggtgaccac gttggtcaag
9720


aaatcacagc cgaagccatt aaggttctta aagctatttc tgatgttcgt tccaatgtca
9780


agttcgattt cgaaaatcat ttaattggtg gtgctgctat cgatgctaca ggtgtcccac
9840


ttccagatga ggcgctggaa gcctccaaga aggttgatgc cgttttgtta ggtgctgtgg
9900


gtggtcctaa atggggtgcc ggtagtgtta gacctgaaca aggtttacta aaaatccgta
9960


aagaacttca attgtacgcc aacttaagac catgtaactt tgcatccgac tctcttttag
10020


acttatctcc aatcaagcca caatttgcta aaggtactga cttcgttgtt gtcagagaat
10080


tagtgggagg tatttacttt ggtaagagaa aggaagacga tggtgatggt gtcgcttggg
10140


atagtgaaca atacaccgtt ccagaagtgc aaagaatcac aagaatggcc gctttcatgg
10200


ccctacaaca tgagccacca ttgcctattt ggtccttgga taaagctaat gttttggcct
10260


cttcaagatt atggagaaaa actgtggagg aaaccatcaa gaacgaattc cctacattga
10320


aggttcaaca tcaattgatt gattctgccg ccatgatcct agttaagaac ccaacccacc
10380


taaatggtat tataatcacc agcaacatgt ttggtgatat catctccgat gaagcctccg
10440


ttatcccagg ttccttgggt ttgttgccat ctgcgtcctt ggcctctttg ccagacaaga
10500


acaccgcatt tggtttgtac gaaccatgcc acggttctgc tccagatttg ccaaagaata
10560


aggttgaccc tatcgccact atcttgtctg ctgcaatgat gttgaaattg tcattgaact
10620


tgcctgaaga aggtaaggcc attgaagatg cagttaaaaa ggttttggat gcaggtatca
10680


gaactggtga tttaggtggt tccaacagta ccaccgaagt cggtgatgct gtcgccgaag
10740


aagttaagaa aatccttgct taactttgcc ttcgtttatc ttgcctgctc attttttagt
10800


atattcttcg aagaaatcac attactttat ataatgtata attcattatg tgataatgcc
10860


aatcgctaag aaaaaaaaag agtcatccgc taggggaaaa aaaaaaatga aaatcattac
10920


cgaggcataa aaaaatatag agtgtactag aggaggccaa gagtaataga aaaagaaaat
10980


tgcgggaaag gactgtgtta tgacttccct gactaatgcc gtgttcaaac gatacctggc
11040


agtgactcct agcgctcacc aagctcttaa aacgggaatt tatggtgcac tctcagtaca
11100


atctgctctg atgccgcata gttaagccag ccccgacacc cgccaacacg cgctgacgcg
11160


ccctgacggg cttgtctgct cccggcatcc gcttacagac aagctgtgac cgtctccggg
11220


agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac gcgcgagacg aaagggcctc
11280


gtgatacgcc tatttttata ggttaatgtc atgataataa tggtttctta ggacggatcg
11340


cttgcctgta acttacacgc gcctcgtatc ttttaatgat ggaataattt gggaatttac
11400


tctgtgttta tttattttta tgttttgtat ttggatttta gaaagtaaat aaagaaggta
11460


gaagagttac ggaatgaaga aaaaaaaata aacaaaggtt taaaaaattt caacaaaaag
11520


cgtactttac atatatattt attagacaag aaaagcagat taaatagata tacattcgat
11580


taacgataag taaaatgtaa aatcacagga ttttcgtgtg tggtcttcta cacagacaag
11640


atgaaacaat tcggcattaa tacctgagag caggaagagc aagataaaag gtagtatttg
11700


ttggcgatcc ccctagagtc ttttacatct tcggaaaaca aaaactattt tttctttaat
11760


ttcttttttt actttctatt tttaatttat atatttatat taaaaaattt aaattataat
11820


tatttttata gcacgtgatg aaaaggaccc aggtggcact tttcggggaa atgtgcgcgg
11880


aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata
11940


accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg
12000


tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac
12060


gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact
12120


ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt ttccaatgat
12180


gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga
12240


gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact caccagtcac
12300


agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat
12360


gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac
12420


cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg aaccggagct
12480


gaatgaagcc ataccaaacg acgagcgtga caccacgatg cctgtagcaa tggcaacaac
12540


gttgcgcaaa ctattaactg gcgaactact tactctagct tcccggcaac aattaataga
12600


ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg
12660


gtttattgct gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact
12720


ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac
12780


tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta
12840


actgtcagac caagtttact catatatact ttagattgat ttaaaacttc atttttaatt
12900


taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc cttaacgtga
12960


gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc
13020


tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt
13080


ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc
13140


gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc
13200


tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg
13260


cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg
13320


gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga
13380


actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc
13440


ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg
13500


gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg
13560


atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt
13620


tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc
13680


tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg
13740


aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc
13800


gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt ttcccgactg
13860


gaaagcgggc agtgagcgca acgcaattaa tgtgagttac ctcactcatt aggcacccca
13920


ggctttacac tttatgcttc cggctcctat gttgtgtgga attgtgagcg gataacaatt
13980


tcacacagga aacagctatg accatgatta cgccaagcgc gcaat
14025










<210>     5


<211>   684


<212> DNA


<213> Saccharomycescerevisiae


<220> 


<221> Acc1 promoter


<222> (1) . . . (463)


<220> 


<221> gRNA_3


<222> (53) . . . (72)


<220> 


<221> gRNA_2


<222> (265) . . . (284)


<220> 


<221> gRNA_1


<222> (339) . . . (358)


<400>     5








ggtagaaact tgattttttc taattttctg cgctgtttcg ggaacggaaa aaaattaagc
60


tagaagacga atcggttatt atactattat atttgtatag tatagtagcg tgtcgtatcg
120


tatcgtgtcg tatcgtatcg tatcgttaaa agaaaataca cgaataaata ataatatgtg
180


gagaagaaaa agggaagttt cttgtctctt gctctgaatc tgaattccaa ttcaagttca
240


aattgttctc tagtttattg tccaaaaata aggatgaagc gggagggaag ggcagaggga
300


aaagttcgta tagtagaatg aataaacttt tataaacaca tgcaccgatc actcacagag
360


gataaaaaaa tggcacaaca aatatatata tatagatgca aatggcgatt gcaaattagg
420


gaattggctt tgttgttttt tatcttcagg taaactgtac gaaagggata aaaagagtag
480


aataaggaaa ggaaaattga agagagcaga acaattgtag aaccgataac aattgtgaca
540


gtgattgtgc taggctatac tgtgccagaa tacgactggg agtgctgttc ttcttatata
600


tcttggcgct gattgagcgt atagcctagt tcaccaagca gtagagagag tggcaatgag
660


cggttgaatt tcgactgcga cttg
684










<210>     6


<211>   971


<212> DNA


<213> Artificial Sequence


<220> 


<223> PGK1 promoter and integration sequences for Saccharomyces



cerevisiae Acc1 promoter



<220> 


<221> PGK1p


<222> (7) . . . (750)


<400>     6








tgttttatat ttgttgtaaa aagtagataa ttacttcctt gatgatctgt aaaaaagaga
60


aaaagaaagc atctaagaac ttgaaaaact acgaattaga aaagaccaaa tatgtatttc
120


ttgcattgac caatttatgc aagtttatat atatgtaaat gtaagtttca cgaggttcta
180


ctaaactaaa ccaccccctt ggttagaaga aaagagtgtg tgagaacagg ctgttgttgt
240


cacacgattc ggacaattct gtttgaaaga gagagagtaa cagtacgatc gaacgaactt
300


tgctctggag atcacagtgg gcatcatagc atgtggtact aaaccctttc ccgccattcc
360


agaaccttcg attgcttgtt acaaaacctg tgagccgtcg ctaggacctt gttgtgtgac
420


gaaattggaa gctgcaatca ataggaagac aggaagtcga gcgtgtctgg gttttttcag
480


ttttgttctt tttgcaaaca aatcacgagc gacggtaatt tctttctcga taagaggcca
540


cgtgctttat gagggtaaca tcaattcaag aaggagggaa acacttcctt tttctggccc
600


tgataatagt atgagggtga agccaaaata aaggattcgc gcccaaatcg gcatctttaa
660


atgcaggtat gcgatagttc ctcactcttt ccttactcac gagtaattct tgcaaatgcc
720


tattatgcag atgttataat atctgtgcgt agggataaaa agagtagaat aaggaaagga
780


aaattgaaga gagcagaaca attgtagaac cgataacaat tgtgacagtg attgtgctag
840


gctatactgt gccagaatac gactgggagt gctgttcttc ttatatatct tggcgctgat
900


tgagcgtata gcctagttca ccaagcagta gagagagtgg caatgagcgg ttgaatttcg
960


actgcgactt g
971










<210>     7


<211>  1724


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Saccharomyces cerevisiae Acc1 (S659A; S1167A)


coding sequence, regulatory sequences and integration sequences


<220> 


<221> T-G Ser659Ala


<222> (108) . . . (108)


<220> 


<221> T-G ser1167ala


<222> (1602) . . . (1602)


<400>     7








ggcgcgccga gggtaaaaga tacaagttca cggtcgctaa atccggtaat gaccgctaca
60


cattatttat caatggttct aaatgtgata tcatactgcg tcaactagct gatggtgggc
120


tgctgatcgc tatcggcgct aaatcgcata ccatctattg gaaagaagaa gttgctgcta
180


caagattatc cgttgactct atgactactt tgttggaagt tgaaaacgat ccaacccagt
240


tgcgtactcc atcccctggt aaattggtta aattcttggt ggaaaatggt gaacacatta
300


tcaagggcca accatatgca gaaattgaag ttatgaaaat gcaaatgcct ttggtttctc
360


aagaaaatgg tatcgtccag ttattaaagc aacctggttc taccattgtt gcaggtgata
420


tcatggctat tatgactctt gacgatccat ccaaggtcaa gcacgctcta ccatttgaag
480


gtatgctgcc agattttggt tctccagtta tcgaaggaac caaacctgcc tataaattca
540


agtcattagt gtctactttg gaaaacattt tgaagggtta tgacaaccaa gttattatga
600


acgcttcctt gcaacaattg atagaagttt tgagaaatcc aaaactgcct tactcagaat
660


ggaaactaca catctctgct ttacattcaa gattgcctgc taagctagat gaacaaatgg
720


aagagttagt tgcacgttct ttgagacgtg gtgctgtttt cccagctaga caattaagta
780


aattgattga tatggccgtg aagaatcctg aatacaaccc cgacaaattg ctgggcgcag
840


tcgtggaacc attggcggat attgctcata agtactctaa cgggttagaa gcccatgaac
900


attctatatt tgtccatttc ttggaagaat attacgaagt tgaaaagtta ttcaatggtc
960


caaatgttcg tgaggaaaat atcattctga aattgcgtga tgaaaaccct aaagatctag
1020


ataaagttgc gctaactgtt ttgtctcatt cgaaagtttc agcgaagaat aacctgatcc
1080


tagctatctt gaaacattat caaccattgt gcaagttatc ttctaaagtt tctgccattt
1140


tctctactcc tctacaacat attgttgaac tagaatctaa ggctaccgct aaggtcgctc
1200


tacaagcaag agaaattttg attcaaggcg ctttaccttc ggtcaaggaa agaactgaac
1260


aaattgaaca tatcttaaaa tcctctgttg tgaaggttgc ctatggctca tccaatccaa
1320


agcgctctga accagatttg aatatcttga aggacttgat cgattctaat tacgttgtgt
1380


tcgatgtttt acttcaattc ctaacccatc aagacccagt tgtgactgct gcagctgctc
1440


aagtctatat tcgtcgtgct tatcgtgctt acaccatagg agatattaga gttcacgaag
1500


gtgtcacagt tccaattgtt gaatggaaat tccaactacc ttcagctgcg ttctccacct
1560


ttccgactgt gaagtctaag atgggtatga acagggctgt tgctgtttca gatttgtcat
1620


atgttgcaaa cagtcagtca tctccgttaa gagaaggtat tttgatggct gtggatcatt
1680


tagatgatgt tgatgaaatt ttgtcacaaa gtttggggcg cgcc
1724










<210>     8


<211>  3256


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Saccharomyces cerevisiae Maf1 coding sequence,


regulatory sequences and integration sequences


<220> 


<221> L0


<222> (362) . . . (401)


<220> 


<221> Tef1


<222> (402) . . . (895)


<220> 


<221> L1


<222> (896) . . . (935)


<220> 


<221> MAF1


<222> (936) . . . (2123)


<220> 


<221> L2


<222> (2124) . . . (2163)


<220> 


<221> PRM9t


<222> (2164) . . . (2701)


<220> 


<221> LTP2


<222> (2702) . . . (2741)


<400>     8








aatgatttaa gcgtgcgtga agataacact acaatccatt ttaaagcaac atccacattg
60


agtgtataca ccacaaaggt tttttcaggg cgtttttctc gccactttat gttgaccaaa
120


attattaatg gaacttacaa cgtttccaaa agttagttaa atacatacgt ctatttacta
180


agcaagaaat atatcatgac aagcccaaat attatattgt tatgtttaca aaaaaaaaat
240


ggctatatac atcaagtctg gaggcttttt ataacaagca agtggggtaa cttagacata
300


agattgactt ctttgaattc aacaaaaata catacttttg atgatttcaa tggtagaagc
360


ataaacaaca aataatcata aaaattttag aactagacat aaagcaacag gcgcgttgga
420


cttttaattt tcgaggaccg cgaatcctta catcacaccc aatcccccac aagtgatccc
480


ccacacacca tagcttcaaa atgtttctac tcctttttta ctcttccaga ttttctcgga
540


ctccgcgcat cgccgtacca cttcaaaaca cccaagcaca gcatactaaa tttcccctct
600


ttcttcctct agggtgtcgt taattacccg tactaaaggt ttggaaaaga aaaaagagac
660


cgcctcgttt ctttttcttc gtcgaaaaag gcaataaaaa tttttatcac gtttcttttt
720


cttgaaaatt tttttttttg atttttttct ctttcgatga cctcccattg atatttaagt
780


taataaacgg tcttcaattt ctcaagtttc agtttcattt ttcttgttct attacaactt
840


tttttacttc ttgctcatta gaaagaaagc atagcaatct aatctaagtt ttaatctaga
900


aaatttatta taaaaggaag agaaataatt aaacaatgaa atttattgat gagctagata
960


tagagagagt gaatcaaact ctcaatttcg agacaaatga ctgtaaaatc gtgggcagtt
1020


gcgatatttt cacaacaaag gcggttgcat cagatagaaa attatataaa actattgatc
1080


agcatttgga tactatttta caggaaaatg agaattacaa tgctaccctt cagcaacagc
1140


tagctgctcc cgaaacaaac caatcaccct gctcgtcgcc attttattct aataggaggg
1200


atagcaactc tttttgggag caaaagagaa gaatatcttt tagtgaatac aatagcaata
1260


ataacactaa caacagtaat ggcaatagca gtaataacaa taactattct ggacctaatg
1320


gttcttctcc agcaactttt cccaaaagtg ccaagctaaa tgaccaaaat ttaaaagaat
1380


tagtctcgaa ttacgattct ggctctatga gctcatcgtc tcttgattct tcttctaaga
1440


atgatgagag gataagaaga aggagcagta gcagtattag cagtttcaaa agtggtaaat
1500


catcgaacaa taattacagt tctggtacag caaccaacaa tgttaacaaa agaagaaaat
1560


cttcgataaa cgaaaggcca agcaatttaa gtttgggtcc gtttggtccc ataaacgaac
1620


cgtcaagccg caaaatattt gcttatctga ttgctatcct caacgcttct tatcctgacc
1680


atgatttttc atcggttgag ccaacggatt ttgtcaaaac atcattgaaa acttttattt
1740


ccaaatttga aaacacctta tattctcttg gtagacaacc agaggaatgg gtctgggagg
1800


taattaattc tcacatgact ctttctgatt gcgtcctttt tcaatattca ccttcaaact
1860


cttttttgga agatgagcct ggctatcttt ggaatcttat aggttttctt tacaacagga
1920


aaaggaaaag agtggcttac ctttacttga tttgctcgcg tctaaattcg agtacaggcg
1980


aagtggaaga tgccttggca aaaaaacctc agggaaagct tataatagat gatggctcaa
2040


atgaatacga aggagaatac gatttcactt atgatgagaa tgtaatagat gataaatcag
2100


atcaagaaga atccctacag tagagacata aaactgaaac aacaccaatt aataatagac
2160


tttacagaag acgggagaca ctagcacaca actttaccag gcaaggtatt tgacgctagc
2220


atgtgtccaa ttcagtgtca tttatgattt tttgtagtag gatataaata tatacagcgc
2280


tccaaatagt gcggttgccc caaaaacacc acggaacctc atctgttctc gtactttgtt
2340


gtgacaaagt agctcactgc cttattatca cattttcatt atgcaacgct tcggaaaata
2400


cgatgttgaa aatgcctcta gagatgaaaa acaatcgtaa aagggtcctg cgtaattgaa
2460


acatttgatc agtatgcagt ggcacagaaa caaccaggaa tactatagtc ataggcaata
2520


caaggtatat attggctatg cagacccctc cagaaagtac cgacgtcaag ttagatacac
2580


ttaacgaacc tagtgcacat ttaattgaga aaaatgtggc tcttcctaag gacatattcc
2640


gttcgtactt gagttattgg atctatgaaa tcgctcgcta tacaccagtc atgattttgt
2700


ccttaaataa catactcatc actaaacatt cttaacaatc agaaaacaac gcgtcatgaa
2760


aaagagttac tgaaccttca gatcctactt attgtaatgc ttcgcgacat ccaatccatt
2820


taataatcaa tttaaaacta gagttggtag agttccttgt tgaacgtgat aacccaaaag
2880


cataatacga gtaatgtttc agtattgcta ttatatgttt acacaaggaa aacatataat
2940


aacaaacctc taatccggta gtacttaaga aactatagtt tctatgtaca aaaaggtaac
3000


tatgtaattc ttacatttac ataacgtata gaagggtcca ataaacttac taaacttact
3060


accttgttgt atataggcta gatcgtaatc cactacgtca acataaaaaa aacttaagaa
3120


gtttgaattt tatgtacaaa cagattgtta aaatataata taagattatg gaaacgaact
3180


tgctctaaaa aaaatttaaa gttttataaa atcctcgaac tatcgctgtt atacatgatg
3240


tccccaaagc gtgtac
3256










<210>     9


<211>  4662


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Saccharomyces cerevisiae UPC2E888D coding sequence,


regulatory sequences and integration sequences


<220> 


<221> L0


<222> (401) . . . (440)


<220> 


<221> Tef1


<222> (441) . . . (934)


<220> 


<221> L1


<222> (935) . . . (974)


<220> 


<221> UPC2-1


<222> (975) . . . (3701)


<220> 


<221> g-a G888D


<222> (3637) . . . (3637)


<220> 


<221> L2


<222> (3702) . . . (3741)


<220> 


<221> PRM9t


<222> (3742) . . . (4279)


<220> 


<221> LTP2


<222> (4280) . . . (4319)


<400>     9








cccagttgtt tgtagctggt tcatatttag cggcaattct ctgttgcgta aatgaaaata
60


ttaatgtaaa caaaaaaaga ccaaaacatt ttagcagtgt aagaaggtgt actgatacaa
120


aatgtgttta gagtctactg atatgttact gaccgttcgt tgggaaaaaa atactgtatc
180


atttattaat caaaagcgac ttttggtgga atattatgat atgtgttgtt aaaatatgac
240


gtaattttag aattgtctga ttcgtattca aatttggtga aggaataacg cagagttgac
300


aatttaatag aatggattaa tcgtaatttt cagaaacgta gaaaaagaaa aacaattaaa
360


acattatatt aagattattg atttgccttt taagggtcca taaacaacaa ataatcataa
420


aaattttaga actagacata aagcaacagg cgcgttggac ttttaatttt cgaggaccgc
480


gaatccttac atcacaccca atcccccaca agtgatcccc cacacaccat agcttcaaaa
540


tgtttctact ccttttttac tcttccagat tttctcggac tccgcgcatc gccgtaccac
600


ttcaaaacac ccaagcacag catactaaat ttcccctctt tcttcctcta gggtgtcgtt
660


aattacccgt actaaaggtt tggaaaagaa aaaagagacc gcctcgtttc tttttcttcg
720


tcgaaaaagg caataaaaat ttttatcacg tttctttttc ttgaaaattt ttttttttga
780


tttttttctc tttcgatgac ctcccattga tatttaagtt aataaacggt cttcaatttc
840


tcaagtttca gtttcatttt tcttgttcta ttacaacttt ttttacttct tgctcattag
900


aaagaaagca tagcaatcta atctaagttt taatctagaa aatttattat aaaaggaaga
960


gaaataatta aacaatgagc gaagtcggta tacagaatca caagaaagcg gtgacaaaac
1020


ccagaagaag agaaaaagtc atcgagctaa ttgaagtgga cggcaaaaag gtgagtacga
1080


cttcaaccgg taaacgtaaa ttccataaca aatcaaagaa tgggtgcgat aactgtaaaa
1140


gaagaagagt taagtgtgat gaagggaagc cagcctgtag gaagtgcaca aatatgaagt
1200


tggaatgtca gtatacacca atccatttaa ggaaaggtag aggagcaaca gtagtgaagt
1260


atgtcacgag aaaggcagac ggtagcgtgg agtctgattc atcggtagat ttacctccta
1320


cgatcaagaa ggagcagaca ccgttcaatg atatccaatc agcggtaaaa gcttcaggct
1380


catccaatga ttcctttcca tcaagcgcct ctacaactaa gagtgagagc gaggaaaagt
1440


catcggcccc tatagaggac aaaaacaata tgactcctct aagtatgggc ctccagggta
1500


ccatcaataa gaaagatatg atgaataact ttttctctca aaatggcact attggttttg
1560


gttctcctga aagattgaat tcaggtatcg atggcttact attaccgcca ttgccttctg
1620


gaaatatggg tgcgttccaa cttcagcaac agcagcaagt gcagcagcaa tctcaaccac
1680


agacccaagc gcagcaagca agtggaactc caaacgagag atatggttca ttcgatcttg
1740


cgggtagtcc tgcattgcaa tccacgggaa tgagcttatc aaatagtcta agcgggatgt
1800


tactatgtaa caggattcct tccggccaaa actacactca acaacaatta caatatcaat
1860


tacaccagca gctgcaattg caacagcatc agcaagttca gctgcagcag tatcaacaat
1920


tacgtcagga acaacaccaa caagttcagc aacaacaaca ggaacaactc cagcaatacc
1980


aacaacattt tttgcaacag cagcaacaag tactgcttca gcaagagcaa caacctaacg
2040


atgaggaagg tggcgttcag gaagaaaaca gcaaaaaggt aaaggaaggg cctttacaat
2100


cacaaacaag cgaaactact ttaaacagcg atgctgctac attacaagct gatgcattat
2160


ctcagttaag taagatgggg ctaagcctaa agtcgttaag tacctttcca acagctggta
2220


ttggtggtgt ttcctatgac tttcaggaac tgttaggtat taagtttcca ataaataacg
2280


gcaattcaag agctactaag gccagcaacg cagaggaagc tttggccaat atgcaagagc
2340


atcatgaacg tgcagctgct tctgtaaagg agaatgatgg tcagctctct gatacgaaga
2400


gtccagcgcc atcgaataac gcccaagggg gaagtgctag tattatggaa cctcaggcgg
2460


ctgatgcggt ttcgacaatg gcgcctatat caatgattga aagaaacatg aacagaaaca
2520


gcaacatttc tccatcaacg ccctctgcag tgttgaatga taggcaagag atgcaagatt
2580


ctataagttc tctaggaaat ctgacaaaag cagccttgga gaacaacgaa ccaacgataa
2640


gtttacaaac atcacagaca gagaatgaag acgatgcatc gcggcaagac atgacctcaa
2700


aaattaataa cgaagctgac cgaagttctg tttctgctgg taccagtaac atcgctaagc
2760


ttttagatct ttctaccaaa ggcaatctga acctgataga catgaaactg tttcatcatt
2820


attgcacaaa ggtctggcct acgattacag cggccaaagt ttctgggcct gaaatatgga
2880


gggactacat accggagtta gcatttgact atccattttt aatgcacgct ttgttggcat
2940


tcagtgccac ccatctttcg aggactgaaa ctggactgga gcaatacgtt tcatctcacc
3000


gcctagacgc tctgagatta ttaagagaag ctgttttaga aatatctgag aataacaccg
3060


atgcgctagt tgccagcgcc ctgatactaa tcatggactc gttagcaaat gctagtggta
3120


acggcactgt aggaaaccaa agtttgaata gcatgtcacc aagcgcttgg atctttcatg
3180


tcaaaggtgc tgcaacaatt ttaaccgctg tgtggccttt gagtgaaaga tctaaatttc
3240


ataacattat atctgttgat cttagcgatt taggcgatgt cattaaccct gatgttggaa
3300


caattactga attggtatgt tttgatgaaa gtattgccga tttgtatcct gtcggcttag
3360


attcgccata tttgataaca ctagcttatt tagataaatt gcaccgtgaa aaaaaccagg
3420


gtgattttat tctgcgggta tttacatttc cagcattgct agacaagaca ttcctggcat
3480


tactgatgac aggtgattta ggtgcaatga gaattatgag atcatattat aaactacttc
3540


gaggatttgc cacagaggtc aaggataaag tctggtttct cgaaggagtc acgcaggtgc
3600


tgcctcaaga cgttgatgag tacaggggag gtggtgatat gcatatgatg ctaggattac
3660


catcgatgac aacaacaaat ttctctgatt tttcgttatg aagacataaa actgaaacaa
3720


caccaattaa taatagactt tacagaagac gggagacact agcacacaac tttaccaggc
3780


aaggtatttg acgctagcat gtgtccaatt cagtgtcatt tatgattttt tgtagtagga
3840


tataaatata tacagcgctc caaatagtgc ggttgcccca aaaacaccac ggaacctcat
3900


ctgttctcgt actttgttgt gacaaagtag ctcactgcct tattatcaca ttttcattat
3960


gcaacgcttc ggaaaatacg atgttgaaaa tgcctctaga gatgaaaaac aatcgtaaaa
4020


gggtcctgcg taattgaaac atttgatcag tatgcagtgg cacagaaaca accaggaata
4080


ctatagtcat aggcaataca aggtatatat tggctatgca gacccctcca gaaagtaccg
4140


acgtcaagtt agatacactt aacgaaccta gtgcacattt aattgagaaa aatgtggctc
4200


ttcctaagga catattccgt tcgtacttga gttattggat ctatgaaatc gctcgctata
4260


caccagtcat gattttgtcc ttaaataaca tactcatcac taaacattct taacaatcac
4320


gatggatgat gattggttct tatcataatt tgatttcggc agaagcaata ttagaggtat
4380


tgttgtaacg aaattccaat gtcatctgct tagtattatt aatgttacct gcatattatc
4440


acatgccgct taaaaatgtg ttataagtat taaaatctag tgaaagttga aatgtaatct
4500


aataggataa tgaaacatat gaaacggaat gaggaataat cgttgtatta ctatgtagag
4560


atatcgattt cattttgagg attcctatat tcttggggag aacttctact atattctgta
4620


tacatgatat aatagccttt accaacaatg gaatgccaac aa
4662










<210>    10


<211>  3564


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Aspergillus nidulans NpgA coding sequence,


regulatory sequences and integration sequences


<220> 


<221> LTP1 (L0)


<222> (596) . . . (635)


<220> 


<221> Tef1p


<222> (636) . . . (1129)


<220> 


<221> L1


<222> (1130) . . . (1169)


<220> 


<221> NpgA


<222> (1170) . . . (2201)


<220> 


<221> L2


<222> (2205) . . . (2244)


<220> 


<221> PRM9t


<222> (2245) . . . (2782)


<220> 


<221> LTP2


<222> (2783) . . . (2822)


<400>    10








tcaatcaaag caacccacaa atcctaggct gaatcatgat atcgatggaa gcaatcaaca
60


attttatcaa gaccgcacca aagcacgact atctgacagg cggagttcat cattctggta
120


atgtagacgt gttacaatta agcggcaata aagaagatgg tagtttagta tggaaccata
180


cttttgttga tgtagacaac aatgtggtag ctaagtttga agacgctctc gaaaaacttg
240


aaagtttgca ccggcgctca tcctcatcca caggcaatga agaacacgct aacgtttaac
300


cgaggggagt cacttcataa tgatgtgaga aataagtgaa tattgtaata attgttggga
360


ctccattgtc aacaaaagct ataatgtagg tatacagtat atactagaag ttctcctcga
420


ggatcttgga atccacaaaa gggagtcgat aaatctatat aataaaaatt actttatctt
480


ctttcgtttt atacgttgtc gtttattatc ctattacgtt atcaatcttc gcatttcagc
540


tttcattaga tttgatgact gtttctcaaa ctttatgtca ttttcttaca ccgcataaac
600


aacaaataat cataaaaatt ttagaactag acataaagca acaggcgcgt tggactttta
660


attttcgagg accgcgaatc cttacatcac acccaatccc ccacaagtga tcccccacac
720


accatagctt caaaatgttt ctactccttt tttactcttc cagattttct cggactccgc
780


gcatcgccgt accacttcaa aacacccaag cacagcatac taaatttccc ctctttcttc
840


ctctagggtg tcgttaatta cccgtactaa aggtttggaa aagaaaaaag agaccgcctc
900


gtttcttttt cttcgtcgaa aaaggcaata aaaattttta tcacgtttct ttttcttgaa
960


aatttttttt tttgattttt ttctctttcg atgacctccc attgatattt aagttaataa
1020


acggtcttca atttctcaag tttcagtttc atttttcttg ttctattaca acttttttta
1080


cttcttgctc attagaaaga aagcatagca atctaatcta agttttaatc tagaaaattt
1140


attataaaag gaagagaaat aattaaacaa tggttcaaga tacctcttct gcttctacct
1200


ctccaatttt gactagatgg tacattgata ccagaccatt gactgcttct actgctgctt
1260


tgccattatt ggaaacttta caaccagccg atcaaatctc cgttcaaaag tactatcact
1320


tgaaggacaa gcacatgtct ttggcttcta acttgttgaa gtacttgttc gttcacagaa
1380


actgcagaat tccatggtcc tctatcgtta tttctagaac tccagatcca catagaaggc
1440


catgttatat tccaccatct ggttctcaag aggattcttt taaagatggt tacaccggta
1500


tcaacgtcga gtttaatgtt tctcatcaag cctccatggt tgctattgct ggtactgctt
1560


ttactccaaa ttctggtggt gattctaagt tgaaaccaga agttggtatc gatattacct
1620


gcgtcaacga aagacaaggt agaaatggtg aagaaaggtc cttggaatct ttgagacagt
1680


acatcgatat cttctccgaa gttttctcta ctgctgaaat ggccaacatt agaagattgg
1740


atggtgtctc ttcttcctca ttgtctgctg atagattggt tgattatggc tacaggttgt
1800


tctatactta ctgggctttg aaagaagcct acattaagat gactggtgaa gccttgttgg
1860


ctccatggtt gagagaattg gaattctcta atgttgttgc tccagctgct gttgctgaat
1920


ctggtgattc tgctggtgat tttggtgaac catatactgg tgttagaacc accttgtaca
1980


agaacttggt tgaagatgtt agaattgaag ttgctgcttt gggtggtgat tacttgtttg
2040


ctactgctgc tagaggtggt ggtattggtg cttcttctag accaggtggt ggtccagatg
2100


gttctggtat tagatctcaa gatccttgga ggccattcaa gaagttggat attgaaaggg
2160


atattcaacc atgtgctact ggtgtatgta actgcttgtc ttaaagacat aaaactgaaa
2220


caacaccaat taataataga ctttacagaa gacgggagac actagcacac aactttacca
2280


ggcaaggtat ttgacgctag catgtgtcca attcagtgtc atttatgatt ttttgtagta
2340


ggatataaat atatacagcg ctccaaatag tgcggttgcc ccaaaaacac cacggaacct
2400


catctgttct cgtactttgt tgtgacaaag tagctcactg ccttattatc acattttcat
2460


tatgcaacgc ttcggaaaat acgatgttga aaatgcctct agagatgaaa aacaatcgta
2520


aaagggtcct gcgtaattga aacatttgat cagtatgcag tggcacagaa acaaccagga
2580


atactatagt cataggcaat acaaggtata tattggctat gcagacccct ccagaaagta
2640


ccgacgtcaa gttagataca cttaacgaac ctagtgcaca tttaattgag aaaaatgtgg
2700


ctcttcctaa ggacatattc cgttcgtact tgagttattg gatctatgaa atcgctcgct
2760


atacaccagt catgattttg tccttaaata acatactcat cactaaacat tcttaacaat
2820


cagaaaatgc aaccgataaa acattataaa tcttcgcggt tatctggcat tgttattaac
2880


caaaaaaatg ccggcctatt acaagctact gttcaataaa tattgttgta atgaagacgg
2940


tccaactgta caaatacagc aaactgtcat atataaggtg tcttatgtga cagcacttgc
3000


gttattgtca gccggagtat gtctttgtcg cattctgggc tttttacttt ctgctcagaa
3060


ggaagtacga acaagaaaaa aaaatcacca atgcttccct tttcagtatt agtttcatat
3120


ttgtttacgt tcaaactcgt cgtttgcgcg ataacctcta aaaaagtcag ttacgtaact
3180


atatcaatca gagaatgcaa aaagcactat cataaaaatg tctctagggg atgtgagaca
3240


tgtcaattat aagaagtgat ggtgtcatag tatatatatc ataaatgatt atcaaagttt
3300


caatcctttg tattttctag tttagcgcca acttttgaca aaacctaaac tttagataat
3360


catcattctt acaattttta tctggatggc aataatctcc tatataaagc ccagataaac
3420


tgtaaaaaga atccatcact atttgaaaaa aagtcatctg gcacgtttaa ttatcagagc
3480


agaaatgatg aagggtgtta gcgccgtcca ttgatgcgcc tggtagtcat gatttacgta
3540


taactaacac atcatgagga cggc
3564










<210>    11


<211>   336


<212> PRT


<213> Aspergillusterreus


<400>    11


Met Ile Gln Gln Val Gln Gln Ala Val Phe Asp Pro Glu Arg Phe Leu


1               5                   10                  15


Val Asp Ile Glu Glu Thr Cys Arg Ala Ile Gly Ala Pro Tyr Ser Gln


            20                  25                  30


Glu Lys Thr Leu Lys Val Leu Glu Gly Phe Gln Ala Ser Phe Ala Arg


        35                  40                  45


Gly Ala Val Leu Trp Arg Ile Thr Asn Arg Pro Gly Asp Ala Leu Asn


    50                  55                  60


Tyr Arg Phe Tyr Glu Arg Val Ser Ile Asp Ala Val Ser Cys Ala Val


65                  70                  75                  80


Glu Ala Lys Leu Phe Gln Pro Asn His Pro Leu Ser Glu Leu Ile Val


                85                  90                  95


Ser Trp Thr Ala Leu Tyr Pro Gly Ala Ala Gln Gln Ser Cys Asp Phe


            100                 105                 110


Asp Ala Glu Gln Gly Phe Ser Lys Ile Trp Val Tyr Leu Gly Asp Met


        115                 120                 125


Arg Pro Leu Ser Asp Ile Leu Ser Ala Pro His Val Pro Leu Ser Ile


    130                 135                 140


Arg Lys His Ala Thr Thr Phe Tyr Asn Leu Gly Leu Glu Leu Val Arg


145                 150                 155                 160


His Val Ala Ala Asp Phe Thr Ser Asn Thr Ile Asn Ile Tyr Phe Arg


                165                 170                 175


Val Gln Gly Leu Leu Thr Leu Glu Arg Ala Arg Ser Leu Val Arg Leu


            180                 185                 190


Ser Asp Pro Ala Tyr Leu Leu Glu Cys Gly Glu Val Glu Glu Met Arg


        195                 200                 205


Arg Leu Leu Asn Pro Val Gly Phe Thr Phe Ala Val Thr Met Asp Tyr


    210                 215                 220


Ser Thr Gly Asp Ile Lys Arg Val Gly Ile Tyr Ala Leu Lys Leu Ala


225                 230                 235                 240


Pro Gly Thr Tyr Pro Ala Met Asp Glu Arg Leu Lys Ala Thr Arg Ala


                245                 250                 255


Ile Pro Leu Glu Lys Gln Ala Tyr Ile Leu Leu Ser Gln Gly Val Leu


            260                 265                 270


Met Ala Lys Glu Val Ala Ala Ala Phe Pro Val Pro Ser Glu Thr Ala


        275                 280                 285


Ala Val Asn Arg Pro Arg Glu Val Asp Val Glu Val Gly Val Gly Val


    290                 295                 300


Ala Ser Phe Met Phe Gln Pro Thr Thr Pro Ile Ala Pro Thr Val Asp


305                 310                 315                 320


Val Arg Asp Asn Val Val Val Ala Val Phe His Ala Val Glu Ser Pro


                325                 330                 335





<210>    12


<211>   305


<212> PRT


<213> Streptomyces sp CL190


<400>    12


Val Ser Gly Glu Thr Asp Ala Glu Glu Leu Cys Ser Ala Ile Glu Glu


1               5                   10                  15


Thr Ala Arg Leu Val Gly Ala Pro Cys Ser Arg Glu Lys Ile Trp Pro


            20                  25                  30


Ile Leu Thr Glu Tyr Arg Ser Gly Phe Ala Glu Gly Gly Val Val Phe


        35                  40                  45


Ser Ala Gln Ala Gly Glu Asn His Ala Gly Glu Leu Asp Tyr Gly Leu


    50                  55                  60


Ala Val Pro Pro Arg Ile Asp Asp Pro Tyr Ala His Ala Leu Ala His


65                  70                  75                  80


Gly Phe Val Thr Glu Thr Asp His Pro Val Ala Ala Leu Leu Ser Asp


                85                  90                  95


Ile Arg Glu Arg Cys Ala Val Thr Glu His Phe Ala Asp Cys Gly Val


            100                 105                 110


Val Gly Gly Phe Arg Lys Leu Tyr Ala His Phe Pro Arg Asp Leu Gln


        115                 120                 125


Lys Val Ser Glu Ile Ala Asp Ile Pro Ser Met Pro Arg Ala Val Ala


    130                 135                 140


Glu Asn Val Gly Leu Phe Thr Arg Tyr Gly Leu Glu Asn Val Val Met


145                 150                 155                 160


Val Gly Val Asn Tyr Lys Asn Lys Thr Val Ser Leu Tyr Phe Gln Phe


                165                 170                 175


Thr Ala Glu Gly Arg Pro Arg Pro Ser Ala Ile Arg Ser Met Leu Gly


            180                 185                 190


Asp Ile Gly Met Thr Glu Pro Asn Glu Arg Met Leu Asp Phe Ala Ser


        195                 200                 205


Asn Ser Phe Arg Ala Asn Ile Thr Leu Ser Trp Asp Ser Pro Lys Ile


    210                 215                 220


Leu Arg Val Ala Phe Ala Pro Pro Pro Gly Ala Gly Leu Asn Leu Ser


225                 230                 235                 240


Thr Val Pro Ile Pro Thr Gly Pro His Leu Glu Asp Phe Val Thr Arg


                245                 250                 255


Ala Pro Arg Ala Tyr Asp Gly Glu Arg Met Asn Leu Phe Ala Val Lys


            260                 265                 270


Trp Thr Gln Asp Lys Glu Phe Leu Glu Val Cys Ser Tyr Tyr Gln Leu


        275                 280                 285


Pro Ala Gly Tyr Glu Pro Ile Arg Gln Met Glu Ile His Lys Glu Gln


    290                 295                 300


Gly


305





<210>    13


<211>   299


<212> PRT


<213> Streptomyces sp CL190


<400>    13


Met Pro Glu Ala Thr Lys Leu Glu Thr Val Phe Ser Ala Val Glu Glu


1               5                   10                  15


Thr Ala Arg Leu Val Asp Ala Pro Cys Ser Arg Glu Lys Val Trp Pro


            20                  25                  30


Ala Leu Glu Thr Phe Gly Arg Trp Phe Asp Asp Ala His Ile Ile Phe


        35                  40                  45


Ser Met Gly Thr Gly His Lys Tyr Arg Gly Glu Leu Ala Phe Asp Phe


    50                  55                  60


Thr Val Pro Pro Glu Ala Gly Asp Pro Tyr Ala Ala Ala Val Ala Gly


65                  70                  75                  80


Gly Leu Leu Glu Lys Val Asp His Pro Val Thr Gly Leu Phe Ser Glu


                85                  90                  95


Ile Gly Asp Arg Phe Pro Val Asp Ala Tyr Ala Val Asp Tyr Gly Val


            100                 105                 110


Arg Gly Gly Phe Lys Lys Ala Cys Val Phe Phe Pro Leu Ala Arg Pro


        115                 120                 125


Gln Ser Met Lys Ala Leu Ala Glu Leu Pro Ser Ile Pro Pro Ala Leu


    130                 135                 140


Ala Ala His Ala Glu Tyr Phe Ala Ala Ala Gly Leu Asp Gly Lys Val


145                 150                 155                 160


Ser Cys Ile Gly Ile Asp Tyr Gly Ser Arg Thr Trp Asn Leu Tyr Ile


                165                 170                 175


Ser Gly Leu Thr Pro Asp Tyr Thr Arg Pro Asp Ala Ile Val Ala Thr


            180                 185                 190


Leu Gly Glu Met Gly Leu Ser Lys Pro Ser Glu His Met Leu Glu Phe


        195                 200                 205


Ile Ser Thr Ser Phe Ala Met Tyr Pro Thr Phe Gly Trp Asp Thr Thr


    210                 215                 220


Arg Ile Glu Arg Met Cys Phe Ser Thr Arg Thr Ser Asp Pro Asn Leu


225                 230                 235                 240


Leu Pro Ala Arg Ile Glu Pro Asp Val Ala Lys Phe Ala Arg Asp Met


                245                 250                 255


Pro Thr Val His Gly Gly Glu Pro Ser Tyr Val Tyr Ala Gly Thr Val


            260                 265                 270


Ala Arg Gly Glu Glu Phe Phe Lys Leu Ala Ser Tyr Tyr Gln Met Ser


        275                 280                 285


Ser Lys Val Ser Glu Arg Val Arg Pro Ala Asp


    290                 295





<210>    14


<211>   304


<212> PRT


<213> Streptomyces sp CL190


<400>    14


Met Ser Gly Ala Lys Asp Val Glu Arg Val Tyr Ser Ala Met Glu Glu


1               5                   10                  15


Ala Ala Gly Leu Leu Asn Val Pro Val Ala Arg Asp Lys Ile Trp Pro


            20                  25                  30


Val Leu Thr Ala Tyr Gln Asp Ala Leu Ala Asp Ala Val Ile Val Phe


        35                  40                  45


Ser Met Ala Gly Gly Arg Arg Ser Thr Glu Leu Asp Phe Ser Ile Ser


    50                  55                  60


Val Pro Thr Asp His Gly Asp Pro Phe Thr Thr Ala Leu Glu Arg Gly


65                  70                  75                  80


Leu Thr Glu Lys Glu Asn His Pro Val Asp Asn Leu Leu Ala Glu Leu


                85                  90                  95


Arg Asp Gly Phe Pro Leu Gly Met Tyr Ala Ile Asp Gly Met Val Thr


            100                 105                 110


Thr Gly Phe Lys Lys Ala Tyr Ala Ser Phe Pro Thr Asn Glu Pro Gln


        115                 120                 125


Pro Leu Thr Ala Leu Leu Asp Leu Pro Ser Met Pro Glu Ser Ala Arg


    130                 135                 140


Ala Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val Gln Met


145                 150                 155                 160


Val Ser Val Asp Tyr Pro Lys Arg Gln Val Asn Leu Tyr Phe Ser Asp


                165                 170                 175


Leu Asn Ala Asp His Leu Thr Pro Glu Glu Val Lys Ser Thr Ala Ser


            180                 185                 190


Glu Met Gly Leu Val Glu Pro Thr Asp Met Ala Leu Asp Phe Ala Thr


        195                 200                 205


Gly Ser Phe Ala Val Tyr Pro Thr Leu Gly Tyr Asp Ser Asp Val Val


    210                 215                 220


Asp Arg Ile Thr Tyr Ala Val Ile Ser Val Asp Pro Thr Leu Ala Pro


225                 230                 235                 240


Thr Thr Ser Glu Pro Glu Lys Thr Gln Ile Thr Thr Tyr Ala Asn Ser


                245                 250                 255


Ala Pro Tyr Ala Tyr Ala Gly Glu Asn Arg Thr Leu Val Tyr Gly Phe


            260                 265                 270


Thr Leu Thr Ser Lys Glu Glu Tyr Tyr Lys Leu Gly Ser Tyr Tyr Gln


        275                 280                 285


Ile Thr Asp Leu Gln Arg Thr Leu Val Lys Ala Phe Glu Ala Leu Asp


    290                 295                 300





<210>    15


<211>   299


<212> PRT


<213> Streptomyces sp CL190


<400>    15


Met Ser Ala Glu Pro Ala Ile Glu Arg Leu Cys Val Ala Ala Glu Asp


1               5                   10                  15


Ala Ala Gly Ile Val Gly Leu Glu Cys Pro Arg Glu Lys Met Thr Ala


            20                  25                  30


Val Leu Thr Ala Phe Pro Asn Val Val Thr Asp Ser Thr Val Val Phe


        35                  40                  45


Asn Val Val Asn Lys Gly Gly Arg Val Gly Asp Met Ser Phe Asp Phe


    50                  55                  60


Thr Val Pro Leu Ala Ala Gly Asp Pro Tyr Glu Arg Ala Leu Ala His


65                  70                  75                  80


Gly Leu Ala Glu Lys Thr Asn His Pro Val Arg Gly Met Phe Ala Asp


                85                  90                  95


Met Leu Thr Thr Leu Pro Val Asp Cys Tyr Gly Val Asp Tyr Gly Val


            100                 105                 110


Asn Gly Gly Phe Asn Lys Ala Tyr Ala Val Phe Pro Met Gly Arg Leu


        115                 120                 125


Gln Glu Leu Asp Lys Leu Ala Ala Val Pro Ala Met Ala Asp Thr Leu


    130                 135                 140


Ser Lys Trp Met Gly Gln Leu Val Asp Tyr Gly Leu Asp Gly Arg Val


145                 150                 155                 160


Ser Thr Val Ala Val Asp His Ala Asn Arg Thr Trp Asn Val Tyr Phe


                165                 170                 175


Asn Gly Leu Ser Ala Glu His Phe Glu Arg Pro Thr Leu Gln Ala Met


            180                 185                 190


Ile Arg Asp Phe Gly Leu Pro Glu Pro Ser Ala Gln Leu Leu Asp Phe


        195                 200                 205


Ala Glu Thr Ser Ser Ala Leu Tyr Pro Thr Phe Ser Trp Asp Ser Pro


    210                 215                 220


Glu Ile Glu Arg Val Ser Phe Ser Thr Arg Thr Thr Asp Pro Asn Ala


225                 230                 235                 240


Leu Pro Ala His Val Glu Pro Lys Leu Gly Ala Leu Ala Ala Asn Ala


                245                 250                 255


Pro Tyr Thr Tyr Asp Gly Asp Arg Arg Leu Val Phe Ala Gly Ala Leu


            260                 265                 270


Thr Thr Gly Gly Glu Tyr Tyr Lys Leu Ala Thr Tyr Tyr Gln Met Ala


        275                 280                 285


Thr Ala Ala His Asp Arg Val Arg Arg Gly Ser


    290                 295





<210>    16


<211>   296


<212> PRT


<213> Streptomyces sp CL190


<400>    16


Met Ser Ala Thr Ala Glu Met Asp Glu Leu Tyr Ala Val Ile Glu Gln


1               5                   10                  15


Ser Ala Arg Thr Leu Gly Val Pro Cys Ala Pro Glu Lys Val Arg Pro


            20                  25                  30


Val Leu Ala Ala Tyr Glu Asp Ala Phe Gly His Ala Ala Thr Val Val


        35                  40                  45


Ala Phe Arg Val Ala Thr Ser Ile Arg His Ala Gly Glu Leu Asp Cys


    50                  55                  60


Arg Phe Thr Thr His Pro Asp Glu Arg Asp Pro Tyr Ala Thr Ala Leu


65                  70                  75                  80


Ala Ala Gly Leu Ala Gly Arg Thr Asp His Pro Val Gly Ala Val Leu


                85                  90                  95


Ala Gln Leu Gln Gly Arg Cys His Val Asp Ser His Gly Ile Asp Phe


            100                 105                 110


Gly Val Val Gly Gly Phe Lys Lys Val Tyr Ala Phe Phe Thr Pro Asp


        115                 120                 125


Asp Leu Gln Glu Val Ala Lys Phe Ala Asp Leu Pro Ala Met Pro Arg


    130                 135                 140


Ala Leu Ala Glu His Thr Gly Phe Phe Ala Arg His Gly Leu Ala Asp


145                 150                 155                 160


Arg Val Gly Val Val Gly Val Asp Tyr Gly His Arg Thr Leu Asn Val


                165                 170                 175


Tyr Phe Asn Asp Val Pro Ala Gln Leu Phe Glu Pro Gly Thr Ile Thr


            180                 185                 190


Ala Thr Leu Arg Glu Leu Gly Met Ala Arg Pro Ser Glu Gln Met Leu


        195                 200                 205


Lys Leu Gly Arg Glu Ala Phe Gly Leu Tyr Val Thr Leu Gly Trp Asp


    210                 215                 220


Ser Pro Arg Ile Glu Arg Ile Cys Tyr Ala Val Thr Thr Ala Asp Leu


225                 230                 235                 240


Ala Ala Leu Pro Val Pro Val Glu Pro Glu Ile Glu Arg Phe Val Arg


                245                 250                 255


Gly Val Pro Ala Asp Asp Gly Asp Arg Lys Phe Val Tyr Gly Val Ala


            260                 265                 270


Val Ala Pro Glu Gly Glu Tyr Tyr Lys Leu Glu Ser His Tyr Arg Trp


        275                 280                 285


Lys Pro Gly Thr Met Asp Phe Ile


    290                 295





<210>    17


<211>   305


<212> PRT


<213> Streptomyces sp CL190


<400>    17


Met Ser Gly Thr Ala Glu Leu Glu Lys Val Tyr Ser Ala Ile Glu Glu


1               5                   10                  15


Ser Ala Arg Leu Val Gly Val Ala Cys Ser Arg Asp Asn Val Trp Pro


            20                  25                  30


Ile Leu Thr Ala Phe Gly Glu Ser Ile Glu Asp Ala Leu Met Val Phe


        35                  40                  45


Ser Leu Gln Thr Gly Gly Arg His Ala Gly Glu Leu Asp Tyr Ser Phe


    50                  55                  60


Thr Ala Pro Pro Gly Ile Gly Asp Pro Tyr Pro Arg Ala Leu Ser Tyr


65                  70                  75                  80


Gly Phe Val Thr Glu Thr Asp His Pro Val Gly Ser Val Leu Ser Asp


                85                  90                  95


Leu Gln Gly Arg Trp Ala Ile Arg Glu His Phe Val Asp Cys Gly Val


            100                 105                 110


Thr Gly Gly Phe Lys Lys Leu Tyr Ala His Phe Pro Gln Asp Leu Gln


        115                 120                 125


Pro Ala Ala Arg Leu Ala Glu Ile Pro Ser Val Pro Arg Ala Val Ala


    130                 135                 140


Asp Asn Ala Gly Leu Phe Ala Arg Tyr Gly Leu Asp Arg Val Ala Met


145                 150                 155                 160


Val Gly Val Asp Tyr Gln Arg Arg Thr Met Asn Leu Tyr Phe Gln Phe


                165                 170                 175


Thr Pro Asp Gly Arg Pro Glu Pro Gly Ala Leu Arg Ser Met Leu Arg


            180                 185                 190


Glu Ile Gly Leu His Glu Ala Asp Glu Gly Met Leu Glu Phe Ala Ser


        195                 200                 205


Arg Ser Met Arg Ala Asn Ile Thr Phe Ser Trp Asp Thr Ser Arg Ile


    210                 215                 220


Val Arg Val Ala Phe Ala Pro Pro Pro Gly Lys Gly Leu Asp Pro Ala


225                 230                 235                 240


Ala Val Pro Ala Pro Ile Glu Pro His Ile Ala Arg Phe Ala Thr Ser


                245                 250                 255


Ala Pro Tyr Ala Tyr Ala Gly Glu Arg Met Asn Leu Phe Gly Val Lys


            260                 265                 270


Trp Phe Pro Asp Gly Glu Phe Ile Asp Val Cys Ala Tyr Tyr Gln Leu


        275                 280                 285


Ser Ala Gly Tyr Glu Pro Val Arg Leu Met Glu Thr His Lys Asn Pro


    290                 295                 300


Thr


305





<210>    18


<211>   296


<212> PRT


<213> Streptomyces atratus


<400>    18


Met Ser Gly Thr Pro Glu Val Ala Glu Leu Tyr Ser Ala Ile Glu Glu


1               5                   10                  15


Ser Ala Arg Leu Leu Asp Val Ala Cys Ser Arg Asp Lys Val Trp Pro


            20                  25                  30


Ile Leu Thr Thr Tyr Gly Asp Ala Phe Ser His Ala Ala Thr Val Val


        35                  40                  45


Ala Phe Arg Val Ala Thr Gly Gly Arg His Val Gly Glu Leu Asp Cys


    50                  55                  60


Arg Phe Thr Thr His Pro Asn Asp Arg Asp Pro Tyr Ala Phe Ala Leu


65                  70                  75                  80


Ser Asn Gly Leu Thr Arg Gln Thr Asp His Pro Val Gly Ala Leu Leu


                85                  90                  95


Leu Asp Leu Gln Gly Arg Cys Pro Ile Asp Ser Tyr Gly Ile Asp Phe


            100                 105                 110


Gly Val Val Gly Gly Phe Lys Lys Ile Tyr Ala Phe Phe Thr Pro Asp


        115                 120                 125


Asn Leu Gln Lys Leu Ser Arg Ile Ala Asp Leu Pro Ser Met Pro Gly


    130                 135                 140


Ser Leu Ala Glu Asn Gly Asp Phe Phe Ala Arg His Gly Leu Asp Asp


145                 150                 155                 160


Arg Val Gly Val Ile Gly Ile Asp Tyr Pro His Arg Thr Val Asn Val


                165                 170                 175


Tyr Phe Asn Glu Val Pro Ala Glu Cys Phe Glu Ser Lys Thr Ile Leu


            180                 185                 190


Ser Met Leu Arg Glu Ile Gly Leu Pro Glu Pro Ser Glu Gln Met Leu


        195                 200                 205


Arg Leu Gly Gln Glu Ala Phe Gly Leu Tyr Val Thr Leu Asn Trp Asp


    210                 215                 220


Ser Ser Lys Ile Glu Arg Ile Cys Tyr Ala Val Thr Thr Ala Asp Leu


225                 230                 235                 240


Ala Thr Leu Pro Val Arg Met Glu Pro Glu Ile Glu Gln Phe Val Lys


                245                 250                 255


Asp Val Pro Asn Gly Gly Ala Asp Arg Lys Phe Val Tyr Gly Val Ala


            260                 265                 270


Ser Ser Pro Glu Gly Glu Tyr Tyr Lys Leu Glu Ser His Tyr Lys Trp


        275                 280                 285


Lys Pro Gly Met Met Asp Phe Ile


    290                 295





<210>    19


<211>   304


<212> PRT


<213> Streptomycescinnamonensis


<400>    19


Met Ser Pro Val Thr Gly Thr Glu Glu Val Tyr Ala Ala Val Ala Ala


1               5                   10                  15


Ala Ala Arg Leu Ala Gly Val Pro Cys Thr Arg Glu Lys Val His Pro


            20                  25                  30


Val Leu Ser Ala Tyr Gly Glu Gly Leu Glu Arg Ala Gly Val Val Tyr


        35                  40                  45


Ser Val Ser Thr Ser His Ser Thr Pro Thr Glu Leu Asp Tyr Thr Val


    50                  55                  60


Thr Val Pro Ala Ala Gly Glu Asp Pro Tyr Ala Thr Ala Val Arg His


65                  70                  75                  80


Gly Phe Val Thr Pro Asp Gly His Pro Val His Thr Leu Leu Ser His


                85                  90                  95


Leu Gln Ser Arg Cys Glu Ile Ser Glu Tyr Leu Val Asp Gly Gly Val


            100                 105                 110


Val Gly Gly Phe Asn Lys Ile Tyr Ala His Phe Pro Gln Asp Val Gln


        115                 120                 125


Lys Ile Ser Arg Leu Ala Glu Leu Pro Gly Met Pro Pro Ala Leu Ala


    130                 135                 140


Arg Cys Ala Ala Leu Leu Glu Arg His Gly Leu Ser Asp Val Ala Met


145                 150                 155                 160


Ile Gly Ile Asp Tyr Pro Arg Arg Thr Leu Asn Leu Tyr Phe Thr Gln


                165                 170                 175


Leu Ser Glu Glu Cys Arg Ala Pro Gln Thr Ile Leu Ser Leu His Arg


            180                 185                 190


Glu Ile Gly Leu Pro Ala Pro Gly Gln Pro Met Leu Asp Phe Ala Arg


        195                 200                 205


Arg Ser Phe Arg Ile Tyr Thr Thr Leu Ser Trp Asp Ser Ala Gly Ile


    210                 215                 220


Glu Arg Ile Cys Tyr Ala Pro Pro Pro Ala Arg Gly Trp Asp Pro Ala


225                 230                 235                 240


Ala Leu Pro Ala Glu Ile Thr Glu Gln Val Arg Gly Phe Val Asp Gly


                245                 250                 255


Ala Pro Arg Ala Tyr Glu Gly Glu Pro Ile Val Ile Ala Ala Val Lys


            260                 265                 270


Trp Ala Pro Glu Gly Pro Tyr Leu Asn Leu Gly Pro Tyr Tyr Gln Leu


        275                 280                 285


Ser Pro Leu Met Arg Lys Val Ile Ser Ala Val His Asn Lys Glu Ile


    290                 295                 300





<210>    20


<211>   303


<212> PRT


<213> Streptomycesiakyrus


<400>    20


Met Glu Gly Glu Met Ser Glu Ala Ser Glu Leu Ala Val Ile Tyr Ser


1               5                   10                  15


Ala Ile Glu Glu Thr Ala Gln Leu Leu Asp Val Pro Cys Ser Arg Asp


            20                  25                  30


Lys Val Gln Pro Ala Leu Ala Ala Phe Gly Asp Gly Leu Thr Asp Ala


        35                  40                  45


His Ile Val Phe Ser Met Ala Thr Gly Glu Arg Tyr Lys Gly Glu Leu


    50                  55                  60


Ala Phe Asp Phe Thr Val Pro Thr Ala Ala Gly Asp Pro Tyr Ala Ile


65                  70                  75                  80


Ala Leu Ala Asn Gly Leu Val Asp Glu Thr Asp His Pro Ile Arg Ser


                85                  90                  95


Leu Phe Ser Asp Val Gln Glu Arg Cys Pro Val Asp Ser Tyr Gly Val


            100                 105                 110


Asp Tyr Gly Leu Val Gly Gly Phe Lys Lys Thr Tyr Val Ser Phe Pro


        115                 120                 125


Leu Gly Asp Leu Gln Gly Leu Ser Thr Leu Val Asp Val Pro Ser Met


    130                 135                 140


Pro Arg Ala Leu Ala Glu His Ala Asp Phe Phe Ala Ser His Gly Leu


145                 150                 155                 160


Asp Asp Lys Val Ser Ala Ile Ala Ile Asp Tyr Ala His Arg Thr Trp


                165                 170                 175


Asn Val Tyr Phe Ser Gly Ile Pro Ala Glu Val Lys Glu Pro Gln Thr


            180                 185                 190


Leu Arg Ser Val Leu Gln Arg Phe Gly Leu Pro Glu Pro Ser Glu Arg


        195                 200                 205


Leu Met Glu Phe Ile Arg Thr Ser Phe Ala Met Tyr Thr Thr Phe Gly


    210                 215                 220


Trp Asp Ser Thr Lys Ala Glu Arg Ile Cys Phe Ser Ala Arg Ser Ser


225                 230                 235                 240


Asp Pro Met Ala Leu Pro Ala Gln Phe Glu Pro Gln Ile Ala Lys Phe


                245                 250                 255


Ala Lys Ser Ala Pro Tyr Thr Tyr Thr Gly Glu Arg Val Leu Thr Tyr


            260                 265                 270


Ala Gly Ala Leu Ser Pro Ser Glu Glu Phe Tyr Lys Leu Ala Ser Phe


        275                 280                 285


Tyr Gln Lys Thr Ser Lys Leu Ser Asp Arg Val Arg Pro Ala Thr


    290                 295                 300





<210>    21


<211>   305


<212> PRT


<213> Streptomycestendae


<400>    21


Met Ser Gly Ala Ala Asp Val Glu Arg Val Tyr Ala Ala Met Glu Glu


1               5                   10                  15


Ala Ala Gly Leu Leu Asp Val Ser Cys Ala Arg Glu Lys Ile Tyr Pro


            20                  25                  30


Leu Leu Thr Val Phe Gln Asp Thr Leu Thr Asp Gly Val Val Val Phe


        35                  40                  45


Ser Met Ala Ser Gly Arg Arg Ser Thr Glu Leu Asp Phe Ser Ile Ser


    50                  55                  60


Val Pro Val Ser Gln Gly Asp Pro Tyr Ala Thr Val Val Lys Glu Gly


65                  70                  75                  80


Leu Phe Arg Ala Thr Gly Ser Pro Val Asp Glu Leu Leu Ala Asp Thr


                85                  90                  95


Val Lys His Leu Pro Val Ser Met Phe Ala Ile Asp Gly Glu Val Thr


            100                 105                 110


Gly Gly Phe Lys Lys Thr Tyr Ala Phe Phe Pro Thr Asp Asp Met Pro


        115                 120                 125


Gly Val Ala Gln Leu Thr Glu Ile Pro Ser Met Pro Ala Ser Val Ala


    130                 135                 140


Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val Gln Met


145                 150                 155                 160


Thr Ser Met Asp Tyr Lys Lys Arg Gln Val Asn Leu Tyr Phe Ser Asp


                165                 170                 175


Leu Lys Gln Glu Tyr Leu Gln Pro Glu Ala Val Val Ala Leu Ala Arg


            180                 185                 190


Glu Leu Gly Leu Gln Val Pro Gly Glu Leu Gly Leu Glu Phe Cys Lys


        195                 200                 205


Arg Ser Phe Ala Val Tyr Pro Thr Leu Asn Trp Asp Thr Gly Lys Ile


    210                 215                 220


Asp Arg Leu Cys Phe Ala Ala Ile Ser Thr Asp Pro Thr Leu Val Pro


225                 230                 235                 240


Ser Thr Asp Glu Arg Asp Ile Glu Met Phe Arg Glu Tyr Ala Thr Lys


                245                 250                 255


Ala Pro Tyr Ala Tyr Val Gly Glu Lys Arg Thr Leu Val Tyr Gly Leu


            260                 265                 270


Thr Leu Ser Ser Thr Glu Glu Tyr Tyr Lys Leu Gly Ala Tyr Tyr His


        275                 280                 285


Ile Thr Asp Ile Gln Arg Gln Leu Leu Lys Ala Phe Asp Ala Leu Glu


    290                 295                 300


Asp


305





<210>    22


<211>   296


<212> PRT


<213> Micromonosporasagamiensis


<400>    22


Met Pro Gly Thr Ser Glu Ala Ala Glu Leu Cys Ser Thr Ile Glu Glu


1               5                   10                  15


Ser Ala Arg Leu Leu Asn Val Ala Tyr Ser Arg Asp Arg Val Trp Ser


            20                  25                  30


Leu Leu Ser Ala Tyr Gly Asp Ala Phe Ala His Pro Gly Ala Val Val


        35                  40                  45


Ala Phe Arg Val Ala Thr Ala Met Arg His Val Gly Glu Leu Asp Cys


    50                  55                  60


Arg Phe Thr Thr His Pro Asp Asp Arg Asp Pro Tyr Ala Arg Ala Leu


65                  70                  75                  80


Ser His Gly Leu Thr Pro Glu Thr Asp His Pro Val Gly Ser Leu Leu


                85                  90                  95


Ala Glu Val Gln Gly Arg Cys Pro Val Glu Ser His Gly Ile Asp Phe


            100                 105                 110


Gly Val Val Gly Gly Phe Lys Lys Ile Tyr Ala Phe Phe Thr Pro Asp


        115                 120                 125


Asp Leu Gln Lys Thr Ser Lys Leu Ala Glu Ile Pro Ala Met Pro Arg


    130                 135                 140


Ser Leu Ala Gly Asn Val Glu Phe Phe Ala Arg His Gly Leu Asp Asp


145                 150                 155                 160


Arg Val Gly Val Phe Gly Ile Asp Tyr Pro Ser Arg Thr Val Asn Val


                165                 170                 175


Tyr Phe Asn Asp Val Pro Ala Gly Ser Phe Asp Pro Glu Thr Ile Arg


            180                 185                 190


Ser Thr Leu Arg Glu Ile Gly Met Ala Ala Pro Ser Glu Arg Met Leu


        195                 200                 205


Lys Leu Gly Glu Lys Ala Phe Gly Leu Tyr Val Thr Leu Gly Trp Glu


    210                 215                 220


Ser Ser Arg Ile Glu Arg Ile Cys Tyr Ala Ala Ala Thr Thr Asp Leu


225                 230                 235                 240


Thr Thr Leu Pro Val Pro Val Glu Pro Glu Ile Glu Lys Phe Val Arg


                245                 250                 255


Ser Val Pro Tyr Gly Gly Asp Asp Arg Lys Phe Val Tyr Gly Val Ala


            260                 265                 270


Leu Thr Pro Gln Gly Glu Tyr Tyr Lys Leu Glu Ser His Tyr Arg Trp


        275                 280                 285


Lys Pro Gly Ala Met Asp Phe Ile


    290                 295





<210>    23


<211>   293


<212> PRT


<213> Streptomyces sp.


<400>    23


Met Ser Ala Gln Ala Asp Val Glu Thr Val His Ser Ala Ile Glu Lys


1               5                   10                  15


Ala Ala Gly Leu Leu Asn Leu Thr Cys Ser Pro Gly Thr Val Arg Pro


            20                  25                  30


Ile Leu Glu Ala Phe Gly Pro Phe Glu Gly Gly Val Ile Phe Ser Ala


        35                  40                  45


Ser Ala Gly Glu Gly His Ala Gly Asp Leu Asp Leu Thr Ile Gln Val


    50                  55                  60


Pro Arg Ala Ile Asp Asp Pro Tyr Thr His Ala Leu Thr His Gly Phe


65                  70                  75                  80


Val Pro His Thr Asp His Pro Val Ser Thr Leu Leu Ser Asp Leu Lys


                85                  90                  95


Glu His Val Ser Val Asp Glu Phe Leu Ile Asp Phe Gly Val Ile Ala


            100                 105                 110


Gly Phe Asn Lys Ile Tyr Val His Phe Pro Arg Asp Leu Gln Gly Val


        115                 120                 125


Ala Gln Leu Ala Ala Leu Pro Ser Met Pro Arg Ala Leu Ala Asp Asn


    130                 135                 140


Ala Gln Leu Phe Ala Arg His Gly Leu Asp Lys Val Ala Met Leu Ser


145                 150                 155                 160


Ile Asp Tyr His Lys Arg Thr Ile Asn Pro Phe Phe Thr Phe Pro Asn


                165                 170                 175


Gly Leu Glu Ala Lys Thr Ile Ser Ser Leu Leu His Glu Phe Gly Val


            180                 185                 190


Glu Glu Pro Asp Glu Glu Leu Val Glu Ser Ser Ser Lys Ile Phe Arg


        195                 200                 205


Ala Tyr Pro Thr Leu Gly Trp Glu Ser Ser Lys Ile Asp Arg Ile Ser


    210                 215                 220


Phe Ala Arg Ser Leu Asp Leu Pro Thr Ile Arg Pro Arg Val Ala Pro


225                 230                 235                 240


Glu Ile Val Arg Phe Val Thr Gly Thr Pro Tyr Thr Tyr Asp Gly Asp


                245                 250                 255


Arg Phe Ser Ile Ser Ile Val Lys Trp Ser Pro Asp Asp Thr Trp Phe


            260                 265                 270


Asn Val Gly Ser Tyr Phe Gln Phe Gly Pro Leu Gln Arg Glu Val Leu


        275                 280                 285


Gly Lys Val Leu Arg


    290





<210>    24


<211>   309


<212> PRT


<213> Saccharomonosporasaliphila


<400>    24


Val Pro Lys Asp Ala Asp Pro Arg Ser Ser Val Tyr Ser Ala Ile Glu


1               5                   10                  15


Glu Ala Ala Gly Leu Met Gly Ala Pro Cys Ser Arg Glu Arg Val Trp


            20                  25                  30


Pro Ile Leu Thr Ala Tyr Gly Asp Gly Ile Ser Glu Ala Gly Ile Val


        35                  40                  45


Phe Ser Val Gln Thr Gly Glu Arg His Ala Gly Glu Leu Asp Tyr Thr


    50                  55                  60


Ile Thr Val Pro Ala Asp Gly Pro Asp Pro Tyr Thr Ser Ala Leu Ser


65                  70                  75                  80


Asn Gly Phe Leu Glu Ala Thr Gln His Pro Val Gly Thr Leu Leu Ser


                85                  90                  95


Asp Ile Arg Ala Arg Cys His Ile Ser Glu Tyr Phe Ile Asp Cys Gly


            100                 105                 110


Val Val Gly Gly Phe Asn Lys Val Tyr Ala His Phe Pro His Asp Pro


        115                 120                 125


Leu Ser Val Glu Arg Leu Ala Glu Val Pro Ser Leu Pro Arg Ser Leu


    130                 135                 140


Ala Asp Asn Leu Gly Phe Phe Leu Arg His Ala Leu Arg Asp Val Ala


145                 150                 155                 160


Met Ile Ala Ile Asp Tyr Arg Lys Lys Thr Val Asn Leu Tyr Phe Ala


                165                 170                 175


Gln Leu Ser Ala Glu Cys Leu Arg Ser Ala Asn Ile Arg Ala Met Leu


            180                 185                 190


Arg Glu Ser Gly Leu Ser Glu Leu Asp Gly Pro Met Leu Asp Phe Ala


        195                 200                 205


Leu Gly Ser Phe Arg Ile Tyr Val Thr Leu Ala Trp Asp Ser Ala Gly


    210                 215                 220


Val Glu Arg Ile Ser Phe Ala Ser Leu Met Ser Ser Gly Trp Val Asn


225                 230                 235                 240


Ala Ala Leu Ser Glu Phe Pro Val Arg Ile Glu Pro Glu Ile Glu Arg


                245                 250                 255


Phe Val Lys Asn Ala Pro Gln Ala Tyr Ser Gly Asp Arg Val Arg Ile


            260                 265                 270


Leu Ala Ile Lys Ser Ser Pro Gly Asp Glu Cys Leu Asn Phe Gly Ser


        275                 280                 285


Tyr Tyr Gln Ile Ser Pro Val Val Arg Asn Leu Leu Ala Ala Arg Ala


    290                 295                 300


Gly Asp Ala Glu Gln


305





<210>    25


<211>   298


<212> PRT


<213> Streptomyces sp.


<400>    25


Met Ser Gly Thr Ala Asp Ile Glu Arg Leu Tyr Pro Val Val Glu Glu


1               5                   10                  15


Ala Ala Gly Leu Leu Asp Ile Ala Cys Pro Pro Glu Arg Met Arg Pro


            20                  25                  30


Val Leu Thr Ala Phe Arg Asp Ala Leu Ala Asp Pro Val Val Phe Asn


        35                  40                  45


Ala Val Thr Lys Gly Gly Arg Ile Ala Asp Leu Ser Phe Asp Phe Thr


    50                  55                  60


Leu Pro Ala Ser Ala Gly Asp Pro Tyr Ala Ile Ala Val Ala His Gly


65                  70                  75                  80


Leu Ala Glu Glu Thr Asp His Pro Ile Arg Thr Leu Phe Ser Asp Leu


                85                  90                  95


Arg Ala Arg Leu Pro Val Gln Gly Tyr Gly Val Asp Tyr Gly Val Asn


            100                 105                 110


Gly Gly Phe Asn Lys Thr Tyr Ala Phe Phe Pro Leu Gly Asp Leu Gln


        115                 120                 125


Ala Leu Ala Glu Leu Ala Ala Leu Pro Ser Met Pro Pro Ala Leu Ser


    130                 135                 140


Glu His Leu Ala Leu Phe Thr Glu His Gly Leu Gly His Lys Val Ser


145                 150                 155                 160


Ala Leu Ala Ile Asp Tyr Ala Arg Arg Thr Trp Asn Val Tyr Phe Asn


                165                 170                 175


Gly Leu Pro Ala Asp Phe Val Arg Arg Thr Ala Val Leu Pro Met Leu


            180                 185                 190


Arg Ala Phe Gly Leu Pro Glu Pro Ser Glu Gln Leu Leu Asp Phe Ile


        195                 200                 205


Glu Thr Ser Ser Ala Leu Tyr Pro Thr Phe Gly Trp Asp Ser Ser Lys


    210                 215                 220


Ile Glu Arg Ile Ser Phe Ser Thr Arg Thr Thr Asn Pro Val Ala Leu


225                 230                 235                 240


Pro Ala Arg Ile Glu Pro Lys Leu Glu Lys Phe Ala Arg Ser Ala Pro


                245                 250                 255


Tyr Ala Tyr Glu Gly Glu Arg Val Leu Val Tyr Ala Gly Ala Leu Ser


            260                 265                 270


Pro Ser Glu Glu Tyr Tyr Lys Leu Ala Thr Tyr Tyr Arg Met Ser Ala


        275                 280                 285


Ala Ala His Asp Arg Val Arg Ala Ala Asn


    290                 295





<210>    26


<211>   306


<212> PRT


<213> Streptomyces sp.


<400>    26


Met Ser Lys Ala Thr Glu Val Asp Arg Val Tyr Ala Ala Val Glu Lys


1               5                   10                  15


Ala Ala Ala Leu Ala Gly Thr Thr Cys Ala Gly Asp Lys Val Arg Pro


            20                  25                  30


Val Leu Thr Gly His Gln Asp Leu Leu Asp Glu Ala Val Ile Val Phe


        35                  40                  45


Ser Met Thr Ala Ser Gly Ser His Ser Gly Gly Leu Asp Leu Ser Met


    50                  55                  60


Thr Val Pro Ala Glu His Val Asp Pro Tyr Ser Phe Ala Leu Ser Glu


65                  70                  75                  80


Gly Leu Ile Glu Pro Thr Asp His Pro Val Gly Ser Val Ile Ser Asp


                85                  90                  95


Phe Gln Glu Arg Phe Pro Ile Gly Met Tyr Gly Ile Asp Val Asp Val


            100                 105                 110


Ala Gly Gly Phe Lys Lys Ala Tyr Ala Ala Phe Pro Ser Asn Asp Leu


        115                 120                 125


Arg Glu Leu Lys Gln Leu Phe Asp Leu Pro Ser Met Pro Ser Ala Ala


    130                 135                 140


Ala Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Arg Val Thr


145                 150                 155                 160


Gly Val Ser Val Asp Tyr Lys Arg His Glu Leu Asn Leu Tyr Cys Asp


                165                 170                 175


Arg Ala Thr Thr Glu Pro Leu Asp Pro Asp Tyr Val Gln Ser Met Leu


            180                 185                 190


Arg Asp Met Gly Leu Lys Glu Ala Ser Glu Gln Gly Leu Glu Phe Ala


        195                 200                 205


Lys Lys Thr Phe Ala Ile Tyr Pro Thr Leu Asn Trp Asp Ser Ser Glu


    210                 215                 220


Ile Val Arg Ile Cys Phe Ala Val Ile Thr Thr Asp Pro Ala Thr Thr


225                 230                 235                 240


Pro Thr Arg Ser Glu Pro Glu Leu Gly Gln Met Trp Glu Tyr Ala Asn


                245                 250                 255


Thr Ala Pro Tyr Ala Tyr Val Gly Glu Gln Arg Ala Leu Val Tyr Gly


            260                 265                 270


Leu Ala Leu Ser Pro Glu Lys Glu Tyr Tyr Lys Leu Gly Ala Tyr Tyr


        275                 280                 285


Gln Ile Ser Asp Tyr Gln Arg Lys Leu Val Lys Ala Phe Asp Ala Leu


    290                 295                 300


Pro Glu


305





<210>    27


<211>   311


<212> PRT


<213> Streptomyces sp.


<400>    27


Met Tyr Gly Gly Thr Glu Val Glu Glu Val Tyr Ser Ala Leu Glu Lys


1               5                   10                  15


Ser Ala Gly Leu Val Gly Val Pro Cys Asn Arg Asp Lys Val Trp Pro


            20                  25                  30


Ala Leu Ser Thr Tyr Gln Asp Ala Leu Gly Glu Ala Val Ile Val Phe


        35                  40                  45


Ser Val Ala Thr Asp Glu Arg His Ala Gly Glu Leu Asp Tyr Thr Ile


    50                  55                  60


Thr Val Pro Thr Gly Gly Ala Asp Pro Tyr Ala Leu Ala Leu Ala Lys


65                  70                  75                  80


Gly Leu Thr Pro Glu Thr Asp His Pro Val Gly Thr Leu Leu Ala Gly


                85                  90                  95


Val Gln Glu Arg Cys Pro Val Ala Gly Tyr Ala Val Asp Cys Gly Val


            100                 105                 110


Val Gly Gly Phe Lys Lys Ile Tyr Ser Phe Phe Pro Gln Asp Asp Leu


        115                 120                 125


Gln Gly Leu Ala Lys Leu Ala Glu Ile Pro Ser Met Pro Arg Ala Leu


    130                 135                 140


Ala Glu Asn Ala Ala Leu Phe Ala Arg His Gly Leu Asp His Lys Val


145                 150                 155                 160


Thr Met Leu Gly Ile Asp Tyr Gln Arg Glu Ser Val Asn Leu Tyr Phe


                165                 170                 175


Gly Lys Leu Pro Glu Glu Cys Leu Gln Pro Asp Ser Ile Arg Ala Ile


            180                 185                 190


Leu Arg Asp Ile Gly Leu Pro Glu Pro Thr Glu Pro Met Leu Glu Phe


        195                 200                 205


Ala Arg Lys Ser Phe Ala Ile Tyr Val Thr Leu Ser Trp Asp Ala Ala


    210                 215                 220


Lys Val Glu Arg Ile Cys Phe Ala Val Pro Pro Gly Arg Asp Leu Ile


225                 230                 235                 240


Thr Leu Asp Pro Ser Ala Leu Pro Ala Arg Ile Ala Pro Glu Ile Glu


                245                 250                 255


His Phe Ala Arg Asn Ser Pro Tyr Ala Tyr Pro Gly Asp Arg Met Leu


            260                 265                 270


Val Tyr Gly Val Thr Trp Ser Pro Glu Glu Glu Tyr Tyr Lys Leu Gly


        275                 280                 285


Ser Tyr Tyr Gln Leu Pro Val Gln Thr Arg Lys Leu Leu Val Ala Phe


    290                 295                 300


Asp Ser Val Lys Asp Gln Glu


305                 310





<210>    28


<211>   310


<212> PRT


<213> Streptomyces sp.


<400>    28


Met Pro Glu Ser Lys Asn Ala Glu Ala Val Tyr Ser Ala Ile Glu Glu


1               5                   10                  15


Ser Ala Gly Leu Leu Asp Ile Pro Cys Ser Arg Gln Lys Val Met Ser


            20                  25                  30


Val Leu Ser Ala Phe Gly Asp Gly Val Ser Glu Glu Ser Val Ile Val


        35                  40                  45


Met Ala Met Ala Gly Gly Glu Arg His Gly Gly Asp Ile Asp Tyr Asn


    50                  55                  60


Phe Thr Val Pro Thr Glu Val Gly Asp Pro Tyr Glu Ile Ala Val Ala


65                  70                  75                  80


Asn Gly Trp Ile Glu Ala Leu Asp His Pro Ile Ala Asn Leu Leu Pro


                85                  90                  95


Glu Ile Val Glu Ser Ser Pro Val Thr Phe Tyr Gly Val Glu Ala Gly


            100                 105                 110


Val Val Glu Gly Phe Lys Lys Thr Tyr Ile Phe Phe Pro Leu Asp Asn


        115                 120                 125


Leu Gly Lys Leu Ser Thr Leu Ala Ser Leu Pro Ser Met Pro Arg Ser


    130                 135                 140


Val Ala Glu His Ala Arg Thr Phe Asp Gly Leu Asn Gly Met Gly Asp


145                 150                 155                 160


Arg Ile Ser Ile Ile Gly Ile Asp Tyr Ile Lys Arg Thr Val Asn Val


                165                 170                 175


Tyr Phe Met Ala Gly Thr Leu Gly Glu Lys Ser Val Leu Ser Leu Leu


            180                 185                 190


Glu Asp Thr Asn Leu Pro Ala Pro Thr Pro Asp Phe Leu Glu Phe Val


        195                 200                 205


Gln Asn Ser Phe Ser Ile Tyr Pro Thr Phe Thr Tyr Glu Ser Ser Asp


    210                 215                 220


Ile His Arg Ile Cys Phe Ser Ser Val Ser Pro Asp Asp Thr Ala Tyr


225                 230                 235                 240


Pro Thr Thr Leu His Glu Glu Ile Ala Arg Phe Thr Lys Asn Ala Pro


                245                 250                 255


Tyr Glu Tyr Asp Gly Ala Arg Val Leu Val Tyr Gly Ala Thr Ile Ser


            260                 265                 270


Arg Arg Glu Glu Tyr His Lys Leu Gly Val Tyr Phe Arg Arg Pro Pro


        275                 280                 285


Ala Phe Trp Asp Asn Leu Pro Leu Ala Ala Thr Phe Glu Lys Leu Ala


    290                 295                 300


Ala Ala His Arg Gly Ala


305                 310





<210>    29


<211>   302


<212> PRT


<213> Streptomyces sp.


<400>    29


Met Ser Glu Thr Ala Glu Leu Thr Lys Leu Tyr Ser Ile Ile Glu Lys


1               5                   10                  15


Thr Ala Gln Val Val Asp Val Thr Ala Ser Arg Asp Lys Val Gln Pro


            20                  25                  30


Ile Leu Gln Ala Phe Gln Asp Val Phe Gly Gln Ser Val Ile Ser Phe


        35                  40                  45


Arg Ala Ser Thr Gly Arg Thr Ser Ser Glu Glu Leu Asp Cys Arg Phe


    50                  55                  60


Thr Met Leu Pro Lys Gly Phe Asp Pro Tyr Ala Arg Ala Leu Glu His


65                  70                  75                  80


Gly Leu Thr Pro Lys Gln Asp His Pro Val Gly Thr Leu Leu Lys Glu


                85                  90                  95


Val His Gln Glu Leu Pro Ile Asp Ser Cys Gly Val Asp Phe Gly Val


            100                 105                 110


Val Gly Gly Phe Ala Lys Thr Trp Ser Phe Pro Ser Ala Ala Asn Leu


        115                 120                 125


Leu Ser Ile Ser Gln Leu Thr Glu Leu Pro Ser Ile Pro Gly Gly Val


    130                 135                 140


Ala Glu Asn Leu Asp Phe Phe Lys Lys Tyr Gly Leu Asp Asp Ile Val


145                 150                 155                 160


Ser Thr Val Gly Ile Asp Tyr Thr Asn Arg Thr Met Asn Leu Tyr Phe


                165                 170                 175


Gly Ala Gly Glu His Arg Cys Arg Pro Asn Val Ser Arg Ala Lys Gly


            180                 185                 190


Val Lys Ala Ile Leu Lys Glu Cys Gly Leu Pro Glu Pro Ser Glu Glu


        195                 200                 205


Leu Leu Lys Leu Ala Glu Arg Ala Phe Ser Ile Tyr Ile Thr Met Asn


    210                 215                 220


Trp Asp Ser Pro Lys Ile Leu Arg Val Ser Tyr Ala Ala Met Thr Pro


225                 230                 235                 240


Lys Pro Arg Ser Leu Ala Val Lys Met Ala Pro Ala Phe Asp Gln Leu


                245                 250                 255


Leu Asn Asn Ala Pro Tyr Ser Thr Glu Gly His Asn Phe Val Tyr Gly


            260                 265                 270


Ile Ala Ala Thr Pro Lys Gly Glu Tyr His Lys Ile Ala Ser Tyr Tyr


        275                 280                 285


Gln Trp Gln Thr Arg Val Glu Gly Leu Leu His Ser Glu Ser


    290                 295                 300





<210>    30


<211>   300


<212> PRT


<213> Streptomycescinnamonensis


<400>    30


Met Met Ser Gly Thr Ala Asp Leu Ala Gly Val Tyr Ala Ala Val Glu


1               5                   10                  15


Glu Ser Ala Gly Leu Leu Asp Val Ser Cys Ala Arg Glu Lys Val Trp


            20                  25                  30


Pro Ile Leu Ala Ala Phe Glu Asp Val Leu Pro Thr Ala Val Ile Ala


        35                  40                  45


Phe Arg Val Ala Thr Asn Ala Arg His Glu Gly Glu Phe Asp Cys Arg


    50                  55                  60


Phe Thr Val Pro Gly Ser Ile Asp Pro Tyr Ala Val Ala Leu Asp Lys


65                  70                  75                  80


Gly Leu Thr His Arg Ser Gly His Pro Ile Glu Thr Leu Val Ala Asp


                85                  90                  95


Val Gln Lys His Cys Ala Val Asp Ser Tyr Gly Val Asp Phe Gly Val


            100                 105                 110


Val Gly Gly Phe Lys Lys Ile Trp Val Tyr Phe Pro Gly Gly Arg His


        115                 120                 125


Glu Ser Leu Ala His Leu Gly Glu Ile Pro Ser Met Pro Pro Gly Leu


    130                 135                 140


Ala Ala Thr Glu Gly Phe Phe Ala Arg Tyr Gly Leu Ala Asp Lys Val


145                 150                 155                 160


Asp Leu Ile Gly Val Asp Tyr Ala Ser Lys Thr Met Asn Val Tyr Phe


                165                 170                 175


Ala Ala Ser Pro Glu Val Val Ser Ala Pro Thr Val Leu Ala Met His


            180                 185                 190


Arg Glu Ile Gly Leu Pro Asp Pro Ser Glu Gln Met Leu Asp Phe Cys


        195                 200                 205


Ser Arg Ala Phe Gly Val Tyr Thr Thr Leu Asn Trp Asp Ser Ser Lys


    210                 215                 220


Val Glu Arg Ile Ala Tyr Ser Val Lys Thr Glu Asp Pro Leu Glu Leu


225                 230                 235                 240


Ser Ala Arg Leu Gly Ser Lys Val Glu Gln Phe Leu Lys Ser Val Pro


                245                 250                 255


Tyr Gly Ile Asp Thr Pro Lys Met Val Tyr Ala Ala Val Thr Ala Gly


            260                 265                 270


Gly Glu Glu Tyr Tyr Lys Leu Gln Ser Tyr Tyr Gln Trp Arg Thr Asp


        275                 280                 285


Ser Arg Leu Asn Leu Ser Tyr Ile Gly Gly Arg Ser


    290                 295                 300





<210>    31


<211>   298


<212> PRT


<213> Nocardiaconcava


<400>    31


Met Gly Thr Ser Glu Leu Val Thr Leu Glu Arg Ile Arg Arg Asp Leu


1               5                   10                  15


Gln Glu Phe Ala Arg Leu Ala Glu Ala Pro Tyr Glu Ala Ala Ala Val


            20                  25                  30


Asp Pro Val Leu Asp Ala Leu Glu Glu Leu Trp Thr Thr Ser Ile Leu


        35                  40                  45


Gly Val Arg Thr Thr Thr His Pro Val Pro Arg Arg Arg Leu Asn Val


    50                  55                  60


Arg Leu Met Asn Ser Gly Ser Gly Ala Asp Pro Val Thr Thr Leu Arg


65                  70                  75                  80


Glu Ala Gly Leu Leu Glu Phe Thr Gly His Pro Met Glu Gln Leu Leu


                85                  90                  95


Thr Glu Ile Pro Ala Ala Val Pro Val Leu Phe Gly Val Asp Val Gly


            100                 105                 110


Val Ala Gln Gly Val Glu Lys Val Trp Met Met Phe Pro Glu Pro Ile


        115                 120                 125


Ser Val Gln Arg Val Leu Ala Phe Pro Gly Ile Pro Asp Ala Ala Arg


    130                 135                 140


Thr His Ala Pro His Leu Asn Arg Tyr Gly Gly Glu Ile Ala Ile Met


145                 150                 155                 160


Ala Leu Asp Phe Ala Ser Arg Thr Met Asn Leu Tyr Ser Gln Val Phe


                165                 170                 175


Ala Pro Gly Leu Leu Thr Ala Thr Asp Ile Thr Thr Ile Leu Ala Asp


            180                 185                 190


Leu Glu Phe Ala Pro Pro Thr Asp Glu Glu Leu Ser Leu Leu Arg Gln


        195                 200                 205


Thr Phe Asn Leu Tyr Arg Thr Phe Ser Trp Thr Ser Pro Arg Met Gln


    210                 215                 220


Arg Ile Cys Phe Pro Val Arg His Gln Pro Ala Thr Phe Pro Thr His


225                 230                 235                 240


Leu Asp Pro Val Leu Ala Arg Phe Val Ser Ala Ala Pro Tyr Ala Gly


                245                 250                 255


Thr Gly Ser Gln Thr Phe Thr Phe Tyr Thr Ala Tyr Gly Pro Thr Asp


            260                 265                 270


Arg Tyr Tyr Lys Ile Gln Ala Glu Tyr Thr Ser Pro Arg His Ile Pro


        275                 280                 285


Phe Pro Gly Gly Thr Glu Pro Pro Val Asn


    290                 295





<210>    32


<211>   293


<212> PRT


<213> Myxococcusstipitatus


<400>    32


Met Pro Ala Leu Ser Leu Gly Leu Glu Arg Leu Cys Ala Asp Val Glu


1               5                   10                  15


Ala Ala Ala Ala Leu Ala Gly Ala Ser Phe Ser Arg Glu Val Thr Arg


            20                  25                  30


Asn Val Leu Lys Ser Tyr Pro Arg Phe Phe Thr Ser Ser Ala Val Ser


        35                  40                  45


Phe Arg Thr Ser Thr Arg Lys Pro Glu Lys Arg Glu Leu Asn Val Arg


    50                  55                  60


Phe Val Glu Leu Glu Thr Pro Glu Asp Pro His Ala Val Ala Leu Ala


65                  70                  75                  80


Glu Gly Leu Ile His Arg Ser Gly His Pro Ile Asp Asp Leu Phe Glu


                85                  90                  95


Gln Val Gln Arg Asn Val Pro Ile Leu Gly Tyr Gly Leu Asp Phe Gly


            100                 105                 110


Val Ala Tyr Gly Val Glu Lys Ile Trp Pro Phe Phe Pro His Arg Pro


        115                 120                 125


Gln Pro Leu Glu Val Leu Arg Thr Leu Pro Ser Leu Pro Gln Ser Val


    130                 135                 140


Gln Ala His Ser Gly Phe Leu Val Glu His Asp Leu Thr Asp Leu Ser


145                 150                 155                 160


Leu Phe Ala Leu Asp Tyr Arg Ser Arg Ser Val Asn Leu Tyr Phe Met


                165                 170                 175


Cys Arg Pro Gly His Phe Ser Thr Ala Gln Leu Ala Asp Leu Leu Gly


            180                 185                 190


Gly Leu Gly Phe Glu Ser Pro Gly Glu Glu Leu Leu Glu His Cys Thr


        195                 200                 205


Arg Ala Val Pro Ile Tyr Phe Thr Phe Arg Trp Asp Arg Pro Arg Ile


    210                 215                 220


Glu Arg Val Cys Phe Gly Val Ile Ala Pro Gly Pro Gly Leu Leu Pro


225                 230                 235                 240


Thr His Leu His Pro Ile Ile Gly Gln Phe Ala Ala Gly Val Pro Phe


                245                 250                 255


Ala Thr Glu Arg Arg Asn Phe Ile Tyr Ser Val Thr Val Ser Arg Glu


            260                 265                 270


Glu Thr Phe Ile Lys Ile Glu Asn Asp Tyr Ser Gly Thr Met Thr Ala


        275                 280                 285


Leu Met Gln Val Phe


    290





<210>    33


<211>   300


<212> PRT


<213> Unknown


<220> 


<223> Baceterial or Fungal Prenyltransferase


<400>    33


Met Met Ser Gly Thr Ala Asp Leu Ala Gly Val Tyr Ala Ala Val Glu


1               5                   10                  15


Glu Ser Ala Gly Leu Leu Asp Val Ser Cys Ala Arg Glu Lys Val Trp


            20                  25                  30


Pro Ile Leu Ala Ala Phe Glu Asp Val Leu Pro Thr Ala Val Ile Ala


        35                  40                  45


Phe Arg Val Ala Thr Asn Ala Arg His Glu Gly Glu Phe Asp Cys Arg


    50                  55                  60


Phe Thr Val Pro Gly Ser Ile Asp Pro Tyr Ala Val Ala Leu Asp Lys


65                  70                  75                  80


Gly Leu Thr His Arg Ser Gly His Pro Ile Glu Thr Leu Val Ala Asp


                85                  90                  95


Val Gln Lys His Cys Ala Val Asp Ser Tyr Gly Val Asp Phe Gly Val


            100                 105                 110


Val Gly Gly Phe Lys Lys Ile Trp Val Tyr Phe Pro Gly Gly Arg His


        115                 120                 125


Glu Ser Leu Ala His Leu Gly Glu Ile Pro Ser Met Pro Pro Gly Leu


    130                 135                 140


Ala Ala Thr Glu Gly Phe Phe Ala Arg Tyr Gly Leu Ala Asp Lys Val


145                 150                 155                 160


Asp Leu Ile Gly Val Asp Tyr Ala Ser Lys Thr Met Asn Val Tyr Phe


                165                 170                 175


Ala Ala Ser Pro Glu Val Val Ser Ala Pro Thr Val Leu Ala Met His


            180                 185                 190


Arg Glu Ile Gly Leu Pro Asp Pro Ser Glu Gln Met Leu Asp Phe Cys


        195                 200                 205


Ser Arg Ala Phe Gly Val Tyr Thr Thr Leu Asn Trp Asp Ser Ser Lys


    210                 215                 220


Val Glu Arg Ile Ala Tyr Ser Val Lys Thr Glu Asp Pro Leu Glu Leu


225                 230                 235                 240


Ser Ala Arg Leu Gly Ser Lys Val Glu Gln Phe Leu Lys Ser Val Pro


                245                 250                 255


Tyr Gly Ile Asp Thr Pro Lys Met Val Tyr Ala Ala Val Thr Ala Gly


            260                 265                 270


Gly Glu Glu Tyr Tyr Lys Leu Gln Ser Tyr Tyr Gln Trp Arg Thr Asp


        275                 280                 285


Ser Arg Leu Asn Leu Ser Tyr Ile Gly Gly Arg Ser


    290                 295                 300





<210>    34


<211>   304


<212> PRT


<213> Unknown


<220> 


<223> Unknown


<400>    34


Met Ser Pro Val Thr Gly Thr Glu Glu Val Tyr Ala Ala Val Ala Ala


1               5                   10                  15


Ala Ala Arg Leu Ala Gly Val Pro Cys Thr Arg Glu Lys Val His Pro


            20                  25                  30


Val Leu Ser Ala Tyr Gly Glu Gly Leu Glu Arg Ala Gly Val Val Tyr


        35                  40                  45


Ser Val Ser Thr Ser His Ser Thr Pro Thr Glu Leu Asp Tyr Thr Val


    50                  55                  60


Thr Val Pro Ala Ala Gly Glu Asp Pro Tyr Ala Thr Ala Val Arg His


65                  70                  75                  80


Gly Phe Val Thr Pro Asp Gly His Pro Val His Thr Leu Leu Ser His


                85                  90                  95


Leu Gln Ser Arg Cys Glu Ile Ser Glu Tyr Leu Val Asp Gly Gly Val


            100                 105                 110


Val Gly Gly Phe Asn Lys Ile Tyr Ala His Phe Pro Gln Asp Val Gln


        115                 120                 125


Lys Ile Ser Arg Leu Ala Glu Leu Pro Gly Met Pro Pro Ala Leu Ala


    130                 135                 140


Arg Cys Ala Ala Leu Leu Glu Arg His Gly Leu Ser Asp Val Ala Met


145                 150                 155                 160


Ile Gly Ile Asp Tyr Pro Arg Arg Thr Leu Asn Leu Tyr Phe Thr Gln


                165                 170                 175


Leu Ser Glu Glu Cys Arg Ala Pro Gln Thr Ile Leu Ser Leu His Arg


            180                 185                 190


Glu Ile Gly Leu Pro Ala Pro Gly Gln Pro Met Leu Asp Phe Ala Arg


        195                 200                 205


Arg Ser Phe Arg Ile Tyr Thr Thr Leu Ser Trp Asp Ser Ala Gly Ile


    210                 215                 220


Glu Arg Ile Cys Tyr Ala Pro Pro Pro Ala Arg Gly Trp Asp Pro Ala


225                 230                 235                 240


Ala Leu Pro Ala Glu Ile Thr Glu Gln Val Arg Gly Phe Val Asp Gly


                245                 250                 255


Ala Pro Arg Ala Tyr Glu Gly Glu Pro Ile Val Ile Ala Ala Val Lys


            260                 265                 270


Trp Ala Pro Glu Gly Pro Tyr Leu Asn Leu Gly Pro Tyr Tyr Gln Leu


        275                 280                 285


Ser Pro Leu Met Arg Lys Val Ile Ser Ala Val His Asn Lys Glu Ile


    290                 295                 300





<210>    35


<211>   307


<212> PRT


<213> Unknown


<220> 


<223> Unknown


<400>    35


Met Pro Gly Thr Asp Asp Val Ala Val Asp Val Ala Ser Val Tyr Ser


1               5                   10                  15


Ala Ile Glu Lys Ser Ala Gly Leu Leu Asp Val Thr Ala Ala Arg Glu


            20                  25                  30


Val Val Trp Pro Val Leu Thr Ala Phe Glu Asp Val Leu Glu Gln Ala


        35                  40                  45


Val Ile Ala Phe Arg Val Ala Thr Asn Ala Arg His Glu Gly Asp Phe


    50                  55                  60


Asp Val Arg Phe Thr Val Pro Glu Glu Val Asp Pro Tyr Ala Val Ala


65                  70                  75                  80


Leu Ser Arg Ser Leu Ile Ala Lys Thr Asp His Pro Val Gly Ser Leu


                85                  90                  95


Leu Ser Asp Ile Gln Gln Leu Cys Ser Val Asp Thr Tyr Gly Val Asp


            100                 105                 110


Leu Gly Val Lys Ser Gly Phe Lys Lys Val Trp Val Tyr Phe Pro Ala


        115                 120                 125


Gly Glu His Glu Thr Leu Ala Arg Leu Thr Gly Leu Thr Ser Met Pro


    130                 135                 140


Gly Ser Leu Ala Gly Asn Val Asp Phe Phe Thr Arg Tyr Gly Leu Ala


145                 150                 155                 160


Asp Lys Val Asp Val Ile Gly Ile Asp Tyr Arg Ser Arg Thr Met Asn


                165                 170                 175


Val Tyr Phe Ala Ala Pro Ser Glu Cys Phe Glu Arg Glu Thr Val Leu


            180                 185                 190


Ala Met His Arg Asp Ile Gly Leu Pro Ser Pro Ser Glu Gln Met Phe


        195                 200                 205


Lys Phe Cys Glu Asn Ser Phe Gly Leu Tyr Thr Thr Leu Asn Trp Asp


    210                 215                 220


Thr Met Glu Ile Glu Arg Ile Ser Tyr Gly Val Lys Thr Glu Asn Pro


225                 230                 235                 240


Met Thr Phe Phe Ala Arg Leu Gly Thr Lys Val Glu His Phe Val Lys


                245                 250                 255


Asn Val Pro Tyr Gly Val Asp Thr Gln Lys Met Val Tyr Ala Ala Val


            260                 265                 270


Thr Ser Ser Gly Glu Glu Tyr Tyr Lys Leu Gln Ser Tyr Tyr Arg Trp


        275                 280                 285


Arg Ser Val Ser Arg Leu Asn Ala Ala Tyr Ile Ala Ala Arg Asp Lys


    290                 295                 300


Glu Ser Thr


305





<210>    36


<211>   327


<212> PRT


<213> Unknown


<220> 


<223> Unknown


<400>    36


Met Val Gly Ser His Thr Arg Ile Ser Gln Asn Leu Ile Gly Ile Asp


1               5                   10                  15


Cys Leu Glu Cys Leu Val Ser Gly Ala Thr Gly Ala Glu Lys Leu Tyr


            20                  25                  30


Ser Ala Ile Glu Glu Ser Ala Arg Met Val Asp Ala Pro Phe Ser Arg


        35                  40                  45


Asp Lys Val Trp Pro Thr Leu Ser Ala Phe Glu Gly Gly Phe Ser Asp


    50                  55                  60


Ala Gly Gly Val Ile Leu Ser Leu Gln Ala Gly Thr His Val Pro Glu


65                  70                  75                  80


Met Glu Tyr Ser Ala Gln Val Ser Pro Gly Ile Ser Asp Pro Tyr Ala


                85                  90                  95


Arg Ala Leu Ala Ser Gly Ile Leu Thr Glu Thr Asp His Pro Val Ser


            100                 105                 110


Thr Val Leu Ala Glu Ile Val Ser Leu Ala Pro Thr Ser Glu His Tyr


        115                 120                 125


Ile Asp Cys Gly Ile Val Gly Gly Phe Lys Lys Ile Tyr Ala Asn Phe


    130                 135                 140


Pro His Asp Gln Gln Thr Val Ala Ala Leu Ala Gly Leu Pro Ser Met


145                 150                 155                 160


Pro Arg Ala Val Gly Gly Asn Ala Glu Phe Phe Ala Arg His Gly Leu


                165                 170                 175


Asp Arg Val Ala Leu Ile Gly Val Asp Tyr Val Asn Lys Thr Ile Asn


            180                 185                 190


Leu Tyr Phe Gln Val Ser Ala Ala Thr Ala Gly Asn Leu Asp Gln Lys


        195                 200                 205


Thr Val Ser Ala Met Leu His Glu Thr Gly Met Ser Glu Pro Ser Asp


    210                 215                 220


Ala Met Val Ala Tyr Ala Cys Gln Ala Tyr Arg Ile Tyr Thr Thr Leu


225                 230                 235                 240


Ser Trp Asp Ala Glu Glu Ile Leu Arg Ile Ala Phe Ala Pro Lys Pro


                245                 250                 255


Arg Arg Gly Ile Asp Pro Ala Asp Leu Pro Ala Arg Leu Glu Pro Arg


            260                 265                 270


Ile Glu Lys Phe Leu Arg Ala Thr Pro His Lys Tyr Pro Gly Ala Leu


        275                 280                 285


Ile Asn Ala Thr Ala Ala Lys Trp Ser Pro Glu Arg Glu Val Leu Asp


    290                 295                 300


Leu Ala Ala His Tyr Gln Val Ser Ala Val Gln Met Lys Ala Ile Glu


305                 310                 315                 320


Ala Glu Glu Gly Gln Ala Ser


                325





<210>    37


<211> 10584


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Dictyostelium discoideum DiPKS (G1516D; G1518A)


coding sequence,


regulatory sequences and integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> S. cerevisiae GAL1 promoter


<222> (41) . . . (482)


<220> 


<221> L1


<222> (483) . . . (522)


<220> 


<221> DiPKS


<222> (523) . . . (9966)


<220> 


<221> C-methyltransferase domain


<222> (5050) . . . (5412)


<220> 


<221> Motif 1


<222> (5050) . . . (5076)


<220> 


<221> G1516D


<222> (5068) . . . (5070)


<220> 


<221> G1518A


<222> (5074) . . . (5076)


<220> 


<221> Motif 2


<222> (5309) . . . (5331)


<220> 


<221> Motif 3


<222> (5389) . . . (5421)


<220> 


<221> L2


<222> (9967) . . . (10006)


<220> 


<221> PRM9t


<222> (10007) . . . (10544)


<220> 


<221> LV5


<222> (10545) . . . (10584)


<400>    37








aggaatactc tgaataaaac aacttatata ataaaaatgc cggattagaa gccgccgagc
60


gggtgacagc cctccgaagg aagactctcc tccgtgcgtc ctcgtcttca ccggtcgcgt
120


tcctgaaacg cagatgtgcc tcgcgccgca ctgctccgaa caataaagat tctacaatac
180


tagcttttat ggttatgaag aggaaaaatt ggcagtaacc tggccccaca aaccttcaaa
240


tgaacgaatc aaattaacaa ccataggatg ataatgcgat tagtttttta gccttatttc
300


tggggtaatt aatcagcgaa gcgatgattt ttgatctatt aacagatata taaatgcaaa
360


aactgcataa ccactttaac taatactttc aacattttcg gtttgtatta cttcttattc
420


aaatgtaata aaagtatcaa caaaaaattg ttaatatacc tctatacttt aacgtcaagg
480


agctagaaaa tttattataa aaggaagaga aataattaaa caatgaacaa gaactccaaa
540


atccagtccc caaactcttc tgatgttgct gttattggtg ttggttttag attcccaggt
600


aactctaatg acccagaatc tttgtggaac aacttgttgg atggtttcga tgctattacc
660


caagtcccaa aagaaagatg ggctacttct tttagagaga tgggtttgat caagaacaag
720


ttcggtggtt tcttgaagga ttctgaatgg aagaatttcg accctttgtt ctttggtatc
780


ggtccaaaag aagctccatt cattgatcca caacaaaggt tgttgttgtc catcgtttgg
840


gaatctttgg aagatgctta catcagacca gatgaattga gaggttctaa cactggtgtt
900


ttcatcggtg tttctaacaa cgattacacc aagttgggtt tccaagacaa ctactctatt
960


tctccataca ctatgaccgg ctctaactct tcattgaact ccaacagaat ttcctactgc
1020


ttcgatttta gaggtccatc cattactgtt gataccgctt gttcttcttc cttggtttct
1080


gttaatttgg gtgtccaatc catccaaatg ggtgaatgta agattgctat ttgcggtggt
1140


gttaacgctt tgtttgatcc atctacatct gttgcctttt ccaagttggg tgttttgtct
1200


gaaaatggca gatgcaactc ttttagtgat caagcctctg gttacgttag atctgaaggt
1260


gctggtgttg ttgttttgaa gtctttggaa caagctaagt tggatggtga tagaatctac
1320


ggtgttatca agggtgtttc ctctaatgaa gatggtgctt ctaatggtga caagaactct
1380


ttgactactc catcttgtga agcccaatcc attaacattt ctaaggctat ggaaaaggcc
1440


tccttgtctc catctgatat ctattacatt gaagcccatg gtactggtac tccagttggt
1500


gatccaattg aagttaaggc cttgtccaag atcttctcca actctaacaa caaccagttg
1560


aacaacttct ctaccgatgg taatgataac gatgatgatg atgacgataa cacctctcca
1620


gaaccattat tgattggctc attcaagtcc aacatcggtc atttggaatc tgctgctggt
1680


attgcttctt tgattaagtg ttgcttgatg ttgaagaaca ggatgttggt tccatccatt
1740


aactgctcta atttgaaccc atccattcca ttcgatcagt acaacatctc cgttatcaga
1800


gaaatcagac aattcccaac cgataagttg gttaacatcg gtatcaattc tttcggtttc
1860


ggtggttcta actgccattt gattattcaa gagtacaaca acaacttcaa gaacaactct
1920


accatctgca ataacaacaa caacaacaat aacaacatcg actacttgat cccaatctcc
1980


tctaagacta agaagtcctt ggataagtac ttgattttga tcaagaccaa ctccaactac
2040


cacaaggata tttctttcga tgacttcgtc aagttccaaa tcaagtctaa gcagtacaac
2100


ttgtccaaca gaatgactac cattgctaac gattggaact ccttcattaa gggttctaac
2160


gaattccaca acttgatcga atctaaggat ggtgaaggtg gttcttcatc ttctaacaga
2220


ggtattgatt ccgccaatca aatcaacact actactacct ctaccatcaa cgatatcgaa
2280


cctttgttgg ttttcgtttt ctgtggtcaa ggtccacaat ggaatggtat gattaagacc
2340


ttgtacaact ccgagaacgt tttcaagaac accgttgatc atgttgacag catcttgtac
2400


aagtacttcg gttactccat tttgaacgtc ttgtctaaga tcgatgataa cgacgattcc
2460


atcaaccatc caatagttgc tcaaccatct ttgttcttgt tgcaaattgg tttggtcgag
2520


ttgtttaagt actggggtat ctacccatct atctctgttg gtcattcttt cggtgaagtc
2580


tcttcttatt acttgtccgg tatcatctct ttggaaaccg cttgtaaaat cgtctacgtc
2640


agatcctcta atcagaacaa aactatgggt tccggtaaga tgttggttgt ttctatgggt
2700


tttaagcaat ggaacgatca attctctgct gaatggtccg atattgaaat tgcttgttac
2760


aacgctccag attccatagt tgttactggt aacgaagaaa gattgaaaga attgtccatc
2820


aagttgtccg acgaatccaa tcaaattttc aacaccttct tgaggtcccc atgttctttt
2880


cattcttccc atcaagaagt catcaagggt tctatgttcg aagagttgtc taacttgcaa
2940


tctactggtg aaaccgaaat ccctttgttc tctactgtta ctggtagaca agttttgtct
3000


ggtcatgtta ctgctcaaca catctacgat aatgttagag aaccagtctt gttccaaaag
3060


acgattgaat ccattacctc ctacatcaag tctcactacc catccaatca aaaggttatc
3120


tacgttgaaa ttgctccaca cccaaccttg ttttcattga tcaaaaagtc catcccatcc
3180


tccaacaaga attcctcttc tgttttgtgt ccattgaaca gaaaagaaaa ctccaacaac
3240


tcctacaaga agttcgtttc tcagttgtac ttcaacggtg ttaacgttga cttcaacttc
3300


cagttgaact ccatttgcga taacgttaac aacgatcacc atttgaacaa cgtcaagcaa
3360


aactccttca aagagactac caattccttg ccaagatacc aatgggaaca agatgaatat
3420


tggtccgaac cattgatctc cagaaagaat agattggaag gtccaactac ttccttgttg
3480


ggtcatagaa ttatctacag cttcccagtt ttccaatccg ttttggactt gcaatctgac
3540


aactacaaat acttgttgga ccacttggtt aacggtaagc cagtttttcc aggtgctggt
3600


tatttggata tcatcatcga attcttcgac taccaaaagc agcagttgaa ttcctctgat
3660


tcctctaact cctacatcat caacgttgac aagatccaat tcttgaaccc aattcacttg
3720


accgaaaaca agttgcaaac cttgcaatct tctttcgaac ctatcgttac taagaagtct
3780


gccttctctg ttaacttctt catcaaggat accgtcgagg atcaatctaa ggttaagtct
3840


atgtctgacg aaacttggac taacacttgt aaggctacca tttccttgga acaacaacag
3900


ccatctccat cttctacttt gactttgtct aagaagcaag acttgcagat cttgagaaac
3960


agatgcgata ttagcaagct agacaagttt gagttgtacg acaagatctc taagaatttg
4020


ggcttgcagt acaactcctt gtttcaagtt gttgatacca tcgaaactgg taaggattgc
4080


tcttttgcta ctttgtcttt gccagaagat actttgttca ccaccatttt gaacccatgc
4140


ttgttggata actgtttcca tggtttgttg accttgatca acgaaaaggg ttctttcgtt
4200


gtcgagtcca tttcttctgt ttctatctac ttggagaaca tcggttcctt caatcaaact
4260


tctgttggta acgtccagtt ctacttgtac accactattt ctaaagccac ctcctttagt
4320


tctgaaggta cttgtaagtt gttcaccaag gatggttcct tgattttgtc tatcggtaag
4380


ttcatcatca agtccaccaa tccaaagtct actaagacca acgaaactat cgaatctcca
4440


ttggacgaaa ccttctctat tgaatggcaa tctaaggatt ctccaattcc aaccccacaa
4500


caaatccaac aacaatctcc attgaactct aacccatcct tcattagatc taccatcttg
4560


aaggacatcc agttcgaaca atactgctcc tccattatcc acaaagaatt gatcaaccac
4620


gaaaagtaca agaaccagca atccttcgat atcaactcct tggaaaacca cttgaacgat
4680


gaccaattga tggaatcctt gtccatctcc aaagaatact tgagattctt caccaggatc
4740


atctccatca ttaagcaata cccaaagatc ttgaacgaaa aagagctaaa agaattgaaa
4800


gaaatcatcg aattgaagta cccatccgaa gttcagttgt tggaattcga agttatcgag
4860


aaggtgtcca tgattatccc aaagttgttg ttcgaaaacg acaagcaatc ttccatgacc
4920


ttgttccaag ataacttgtt gaccaggttc tactccaatt ctaactctac cagattctac
4980


ttggaaaggg tttccgaaat ggtcttggaa tctattagac caatcgtcag agaaaagagg
5040


gtgttcagaa ttttggaaat tggtgctgat acagcctctt tgtctaatgt tgttttgact
5100


aagttgaaca cctacttgtc caccttgaat tctaatggtg gttctggtta caacatcatc
5160


attgagtaca ccttcaccga tatttccgcc aacttcatta ttggtgaaat ccaagaaacc
5220


atgtgcaact tgtacccaaa cgttactttc aagttctccg tcttggactt ggagaaagag
5280


attattaact cctccgattt cttgatgggt gattacgata tagttttgat ggcctacgtt
5340


atccatgccg tttctaacat taagttctcc atcgaacagt tgtacaagtt gttgtctcca
5400


agaggttggt tgttgtgtat tgaacctaag tccaacgttg tgttctccga tttggttttc
5460


ggttgtttta atcagtggtg gaactactac gatgatatta gaactaccca ctgctccttg
5520


tctgaatctc aatggaatca gttgttgttg aaccagtcct tgaacaacga atcctcttct
5580


tcttctaact gttacggtgg tttctccaac gtttctttta ttggtggtga aaaggatgtc
5640


gactcccatt ctttcatatt gcactgccaa aaagaatcca tctcccaaat gaagttagcc
5700


accactatta acaacggttt gtcatctggt tccatcgtta tcgttttgaa ctctcaacaa
5760


ttgaccaaca tgaagtccta cccaaaggtt attgagtata ttcaagaggc tacctctttg
5820


tgcaagacca ttgaaattat cgattccaag gacgtcttga actctaccaa ttcagttttg
5880


gaaaagatcc aaaagtcctt gttggtgttc tgtttgttgg gttatgactt gttggagaac
5940


aactaccaag aacagtcttt cgaatacgtt aagttgttga acttgatctc tactaccgcc
6000


tcttcatcta atgataagaa accaccaaag gtcttgttga tcaccaagca atctgaaaga
6060


atctccaggt ctttctactc cagatccttg attggtattt ccagaacctc tatgaacgag
6120


tacccaaatt tgtccattac ctctatcgat ttggatacca acgactactc attgcagtct
6180


ttgttgaagc caatcttcag caactctaag ttttccgaca acgagttcat cttcaaaaag
6240


ggcttgatgt tcgtgtccag gatctttaag aacaagcagt tgctagaatc ctccaacgct
6300


tttgaaactg actcttctaa cttgtactgt aaggcctctt ctgacttgtc ttacaagtac
6360


gctattaagc agtctatgtt gaccgaaaat cagatcgaaa tcaaggttga atgcgtcggt
6420


attaacttca aggacaacct attctacaag ggcttgttgc cacaagaaat tttcagaatg
6480


ggtgacatct acaatccacc atatggtttg gaatgctctg gtgttattac cagaattggt
6540


tctaacgtca ccgaatactc agttggtcaa aatgtttttg gtttcgccag acattctttg
6600


ggttctcatg ttgttaccaa caaggatttg gttatcttga agccagatac catctcattt
6660


tctgaagctg cttctatccc agttgtttac tgtactgctt ggtactcctt gttcaacatt
6720


ggtcagttgt ctaacgaaga atccatccta attcattctg ctactggtgg tgtaggtttg
6780


gcttctttga atttgttgaa aatgaagaat cagcaacagc aaccattgac caatgtttat
6840


gctactgttg gctctaacga gaagaagaag ttcttgatcg ataacttcaa caacttgttc
6900


aaagaggacg gcgaaaacat tttctctacc agagacaaag aatactccaa ccagttggaa
6960


tccaagatcg atgttatttt gaacaccttg tccggtgaat tcgtcgaatc taatttcaag
7020


tccttgagat ccttcggtag attgattgat ttgtctgcta ctcacgttta cgccaatcaa
7080


caaattggtc taggtaactt caagttcgac cacttgtatt ctgctgttga cttggaaaga
7140


ttgatcgacg aaaaacctaa gttgttgcag tccatcttgc aaagaattac caactctatc
7200


gtcaacggtt ccttggaaaa aattccaatt accatcttcc catccaccga aactaaggat
7260


gctatcgaat tattgtccaa gagatcccat atcggtaaag ttgttgtaga ttgcaccgat
7320


atctctaagt gtaatcctgt tggtgatgtg atcaccaact tctctatgag attgccaaag
7380


ccaaactacc agttgaattt gaactccacc ttgttgatta ctggtcagtc tggtttgtct
7440


atccctttgt tgaattggtt gttgtctaag tctggtggta acgttaagaa cgttgtcatc
7500


atttctaagt ccaccatgaa gtggaagttg cagactatga tttcccattt cgtttccggt
7560


ttcggtatcc attttaacta cgttcaagtc gacatctcca actacgatgc tttgtctgaa
7620


gctattaagc aattgccatc tgatttgcca ccaatcacct ctgtttttca tttggctgct
7680


atctacaacg atgttccaat ggatcaagtt accatgtcta ccgttgaatc tgttcataac
7740


cctaaagttt tgggtgccgt taacttgcat agaatctctg tttcttttgg ttggaagttg
7800


aaccacttcg tcttgttctc ttctattact gctattaccg gttacccaga ccaatctatc
7860


tacaattctg ccaactctat tttggacgct ttgtccaact ttagaaggtt tatgggtttg
7920


ccatccttct ccattaactt gggtccaatg aaggatgaag gtaaggtttc taccaacaag
7980


agcatcaaga agctattcaa gtctagaggt ttgccaagcc tatccttgaa caagttattt
8040


ggtttgttgg aggtcgtcat caacaaccca tctaatcatg ttatcccatc ccaattgatt
8100


tgctccccaa tcgatttcaa gacctacatc gaatctttct caactatgag gccaaagttg
8160


ttacacttgc aacctaccat ttccaagcag caatcttcta tcattaacga ttctaccaag
8220


gcttcctcca acatttcatt gcaagataag atcacctcca aggtgtctga tttgttgtcc
8280


attccaatct ccaagatcaa cttcgatcat ccattgaaac actacggctt ggattctttg
8340


ttgaccgttc aattcaaatc ctggatcgac aaagaattcg aaaagaactt gttcacccat
8400


atccaattgg ccaccatctc tattaactca ttcttggaaa aggtgaacgg cttgtctaca
8460


aacaataaca acaacaacaa ttccaacgtc aagtcctctc catccattgt caaagaagaa
8520


atcgttacct tggacaagga tcaacaacca ttgctattga aagaacacca gcacattatc
8580


atctccccag atattagaat caacaagcca aagagggaat ccttgattag aaccccaatc
8640


ttgaacaaat tcaaccagat caccgaatcc attatcactc catctacacc atctttgtcc
8700


caatccgatg ttttgaaaac tccaccaatc aagtctttga acaacactaa gaactccagc
8760


ttgattaaca ccccaccaat tcaatctgtc caacaacatc aaaagcaaca acaaaaggtc
8820


caagtcatcc aacaacagca acaaccatta tccagattgt cctacaagag caacaacaac
8880


tctttcgttt tgggtatcgg tatttctgtt ccaggtgaac ctatttccca acaatccttg
8940


aaagactcca tctccaatga cttttctgat aaggctgaaa ctaacgagaa ggtcaagaga
9000


atctttgagc aatctcaaat caagaccaga cacttggtta gagattacac taagccagag
9060


aactccatca agttcagaca tttggaaacc attaccgatg tgaacaacca gttcaagaaa
9120


gttgttccag atttggctca acaagcctgt ttgagagctt tgaaagattg gggtggtgat
9180


aagggtgata ttacccatat agtttctgtt acctccaccg gtattatcat cccagatgtt
9240


aatttcaagt tgatcgactt gttgggcttg aacaaggatg ttgaaagagt gtctttgaac
9300


ctaatgggtt gtttggctgg tttgagttct ttgagaactg ctgcttcttt ggctaaggct
9360


tctccaagaa atagaatttt ggttgtctgt accgaagtct gctccttgca tttttctaat
9420


actgatggtg gtgatcaaat ggtcgcctct tctatttttg ctgatggttc tgctgcttac
9480


attattggtt gtaacccaag aattgaagaa accccattat acgaagtcat gtgctccatt
9540


aacagatctt tcccaaatac cgaaaacgcc atggtttggg atttggaaaa agaaggttgg
9600


aacttgggtt tggatgcttc tattccaatt gtcattggtt ctggtattga agccttcgtt
9660


gatactttgt tggataaggc taagttgcaa acttccactg ctatttctgc taaggattgc
9720


gaattcttga ttcatactgg tggcaagtcc atcttgatga acatcgaaaa ttccttgggt
9780


atcgacccaa agcaaactaa gaatacttgg gatgtttacc atgcctacgg caatatgtca
9840


tctgcctctg ttattttcgt tatggatcat gccagaaagt ccaagtcttt gccaacttac
9900


tcaatttctt tggcttttgg tccaggtttg gcttttgaag gttgtttctt gaagaacgtc
9960


gtctaaagac ataaaactga aacaacacca attaataata gactttacag aagacgggag
10020


acactagcac acaactttac caggcaaggt atttgacgct agcatgtgtc caattcagtg
10080


tcatttatga ttttttgtag taggatataa atatatacag cgctccaaat agtgcggttg
10140


ccccaaaaac accacggaac ctcatctgtt ctcgtacttt gttgtgacaa agtagctcac
10200


tgccttatta tcacattttc attatgcaac gcttcggaaa atacgatgtt gaaaatgcct
10260


ctagagatga aaaacaatcg taaaagggtc ctgcgtaatt gaaacatttg atcagtatgc
10320


agtggcacag aaacaaccag gaatactata gtcataggca atacaaggta tatattggct
10380


atgcagaccc ctccagaaag taccgacgtc aagttagata cacttaacga acctagtgca
10440


catttaattg agaaaaatgt ggctcttcct aaggacatat tccgttcgta cttgagttat
10500


tggatctatg aaatcgctcg ctatacacca gtcatgattt tgtccctctt tatattacat
10560


caaaataaga aaataattat aaca
10584










<210>    38


<211> 10584


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Dictyostelium discoideum DiPKS (G1516R) coding


sequence,


regulatory sequences and integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> S. cerevisiae GAL1 promoter


<222> (41) . . . (482)


<220> 


<221> L1


<222> (483) . . . (522)


<220> 


<221> DiPKS


<222> (523) . . . (9966)


<220> 


<221> C-methyltransferase domain


<222> (5050) . . . (5412)


<220> 


<221> G1516R


<222> (5069) . . . (5070)


<220> 


<221> Motif 2


<222> (5309) . . . (5331)


<220> 


<221> Motif 3


<222> (5389) . . . (5421)


<220> 


<221> Type III PKS domain


<222> (8881) . . . (9966)


<220> 


<221> L2


<222> (9967) . . . (10006)


<220> 


<221> PRM9t


<222> (10007) . . . (10544)


<220> 


<221> LV5


<222> (10545) . . . (10584)


<400>    38








aggaatactc tgaataaaac aacttatata ataaaaatgc cggattagaa gccgccgagc
60


gggtgacagc cctccgaagg aagactctcc tccgtgcgtc ctcgtcttca ccggtcgcgt
120


tcctgaaacg cagatgtgcc tcgcgccgca ctgctccgaa caataaagat tctacaatac
180


tagcttttat ggttatgaag aggaaaaatt ggcagtaacc tggccccaca aaccttcaaa
240


tgaacgaatc aaattaacaa ccataggatg ataatgcgat tagtttttta gccttatttc
300


tggggtaatt aatcagcgaa gcgatgattt ttgatctatt aacagatata taaatgcaaa
360


aactgcataa ccactttaac taatactttc aacattttcg gtttgtatta cttcttattc
420


aaatgtaata aaagtatcaa caaaaaattg ttaatatacc tctatacttt aacgtcaagg
480


agctagaaaa tttattataa aaggaagaga aataattaaa caatgaacaa gaactccaaa
540


atccagtccc caaactcttc tgatgttgct gttattggtg ttggttttag attcccaggt
600


aactctaatg acccagaatc tttgtggaac aacttgttgg atggtttcga tgctattacc
660


caagtcccaa aagaaagatg ggctacttct tttagagaga tgggtttgat caagaacaag
720


ttcggtggtt tcttgaagga ttctgaatgg aagaatttcg accctttgtt ctttggtatc
780


ggtccaaaag aagctccatt cattgatcca caacaaaggt tgttgttgtc catcgtttgg
840


gaatctttgg aagatgctta catcagacca gatgaattga gaggttctaa cactggtgtt
900


ttcatcggtg tttctaacaa cgattacacc aagttgggtt tccaagacaa ctactctatt
960


tctccataca ctatgaccgg ctctaactct tcattgaact ccaacagaat ttcctactgc
1020


ttcgatttta gaggtccatc cattactgtt gataccgctt gttcttcttc cttggtttct
1080


gttaatttgg gtgtccaatc catccaaatg ggtgaatgta agattgctat ttgcggtggt
1140


gttaacgctt tgtttgatcc atctacatct gttgcctttt ccaagttggg tgttttgtct
1200


gaaaatggca gatgcaactc ttttagtgat caagcctctg gttacgttag atctgaaggt
1260


gctggtgttg ttgttttgaa gtctttggaa caagctaagt tggatggtga tagaatctac
1320


ggtgttatca agggtgtttc ctctaatgaa gatggtgctt ctaatggtga caagaactct
1380


ttgactactc catcttgtga agcccaatcc attaacattt ctaaggctat ggaaaaggcc
1440


tccttgtctc catctgatat ctattacatt gaagcccatg gtactggtac tccagttggt
1500


gatccaattg aagttaaggc cttgtccaag atcttctcca actctaacaa caaccagttg
1560


aacaacttct ctaccgatgg taatgataac gatgatgatg atgacgataa cacctctcca
1620


gaaccattat tgattggctc attcaagtcc aacatcggtc atttggaatc tgctgctggt
1680


attgcttctt tgattaagtg ttgcttgatg ttgaagaaca ggatgttggt tccatccatt
1740


aactgctcta atttgaaccc atccattcca ttcgatcagt acaacatctc cgttatcaga
1800


gaaatcagac aattcccaac cgataagttg gttaacatcg gtatcaattc tttcggtttc
1860


ggtggttcta actgccattt gattattcaa gagtacaaca acaacttcaa gaacaactct
1920


accatctgca ataacaacaa caacaacaat aacaacatcg actacttgat cccaatctcc
1980


tctaagacta agaagtcctt ggataagtac ttgattttga tcaagaccaa ctccaactac
2040


cacaaggata tttctttcga tgacttcgtc aagttccaaa tcaagtctaa gcagtacaac
2100


ttgtccaaca gaatgactac cattgctaac gattggaact ccttcattaa gggttctaac
2160


gaattccaca acttgatcga atctaaggat ggtgaaggtg gttcttcatc ttctaacaga
2220


ggtattgatt ccgccaatca aatcaacact actactacct ctaccatcaa cgatatcgaa
2280


cctttgttgg ttttcgtttt ctgtggtcaa ggtccacaat ggaatggtat gattaagacc
2340


ttgtacaact ccgagaacgt tttcaagaac accgttgatc atgttgacag catcttgtac
2400


aagtacttcg gttactccat tttgaacgtc ttgtctaaga tcgatgataa cgacgattcc
2460


atcaaccatc caatagttgc tcaaccatct ttgttcttgt tgcaaattgg tttggtcgag
2520


ttgtttaagt actggggtat ctacccatct atctctgttg gtcattcttt cggtgaagtc
2580


tcttcttatt acttgtccgg tatcatctct ttggaaaccg cttgtaaaat cgtctacgtc
2640


agatcctcta atcagaacaa aactatgggt tccggtaaga tgttggttgt ttctatgggt
2700


tttaagcaat ggaacgatca attctctgct gaatggtccg atattgaaat tgcttgttac
2760


aacgctccag attccatagt tgttactggt aacgaagaaa gattgaaaga attgtccatc
2820


aagttgtccg acgaatccaa tcaaattttc aacaccttct tgaggtcccc atgttctttt
2880


cattcttccc atcaagaagt catcaagggt tctatgttcg aagagttgtc taacttgcaa
2940


tctactggtg aaaccgaaat ccctttgttc tctactgtta ctggtagaca agttttgtct
3000


ggtcatgtta ctgctcaaca catctacgat aatgttagag aaccagtctt gttccaaaag
3060


acgattgaat ccattacctc ctacatcaag tctcactacc catccaatca aaaggttatc
3120


tacgttgaaa ttgctccaca cccaaccttg ttttcattga tcaaaaagtc catcccatcc
3180


tccaacaaga attcctcttc tgttttgtgt ccattgaaca gaaaagaaaa ctccaacaac
3240


tcctacaaga agttcgtttc tcagttgtac ttcaacggtg ttaacgttga cttcaacttc
3300


cagttgaact ccatttgcga taacgttaac aacgatcacc atttgaacaa cgtcaagcaa
3360


aactccttca aagagactac caattccttg ccaagatacc aatgggaaca agatgaatat
3420


tggtccgaac cattgatctc cagaaagaat agattggaag gtccaactac ttccttgttg
3480


ggtcatagaa ttatctacag cttcccagtt ttccaatccg ttttggactt gcaatctgac
3540


aactacaaat acttgttgga ccacttggtt aacggtaagc cagtttttcc aggtgctggt
3600


tatttggata tcatcatcga attcttcgac taccaaaagc agcagttgaa ttcctctgat
3660


tcctctaact cctacatcat caacgttgac aagatccaat tcttgaaccc aattcacttg
3720


accgaaaaca agttgcaaac cttgcaatct tctttcgaac ctatcgttac taagaagtct
3780


gccttctctg ttaacttctt catcaaggat accgtcgagg atcaatctaa ggttaagtct
3840


atgtctgacg aaacttggac taacacttgt aaggctacca tttccttgga acaacaacag
3900


ccatctccat cttctacttt gactttgtct aagaagcaag acttgcagat cttgagaaac
3960


agatgcgata ttagcaagct agacaagttt gagttgtacg acaagatctc taagaatttg
4020


ggcttgcagt acaactcctt gtttcaagtt gttgatacca tcgaaactgg taaggattgc
4080


tcttttgcta ctttgtcttt gccagaagat actttgttca ccaccatttt gaacccatgc
4140


ttgttggata actgtttcca tggtttgttg accttgatca acgaaaaggg ttctttcgtt
4200


gtcgagtcca tttcttctgt ttctatctac ttggagaaca tcggttcctt caatcaaact
4260


tctgttggta acgtccagtt ctacttgtac accactattt ctaaagccac ctcctttagt
4320


tctgaaggta cttgtaagtt gttcaccaag gatggttcct tgattttgtc tatcggtaag
4380


ttcatcatca agtccaccaa tccaaagtct actaagacca acgaaactat cgaatctcca
4440


ttggacgaaa ccttctctat tgaatggcaa tctaaggatt ctccaattcc aaccccacaa
4500


caaatccaac aacaatctcc attgaactct aacccatcct tcattagatc taccatcttg
4560


aaggacatcc agttcgaaca atactgctcc tccattatcc acaaagaatt gatcaaccac
4620


gaaaagtaca agaaccagca atccttcgat atcaactcct tggaaaacca cttgaacgat
4680


gaccaattga tggaatcctt gtccatctcc aaagaatact tgagattctt caccaggatc
4740


atctccatca ttaagcaata cccaaagatc ttgaacgaaa aagagctaaa agaattgaaa
4800


gaaatcatcg aattgaagta cccatccgaa gttcagttgt tggaattcga agttatcgag
4860


aaggtgtcca tgattatccc aaagttgttg ttcgaaaacg acaagcaatc ttccatgacc
4920


ttgttccaag ataacttgtt gaccaggttc tactccaatt ctaactctac cagattctac
4980


ttggaaaggg tttccgaaat ggtcttggaa tctattagac caatcgtcag agaaaagagg
5040


gtgttcagaa ttttagagat cggtgctcgt acaggctctt tgtctaatgt tgttttgact
5100


aagttgaaca cctacttgtc caccttgaat tctaatggtg gttctggtta caacatcatc
5160


attgagtaca ccttcaccga tatttccgcc aacttcatta ttggtgaaat ccaagaaacc
5220


atgtgcaact tgtacccaaa cgttactttc aagttctccg tcttggactt ggagaaagag
5280


attattaact cctccgattt cttgatgggt gattacgata tagttttgat ggcctacgtt
5340


atccatgccg tttctaacat taagttctcc atcgaacagt tgtacaagtt gttgtctcca
5400


agaggttggt tgttgtgtat tgaacctaag tccaacgttg tgttctccga tttggttttc
5460


ggttgtttta atcagtggtg gaactactac gatgatatta gaactaccca ctgctccttg
5520


tctgaatctc aatggaatca gttgttgttg aaccagtcct tgaacaacga atcctcttct
5580


tcttctaact gttacggtgg tttctccaac gtttctttta ttggtggtga aaaggatgtc
5640


gactcccatt ctttcatatt gcactgccaa aaagaatcca tctcccaaat gaagttagcc
5700


accactatta acaacggttt gtcatctggt tccatcgtta tcgttttgaa ctctcaacaa
5760


ttgaccaaca tgaagtccta cccaaaggtt attgagtata ttcaagaggc tacctctttg
5820


tgcaagacca ttgaaattat cgattccaag gacgtcttga actctaccaa ttcagttttg
5880


gaaaagatcc aaaagtcctt gttggtgttc tgtttgttgg gttatgactt gttggagaac
5940


aactaccaag aacagtcttt cgaatacgtt aagttgttga acttgatctc tactaccgcc
6000


tcttcatcta atgataagaa accaccaaag gtcttgttga tcaccaagca atctgaaaga
6060


atctccaggt ctttctactc cagatccttg attggtattt ccagaacctc tatgaacgag
6120


tacccaaatt tgtccattac ctctatcgat ttggatacca acgactactc attgcagtct
6180


ttgttgaagc caatcttcag caactctaag ttttccgaca acgagttcat cttcaaaaag
6240


ggcttgatgt tcgtgtccag gatctttaag aacaagcagt tgctagaatc ctccaacgct
6300


tttgaaactg actcttctaa cttgtactgt aaggcctctt ctgacttgtc ttacaagtac
6360


gctattaagc agtctatgtt gaccgaaaat cagatcgaaa tcaaggttga atgcgtcggt
6420


attaacttca aggacaacct attctacaag ggcttgttgc cacaagaaat tttcagaatg
6480


ggtgacatct acaatccacc atatggtttg gaatgctctg gtgttattac cagaattggt
6540


tctaacgtca ccgaatactc agttggtcaa aatgtttttg gtttcgccag acattctttg
6600


ggttctcatg ttgttaccaa caaggatttg gttatcttga agccagatac catctcattt
6660


tctgaagctg cttctatccc agttgtttac tgtactgctt ggtactcctt gttcaacatt
6720


ggtcagttgt ctaacgaaga atccatccta attcattctg ctactggtgg tgtaggtttg
6780


gcttctttga atttgttgaa aatgaagaat cagcaacagc aaccattgac caatgtttat
6840


gctactgttg gctctaacga gaagaagaag ttcttgatcg ataacttcaa caacttgttc
6900


aaagaggacg gcgaaaacat tttctctacc agagacaaag aatactccaa ccagttggaa
6960


tccaagatcg atgttatttt gaacaccttg tccggtgaat tcgtcgaatc taatttcaag
7020


tccttgagat ccttcggtag attgattgat ttgtctgcta ctcacgttta cgccaatcaa
7080


caaattggtc taggtaactt caagttcgac cacttgtatt ctgctgttga cttggaaaga
7140


ttgatcgacg aaaaacctaa gttgttgcag tccatcttgc aaagaattac caactctatc
7200


gtcaacggtt ccttggaaaa aattccaatt accatcttcc catccaccga aactaaggat
7260


gctatcgaat tattgtccaa gagatcccat atcggtaaag ttgttgtaga ttgcaccgat
7320


atctctaagt gtaatcctgt tggtgatgtg atcaccaact tctctatgag attgccaaag
7380


ccaaactacc agttgaattt gaactccacc ttgttgatta ctggtcagtc tggtttgtct
7440


atccctttgt tgaattggtt gttgtctaag tctggtggta acgttaagaa cgttgtcatc
7500


atttctaagt ccaccatgaa gtggaagttg cagactatga tttcccattt cgtttccggt
7560


ttcggtatcc attttaacta cgttcaagtc gacatctcca actacgatgc tttgtctgaa
7620


gctattaagc aattgccatc tgatttgcca ccaatcacct ctgtttttca tttggctgct
7680


atctacaacg atgttccaat ggatcaagtt accatgtcta ccgttgaatc tgttcataac
7740


cctaaagttt tgggtgccgt taacttgcat agaatctctg tttcttttgg ttggaagttg
7800


aaccacttcg tcttgttctc ttctattact gctattaccg gttacccaga ccaatctatc
7860


tacaattctg ccaactctat tttggacgct ttgtccaact ttagaaggtt tatgggtttg
7920


ccatccttct ccattaactt gggtccaatg aaggatgaag gtaaggtttc taccaacaag
7980


agcatcaaga agctattcaa gtctagaggt ttgccaagcc tatccttgaa caagttattt
8040


ggtttgttgg aggtcgtcat caacaaccca tctaatcatg ttatcccatc ccaattgatt
8100


tgctccccaa tcgatttcaa gacctacatc gaatctttct caactatgag gccaaagttg
8160


ttacacttgc aacctaccat ttccaagcag caatcttcta tcattaacga ttctaccaag
8220


gcttcctcca acatttcatt gcaagataag atcacctcca aggtgtctga tttgttgtcc
8280


attccaatct ccaagatcaa cttcgatcat ccattgaaac actacggctt ggattctttg
8340


ttgaccgttc aattcaaatc ctggatcgac aaagaattcg aaaagaactt gttcacccat
8400


atccaattgg ccaccatctc tattaactca ttcttggaaa aggtgaacgg cttgtctaca
8460


aacaataaca acaacaacaa ttccaacgtc aagtcctctc catccattgt caaagaagaa
8520


atcgttacct tggacaagga tcaacaacca ttgctattga aagaacacca gcacattatc
8580


atctccccag atattagaat caacaagcca aagagggaat ccttgattag aaccccaatc
8640


ttgaacaaat tcaaccagat caccgaatcc attatcactc catctacacc atctttgtcc
8700


caatccgatg ttttgaaaac tccaccaatc aagtctttga acaacactaa gaactccagc
8760


ttgattaaca ccccaccaat tcaatctgtc caacaacatc aaaagcaaca acaaaaggtc
8820


caagtcatcc aacaacagca acaaccatta tccagattgt cctacaagag caacaacaac
8880


tctttcgttt tgggtatcgg tatttctgtt ccaggtgaac ctatttccca acaatccttg
8940


aaagactcca tctccaatga cttttctgat aaggctgaaa ctaacgagaa ggtcaagaga
9000


atctttgagc aatctcaaat caagaccaga cacttggtta gagattacac taagccagag
9060


aactccatca agttcagaca tttggaaacc attaccgatg tgaacaacca gttcaagaaa
9120


gttgttccag atttggctca acaagcctgt ttgagagctt tgaaagattg gggtggtgat
9180


aagggtgata ttacccatat agtttctgtt acctccaccg gtattatcat cccagatgtt
9240


aatttcaagt tgatcgactt gttgggcttg aacaaggatg ttgaaagagt gtctttgaac
9300


ctaatgggtt gtttggctgg tttgagttct ttgagaactg ctgcttcttt ggctaaggct
9360


tctccaagaa atagaatttt ggttgtctgt accgaagtct gctccttgca tttttctaat
9420


actgatggtg gtgatcaaat ggtcgcctct tctatttttg ctgatggttc tgctgcttac
9480


attattggtt gtaacccaag aattgaagaa accccattat acgaagtcat gtgctccatt
9540


aacagatctt tcccaaatac cgaaaacgcc atggtttggg atttggaaaa agaaggttgg
9600


aacttgggtt tggatgcttc tattccaatt gtcattggtt ctggtattga agccttcgtt
9660


gatactttgt tggataaggc taagttgcaa acttccactg ctatttctgc taaggattgc
9720


gaattcttga ttcatactgg tggcaagtcc atcttgatga acatcgaaaa ttccttgggt
9780


atcgacccaa agcaaactaa gaatacttgg gatgtttacc atgcctacgg caatatgtca
9840


tctgcctctg ttattttcgt tatggatcat gccagaaagt ccaagtcttt gccaacttac
9900


tcaatttctt tggcttttgg tccaggtttg gcttttgaag gttgtttctt gaagaacgtc
9960


gtctaaagac ataaaactga aacaacacca attaataata gactttacag aagacgggag
10020


acactagcac acaactttac caggcaaggt atttgacgct agcatgtgtc caattcagtg
10080


tcatttatga ttttttgtag taggatataa atatatacag cgctccaaat agtgcggttg
10140


ccccaaaaac accacggaac ctcatctgtt ctcgtacttt gttgtgacaa agtagctcac
10200


tgccttatta tcacattttc attatgcaac gcttcggaaa atacgatgtt gaaaatgcct
10260


ctagagatga aaaacaatcg taaaagggtc ctgcgtaatt gaaacatttg atcagtatgc
10320


agtggcacag aaacaaccag gaatactata gtcataggca atacaaggta tatattggct
10380


atgcagaccc ctccagaaag taccgacgtc aagttagata cacttaacga acctagtgca
10440


catttaattg agaaaaatgt ggctcttcct aaggacatat tccgttcgta cttgagttat
10500


tggatctatg aaatcgctcg ctatacacca gtcatgattt tgtccctctt tatattacat
10560


caaaataaga aaataattat aaca
10584










<210>    39


<211>  6034


<212> DNA


<213> Artificial Sequence


<220> 


<223> Plasmid


<220> 


<221> LV5


<222> (1) . . . (40)


<220> 


<221> pYES2-LEU2


<222> (1915) . . . (4123)


<220> 


<221> LEU2 ORF


<222> (1996) . . . (3090)


<220> 


<221> LEU2 promoter


<222> (3091) . . . (3999)


<220> 


<221> misc feature


<222> (3759) . . . (3760)


<223> n is a, c, g, or t


<220> 


<221> LV3


<222> (5995) . . . (6034)


<400>    39








cctctttata ttacatcaaa ataagaaaat aattataaca cctgcattaa tgaatcggcc
60


aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact
120


cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac
180


ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa
240


agcccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc cgcccccctg
300


acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa
360


gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg accctgccgc
420


ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct catagctcac
480


gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac
540


cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag tccaacccgg
600


taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt
660


atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac actagaagga
720


cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct
780


cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga
840


ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg gggtctgacg
900


ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca aaaaggatct
960


tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt
1020


aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc
1080


tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg atacgggagc
1140


gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca ccggctccag
1200


atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt cctgcaactt
1260


tatccgcctc cattcagtct attaattgtt gccgggaagc tagagtaagt agttcgccag
1320


ttaatagttt gcgcaacgtt gttggcattg ctacaggcat cgtggtgtca ctctcgtcgt
1380


ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca tgatccccca
1440


tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg
1500


ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat
1560


ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta
1620


tgcggcgacc gagttgctct tgcccggcgt caatacggga taatagtgta tcacatagca
1680


gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct
1740


taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat
1800


cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa
1860


agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatgggtaa
1920


taactgatat aattaaattg aagctctaat ttgtgagttt agtatacatg catttactta
1980


taatacagtt ttttattaag caaggatttt cttaacttct tcggcgacag catcaccgac
2040


ttcggtggta ctgttggaac cacctaaatc accagttctg atacctgcat ccaaaacctt
2100


tttaactgca tcttcaatgg ccttaccttc ttcaggcaag ttcaatgaca atttcaacat
2160


cattgcagca gacaagatag tggcgatagg gttgacctta ttctttggca aatctggagc
2220


agaaccgtgg catggttcgt acaaaccaaa tgcggtgttc ttgtctggca aagaggccaa
2280


ggacgcagat ggcaacaaac ccaaggaacc tgggataacg gaggcttcat cggagatgat
2340


atcaccaaac atgttgctgg tgattataat accatttagg tgggttgggt tcttaactag
2400


gatcatggcg gcagaatcaa tcaattgatg ttgaaccttc aatgtaggga attcgttctt
2460


gatggtttcc tccacagttt ttctccataa tcttgaagag gccaaaacat tagctttatc
2520


caaggaccaa ataggcaatg gtggctcatg ttgtagggcc atgaaagcgg ccattcttgt
2580


gattctttgc acttctggaa cggtgtattg ttcactatcc caagcgacac catcaccatc
2640


gtcttccttt ctcttaccaa agtaaatacc tcccactaat tctctgacaa caacgaagtc
2700


agtaccttta gcaaattgtg gcttgattgg agataagtct aaaagagagt cggatgcaaa
2760


gttacatggt cttaagttgg cgtacaattg aagttcttta cggattttta gtaaaccttg
2820


ttcaggtcta acactaccgg taccccattt aggaccaccc acagcaccta acaaaacggc
2880


atcagccttc ttggaggctt ccagcgcctc atctggaagt ggaacacctg tagcatcgat
2940


agcagcacca ccaattaaat gattttcgaa atcgaacttg acattggaac gaacatcaga
3000


aatagcttta agaaccttaa tggcttcggc tgtgatttct tgaccaacgt ggtcacctgg
3060


caaaacgacg atcttcttag gggcagacat tagaatggta tatccttgaa atatatatat
3120


atattgctga aatgtaaaag gtaagaaaag ttagaaagta agacgattgc taaccaccta
3180


ttggaaaaaa caataggtcc ttaaataata ttgtcaactt caagtattgt gatgcaagca
3240


tttagtcatg aacgcttctc tattctatat gaaaagccgg ttccggcgct ctcacctttc
3300


ctttttctcc caatttttca gttgaaaaag gtatatgcgt caggcgacct ctgaaattaa
3360


caaaaaattt ccagtcatcg aatttgattc tgtgcgatag cgcccctgtg tgttctcgtt
3420


atgttgagga aaaaaataat ggttgctaag agattcgaac tcttgcatct tacgatacct
3480


gagtattccc acagttaact gcggtcaaga tatttcttga atcaggcgcc ttagaccgct
3540


cggccaaaca accaattact tgttgagaaa tagagtataa ttatcctata aatataacgt
3600


ttttgaacac acatgaacaa ggaagtacag gacaattgat tttgaagaga atgtggattt
3660


tgatgtaatt gttgggattc catttttaat aaggcaataa tattaggtat gtagatatac
3720


tagaagttct cctcgaggat ttaggaatcc ataaaaggnn atctgcaatt ctacacaatt
3780


ctagaaatat tattatcatc attttatatg ttaatattca ttgatcctat tacattatca
3840


atccttgcgt ttcagcttcc actaatttag atgactattt ctcatcattt gcgtcatctt
3900


ctaacaccgt atatgataat atactagtaa cgtaaatact agttagtaga tgatagttga
3960


tttttattcc aacataccac ccataatgta atagatctag cttatcgatg ataagctgtc
4020


aaagatgaga attaattcca cggactatag actataccta gtatactccg tctactgtac
4080


gatacacttc cgctcaggtc cttgtccttt aacgaggcct taccactctt ttgttactct
4140


attgatccag ctcagcaaag gcagtgtgat ctaagattct atcttcgcga tgtagtaaaa
4200


ctagctagac cgagaaagag actagaaatg caaaaggcac ttctacaatg gctgccatca
4260


ttattatccg atgtgacgct gcagcttctc aatgatattc gaatacgctt tgaggagata
4320


cagcctaata tccgacaaac tgttttacag atttacgatc gtacttgtta cccatcattg
4380


aattttgaac atccgaacct gggagttttc cctgaaacag atagtatatt tgaacctgta
4440


taataatata tagtctagcg ctttacggaa gacaatgtat gtatttcggt tcctggagaa
4500


actattgcat ctattgcata ggtaatcttg cacgtcgcat ccccggttca ttttctgcgt
4560


ttccatcttg cacttcaata gcatatcttt gttaacgaag catctgtgct tcattttgta
4620


gaacaaaaat gcaacgcgag agcgctaatt tttcaaacaa agaatctgag ctgcattttt
4680


acagaacaga aatgcaacgc gaaagcgcta ttttaccaac gaagaatctg tgcttcattt
4740


ttgtaaaaca aaaatgcaac gcgacgagag cgctaatttt tcaaacaaag aatctgagct
4800


gcatttttac agaacagaaa tgcaacgcga gagcgctatt ttaccaacaa agaatctata
4860


cttctttttt gttctacaaa aatgcatccc gagagcgcta tttttctaac aaagcatctt
4920


agattacttt ttttctcctt tgtgcgctct ataatgcagt ctcttgataa ctttttgcac
4980


tgtaggtccg ttaaggttag aagaaggcta ctttggtgtc tattttctct tccataaaaa
5040


aagcctgact ccacttcccg cgtttactga ttactagcga agctgcgggt gcattttttc
5100


aagataaagg catccccgat tatattctat accgatgtgg attgcgcata ctttgtgaac
5160


agaaagtgat agcgttgatg attcttcatt ggtcagaaaa ttatgaacgg tttcttctat
5220


tttgtctcta tatactacgt ataggaaatg tttacatttt cgtattgttt tcgattcact
5280


ctatgaatag ttcttactac aatttttttg tctaaagagt aatactagag ataaacataa
5340


aaaatgtaga ggtcgagttt agatgcaagt tcaaggagcg aaaggtggat gggtaggtta
5400


tatagggata tagcacagag atatatagca aagagatact tttgagcaat gtttgtggaa
5460


gcggtattcg caatgggaag ctccaccccg gttgataatc agaaaagccc caaaaacagg
5520


aagattgtat aagcaaatat ttaaattgta aacgttaata ttttgttaaa attcgcgtta
5580


aatttttgtt aaatcagctc attttttaac gaatagcccg aaatcggcaa aatcccttat
5640


aaatcaaaag aatagaccga gatagggttg agtgttgttc cagtttccaa caagagtcca
5700


ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa gggtctatca gggcgatggc
5760


ccactacgtg aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcagta
5820


aatcggaagg gtaaacggat gcccccattt agagcttgac ggggaaagcc ggcgaacgtg
5880


gcgagaaagg aagggaagaa agcgaaagga gcgggggcta gggcggtggg aagtgtaggg
5940


gtcacgctgg gcgtaaccac cacacccgcc gcgcttaatg gggcgctaca gggcaggaat
6000


actctgaata aaacaactta tataataaaa atgc
6034










<210>    40


<211>  5056


<212> DNA


<213> Artificial Sequence


<220> 


<223> Plasmid


<220> 


<221> LV5


<222> (1) . . . (40)


<220> 


<221> pYES backbone


<222> (41) . . . (5016)


<220> 


<221> AmpR


<222> (1040) . . . (1699)


<220> 


<221> URA3


<222> (1915) . . . (3022)


<220> 


<221> LV3


<222> (5017) . . . (5056)


<400>    40








cctctttata ttacatcaaa ataagaaaat aattataaca cctgcattaa tgaatcggcc
60


aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact
120


cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac
180


ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa
240


agcccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc cgcccccctg
300


acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa
360


gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg accctgccgc
420


ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct catagctcac
480


gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac
540


cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag tccaacccgg
600


taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt
660


atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac actagaagga
720


cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct
780


cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga
840


ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg gggtctgacg
900


ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca aaaaggatct
960


tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt
1020


aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc
1080


tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg atacgggagc
1140


gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca ccggctccag
1200


atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt cctgcaactt
1260


tatccgcctc cattcagtct attaattgtt gccgggaagc tagagtaagt agttcgccag
1320


ttaatagttt gcgcaacgtt gttggcattg ctacaggcat cgtggtgtca ctctcgtcgt
1380


ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca tgatccccca
1440


tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg
1500


ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat
1560


ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta
1620


tgcggcgacc gagttgctct tgcccggcgt caatacggga taatagtgta tcacatagca
1680


gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct
1740


taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat
1800


cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa
1860


agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatgggtaa
1920


taactgatat aattaaattg aagctctaat ttgtgagttt agtatacatg catttactta
1980


taatacagtt ttttagtttt gctggccgca tcttctcaaa tatgcttccc agcctgcttt
2040


tctgtaacgt tcaccctcta ccttagcatc ccttcccttt gcaaatagtc ctcttccaac
2100


aataataatg tcagatcctg tagagaccac atcatccacg gttctatact gttgacccaa
2160


tgcgtctccc ttgtcatcta aacccacacc gggtgtcata atcaaccaat cgtaaccttc
2220


atctcttcca cccatgtctc tttgagcaat aaagccgata acaaaatctt tgtcgctctt
2280


cgcaatgtca acagtaccct tagtatattc tccagtagat agggagccct tgcatgacaa
2340


ttctgctaac atcaaaaggc ctctaggttc ctttgttact tcttctgccg cctgcttcaa
2400


accgctaaca atacctgggc ccaccacacc gtgtgcattc gtaatgtctg cccattctgc
2460


tattctgtat acacccgcag agtactgcaa tttgactgta ttaccaatgt cagcaaattt
2520


tctgtcttcg aagagtaaaa aattgtactt ggcggataat gcctttagcg gcttaactgt
2580


gccctccatg gaaaaatcag tcaagatatc cacatgtgtt tttagtaaac aaattttggg
2640


acctaatgct tcaactaact ccagtaattc cttggtggta cgaacatcca atgaagcaca
2700


caagtttgtt tgcttttcgt gcatgatatt aaatagcttg gcagcaacag gactaggatg
2760


agtagcagca cgttccttat atgtagcttt cgacatgatt tatcttcgtt tcctgcaggt
2820


ttttgttctg tgcagttggg ttaagaatac tgggcaattt catgtttctt caacactaca
2880


tatgcgtata tataccaatc taagtctgtg ctccttcctt cgttcttcct tctgttcgga
2940


gattaccgaa tcaaaaaaat ttcaaagaaa ccgaaatcaa aaaaaagaat aaaaaaaaaa
3000


tgatgaattg aattgaaaag ctagcttatc gatgataagc tgtcaaagat gagaattaat
3060


tccacggact atagactata ctagatactc cgtctactgt acgatacact tccgctcagg
3120


tccttgtcct ttaacgaggc cttaccactc ttttgttact ctattgatcc agctcagcaa
3180


aggcagtgtg atctaagatt ctatcttcgc gatgtagtaa aactagctag accgagaaag
3240


agactagaaa tgcaaaaggc acttctacaa tggctgccat cattattatc cgatgtgacg
3300


ctgcagcttc tcaatgatat tcgaatacgc tttgaggaga tacagcctaa tatccgacaa
3360


actgttttac agatttacga tcgtacttgt tacccatcat tgaattttga acatccgaac
3420


ctgggagttt tccctgaaac agatagtata tttgaacctg tataataata tatagtctag
3480


cgctttacgg aagacaatgt atgtatttcg gttcctggag aaactattgc atctattgca
3540


taggtaatct tgcacgtcgc atccccggtt cattttctgc gtttccatct tgcacttcaa
3600


tagcatatct ttgttaacga agcatctgtg cttcattttg tagaacaaaa atgcaacgcg
3660


agagcgctaa tttttcaaac aaagaatctg agctgcattt ttacagaaca gaaatgcaac
3720


gcgaaagcgc tattttacca acgaagaatc tgtgcttcat ttttgtaaaa caaaaatgca
3780


acgcgacgag agcgctaatt tttcaaacaa agaatctgag ctgcattttt acagaacaga
3840


aatgcaacgc gagagcgcta ttttaccaac aaagaatcta tacttctttt ttgttctaca
3900


aaaatgcatc ccgagagcgc tatttttcta acaaagcatc ttagattact ttttttctcc
3960


tttgtgcgct ctataatgca gtctcttgat aactttttgc actgtaggtc cgttaaggtt
4020


agaagaaggc tactttggtg tctattttct cttccataaa aaaagcctga ctccacttcc
4080


cgcgtttact gattactagc gaagctgcgg gtgcattttt tcaagataaa ggcatccccg
4140


attatattct ataccgatgt ggattgcgca tactttgtga acagaaagtg atagcgttga
4200


tgattcttca ttggtcagaa aattatgaac ggtttcttct attttgtctc tatatactac
4260


gtataggaaa tgtttacatt ttcgtattgt tttcgattca ctctatgaat agttcttact
4320


acaatttttt tgtctaaaga gtaatactag agataaacat aaaaaatgta gaggtcgagt
4380


ttagatgcaa gttcaaggag cgaaaggtgg atgggtaggt tatataggga tatagcacag
4440


agatatatag caaagagata cttttgagca atgtttgtgg aagcggtatt cgcaatggga
4500


agctccaccc cggttgataa tcagaaaagc cccaaaaaca ggaagattgt ataagcaaat
4560


atttaaattg taaacgttaa tattttgtta aaattcgcgt taaatttttg ttaaatcagc
4620


tcatttttta acgaatagcc cgaaatcggc aaaatccctt ataaatcaaa agaatagacc
4680


gagatagggt tgagtgttgt tccagtttcc aacaagagtc cactattaaa gaacgtggac
4740


tccaacgtca aagggcgaaa aagggtctat cagggcgatg gcccactacg tgaaccatca
4800


ccctaatcaa gttttttggg gtcgaggtgc cgtaaagcag taaatcggaa gggtaaacgg
4860


atgcccccat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa ggaagggaag
4920


aaagcgaaag gagcgggggc tagggcggtg ggaagtgtag gggtcacgct gggcgtaacc
4980


accacacccg ccgcgcttaa tggggcgcta cagggcagga atactctgaa taaaacaact
5040


tatataataa aaatgc
5056










<210>    41


<211>  1703


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with green fluorescent protein coding sequence,


regulatory sequences and integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> Tdh3p


<222> (41) . . . (693)


<220> 


<221> S65T-GFP


<222> (700) . . . (1413)


<220> 


<221> CYC1 Terminator


<222> (1414) . . . (1663)


<220> 


<221> LV5


<222> (1664) . . . (1703)


<400>    41








aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat
60


actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag
120


tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt
180


tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta
240


aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa
300


aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga
360


gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc
420


tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca
480


ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca
540


gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt
600


gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt
660


tttagtttta aaacaccaag aacttagttt cgaaaaacaa tgagtaaagg agaagaactt
720


ttcactggag ttgtcccaat tcttgttgaa ttagatggtg atgttaatgg gcacaaattt
780


tctgtcagtg gagagggtga aggtgatgca acatacggaa aacttaccct taaatttatt
840


tgcactactg gaaaactacc tgttccatgg ccaacacttg tcactacttt cacttatggt
900


gttcaatgca tttcaagata cccagatcat atgaaagagc atgacttttt caagagtgcc
960


atgcccgaag gttatgtaca ggaaagaact atatttttca aagatgacgg gaactacaag
1020


acacgtgctg aagtcaagtt tgaaggtgat acccttgtta atagaatcga gttaaaaggt
1080


attgatttta aagaagatgg aaacattctt ggacacaaat tggaatacaa ctataactca
1140


cacaatgtat acatcatggc agacaaacaa aagaatggaa tcaaagttaa cttcaaaatt
1200


agacacaaca ttgaagatgg aagcgttcaa ctagcagacc attatcaaca aaatactcca
1260


attggcgatg gccctgtcct tttaccagac aaccattacc tgtccacaca atctgccctt
1320


tcgaaagatc ccaacgaaaa gagagaccac atggtccttc ttgagtttgt aacagctgct
1380


gggattacac atggcatgga tgaactatac aaatcatgta attagttatg tcacgcttac
1440


attcacgccc tcctcccaca tccgctctaa ccgaaaagga aggagttaga caacctgaag
1500


tctaggtccc tatttatttt ttttaatagt tatgttagta ttaagaacgt tatttatatt
1560


tcaaattttt cttttttttc tgtacaaacg cgtgtacgca tgtaacatta tactgaaaac
1620


cttgcttgag aaggttttgg gacgctcgaa ggctttaatt tgccctcttt atattacatc
1680


aaaataagaa aataattata aca
1703










<210>    42


<211>  2942


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Cannabis sativa prenyltransferase-green fluorescent


protein fusion protein coding sequence, regulatory sequences and


integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> TDH3


<222> (41) . . . (692)


<220> 


<221> CBGA Synthase


<222> (702) . . . (1892)


<220> 


<221> GFP linker


<222> (1893) . . . (1928)


<220> 


<221> GFP


<222> (1929) . . . (2645)


<220> 


<221> LV5


<222> (2903) . . . (2942)


<400>    42








aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat
60


actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag
120


tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt
180


tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta
240


aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa
300


aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga
360


gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc
420


tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca
480


ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca
540


gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt
600


gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt
660


tttagtttta aaacaccaag aacttagttt cgaaaacaat gatgggttta tcttctgttt
720


gtactttctc tttccaaacc aactatcaca ctttgttgaa tccacataac aacaacccaa
780


agacttcttt gttatgttac agacatccaa agaccccaat caagtactct tacaacaact
840


tcccatctaa gcactgttct accaagtctt tccacttgca aaataagtgt tctgaatctt
900


tgtctattgc taagaattcc attagagctg ctaccactaa ccaaaccgaa ccaccagaat
960


ctgacaacca ctccgtcgcc accaagatct tgaacttcgg taaggcttgt tggaagttgc
1020


aaagaccata caccatcatt gccttcacct cctgtgcctg tggtttgttt ggtaaggaat
1080


tgttgcataa caccaacttg atctcttggt ctttaatgtt caaggctttt tttttcttgg
1140


tcgccatctt gtgtattgcc tcctttacca ctactattaa tcaaatctac gacttacata
1200


ttgaccgtat caataagcca gatttgccat tggcctctgg tgaaatttcc gtcaacaccg
1260


cctggattat gtctattatc gttgccttgt tcggtttaat tattactatt aagatgaagg
1320


gtggtccatt atacatcttc ggttactgtt tcggtatctt cggtggtatc gtctactccg
1380


ttccaccttt cagatggaag caaaacccat ccaccgcttt cttgttgaac ttcttagccc
1440


acatcattac taactttacc ttctactatg cctctagagc cgctttaggt ttaccatttg
1500


aattgcgtcc atctttcact ttcttgttgg ctttcatgaa gtctatgggt tccgccttgg
1560


ctttaattaa ggatgcctct gatgttgagg gtgatactaa gttcggtatt tctaccttag
1620


cttccaaata cggttccaga aacttgactt tgttctgttc cggtattgtt ttattgtctt
1680


acgtcgctgc tatcttggct ggtatcattt ggcctcaagc tttcaactct aacgttatgt
1740


tgttatccca tgctatcttg gctttctggt tgatcttgca aaccagagac ttcgctttga
1800


ctaactacga tccagaagct ggtagaagat tctacgaatt tatgtggaaa ttatattacg
1860


ccgaatactt ggtttacgtt ttcatcggct gaggcgccgc tggctccgct gctggttctg
1920


gcgaattcat gagtaaagga gaagaacttt tcactggagt tgtcccaatt cttgttgaat
1980


tagatggtga tgttaatggg cacaaatttt ctgtcagtgg agagggtgaa ggtgatgcaa
2040


catacggaaa acttaccctt aaatttattt gcactactgg aaaactacct gttccatggc
2100


caacacttgt cactactttc acttatggtg ttcaatgcat ttcaagatac ccagatcata
2160


tgaaacggca tgactttttc aagagtgcca tgcccgaagg ttatgtacag gaaagaacta
2220


tatttttcaa agatgacggg aactacaaga cacgtgctga agtcaagttt gaaggtgata
2280


cccttgttaa tagaatcgag ttaaaaggta ttgattttaa agaagatgga aacattcttg
2340


gacacaaatt ggaatacaac tataactcac acaatgtata catcatggca gacaaacaaa
2400


agaatggaat caaagttaac ttcaaaatta gacacaacat tgaagatgga agcgttcaac
2460


tagcagacca ttatcaacaa aatactccaa ttggcgatgg ccctgtcctt ttaccagaca
2520


accattacct gtccacacaa tctgcccttt cgaaagatcc caacgaaaag agagaccaca
2580


tggtccttct tgagtttgta acagctgctg ggattacaca tggcatggat gaactataca
2640


aataaggcgc ctaatcatgt aattagttat gtcacgctta cattcacgcc ctccccccac
2700


atccgctcta accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt
2760


ttttatagtt atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct
2820


gtacaaacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg
2880


acgctcgaag gctttaattt gccctcttta tattacatca aaataagaaa ataattataa
2940


ca
2942










<210>    43


<211>  2678


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with AltPT-green fluorescent protein fusion protein


coding sequence, regulatory sequences and integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> TDH3


<222> (41) . . . (692)


<220> 


<221> Alt PT


<222> (702) . . . (1628)


<220> 


<221> GFP_linker


<222> (1629) . . . (1664)


<220> 


<221> GFP


<222> (1665) . . . (2381)


<220> 


<221> LV5


<222> (2639) . . . (2678)


<400>    43








aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat
60


actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag
120


tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt
180


tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta
240


aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa
300


aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga
360


gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc
420


tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca
480


ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca
540


gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt
600


gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt
660


tttagtttta aaacaccaag aacttagttt cgaaaacaat gatgtctgaa gccgctgatg
720


tcgaaagagt ttacgccgct atggaagagg ccgctggttt gttgggtgtt gcctgtgcta
780


gagacaagat ttacccattg ttatccacct tccaagatac tttggttgaa ggtggttctg
840


ttgtcgtttt ctctatggcc tccggtagac actccaccga attggacttc tctatttctg
900


ttccaacttc tcatggtgat ccatacgcca ctgtcgttga aaagggttta tttcctgcta
960


ctggtcaccc agttgacgat ttgttagctg acactcaaaa gcacttacct gtttctatgt
1020


tcgctattga cggtgaagtt accggtggtt tcaaaaagac ttacgccttc ttcccaactg
1080


acaatatgcc aggtgttgct gaattgtctg ctatcccatc catgccacca gccgttgccg
1140


agaatgctga attgttcgct cgttatggtt tggacaaggt ccaaatgacc tccatggact
1200


acaagaaaag acaagtcaac ttgtatttct ccgaattgtc tgctcaaact ttagaagccg
1260


aatctgtttt ggctttggtt agagaattag gtttgcacgt tccaaacgaa ttgggtttga
1320


agttttgtaa acgttctttc tctgtttatc caactttgaa ctgggaaacc ggtaaaatcg
1380


acagattgtg cttcgctgtc atctctaacg acccaacctt ggtcccatcc tccgatgaag
1440


gtgatatcga aaagttccac aactacgcca ctaaggctcc ttacgcttac gtcggtgaga
1500


aacgtacctt ggtctatggt ttgactttat ccccaaagga ggaatactac aagttgggtg
1560


cttactacca cattaccgac gtccaaagag gtttgttaaa ggccttcgac tctttagaag
1620


acggctgagg cgccgctggc tccgctgctg gttctggcga attcatgagt aaaggagaag
1680


aacttttcac tggagttgtc ccaattcttg ttgaattaga tggtgatgtt aatgggcaca
1740


aattttctgt cagtggagag ggtgaaggtg atgcaacata cggaaaactt acccttaaat
1800


ttatttgcac tactggaaaa ctacctgttc catggccaac acttgtcact actttcactt
1860


atggtgttca atgcatttca agatacccag atcatatgaa acggcatgac tttttcaaga
1920


gtgccatgcc cgaaggttat gtacaggaaa gaactatatt tttcaaagat gacgggaact
1980


acaagacacg tgctgaagtc aagtttgaag gtgataccct tgttaataga atcgagttaa
2040


aaggtattga ttttaaagaa gatggaaaca ttcttggaca caaattggaa tacaactata
2100


actcacacaa tgtatacatc atggcagaca aacaaaagaa tggaatcaaa gttaacttca
2160


aaattagaca caacattgaa gatggaagcg ttcaactagc agaccattat caacaaaata
2220


ctccaattgg cgatggccct gtccttttac cagacaacca ttacctgtcc acacaatctg
2280


ccctttcgaa agatcccaac gaaaagagag accacatggt ccttcttgag tttgtaacag
2340


ctgctgggat tacacatggc atggatgaac tatacaaata aggcgcctaa tcatgtaatt
2400


agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg aaaaggaagg
2460


agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt tagtattaag
2520


aacgttattt atatttcaaa tttttctttt ttttctgtac aaacgcgtgt acgcatgtaa
2580


cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt taatttgccc
2640


tctttatatt acatcaaaat aagaaaataa ttataaca
2678










<210>    44


<211>  2399


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with AltPT from Streptomyces sp CL190 with coding


sequence, regulatory sequences and integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> PMA1p


<222> (47) . . . (946)


<220> 


<221> L1


<222> (947) . . . (986)


<220> 


<221> AltPT


<222> (987) . . . (1913)


<220> 


<221> Eno2t


<222> (1954) . . . (2353)


<220> 


<221> LV5


<222> (2360) . . . (2399)


<400>    44








aggaatactc tgaataaaac aacttatata ataaaaatgc gtatccacag gcattgctgg
60


gatcacccat acatcactct gttttgcctg accttttccg gtaatttgaa aacaaacccg
120


gtctcgaagc ggagatccgg cgataattac cgcagaaata aacccataca cgagacgtag
180


aaccagccgc acatggccgg agaaactcct gcgagaattt cgtaaactcg cgcgcattgc
240


atctgtattt cctaatgcgg cacttccagg cctcgagacc tctgacatgc ttttgacagg
300


aatagacatt ttcagaatgt tatccatatg cctttcgggt ttttttcctt ccttttccat
360


catgaaaaat ctctcgagac cgtttatcca ttgctttttt gttgtctttt tccctcgttc
420


acagaaagtc tgaagaagct atagtagaac tatgagcttt ttttgtttct gttttccttt
480


tttttttttt tacctctgtg gaaattgtta ctctcacact ctttagttcg tttgtttgtt
540


ttgtttattc caattatgac cggtgacgaa acgtggtcga tggtgggtac cgcttatgct
600


cccctccatt agtttcgatt atataaaaag gccaaatatt gtattatttt caaatgtcct
660


atcattatcg tctaacatct aatttctctt aaattttttc tctttctttc ctataacacc
720


aatagtgaaa atcttttttt cttctatatc tacaaaaact ttttttttct atcaacctcg
780


ttgataaatt ttttctttaa caatcgttaa taattaatta attggaaaat aaccattttt
840


tctctctttt atacacacat tcaaaagaaa gaaaaaaaat ataccccagc tagttaaaga
900


aaatcattga aaagaataag aagataagaa agatttaatt atcaaactag aaaatttatt
960


ataaaaggaa gagaaataat taaacaatgt ctgaagccgc tgatgtcgaa agagtttacg
1020


ccgctatgga agaggccgct ggtttgttgg gtgttgcctg tgctagagac aagatttacc
1080


cattgttatc caccttccaa gatactttgg ttgaaggtgg ttctgttgtc gttttctcta
1140


tggcctccgg tagacactcc accgaattgg acttctctat ttctgttcca acttctcatg
1200


gtgatccata cgccactgtc gttgaaaagg gtttatttcc tgctactggt cacccagttg
1260


acgatttgtt agctgacact caaaagcact tacctgtttc tatgttcgct attgacggtg
1320


aagttaccgg tggtttcaaa aagacttacg ccttcttccc aactgacaat atgccaggtg
1380


ttgctgaatt gtctgctatc ccatccatgc caccagccgt tgccgagaat gctgaattgt
1440


tcgctcgtta tggtttggac aaggtccaaa tgacctccat ggactacaag aaaagacaag
1500


tcaacttgta tttctccgaa ttgtctgctc aaactttaga agccgaatct gttttggctt
1560


tggttagaga attaggtttg cacgttccaa acgaattggg tttgaagttt tgtaaacgtt
1620


ctttctctgt ttatccaact ttgaactggg aaaccggtaa aatcgacaga ttgtgcttcg
1680


ctgtcatctc taacgaccca accttggtcc catcctccga tgaaggtgat atcgaaaagt
1740


tccacaacta cgccactaag gctccttacg cttacgtcgg tgagaaacgt accttggtct
1800


atggtttgac tttatcccca aaggaggaat actacaagtt gggtgcttac taccacatta
1860


ccgacgtcca aagaggtttg ttaaaggcct tcgactcttt agaagacggc tgaagacata
1920


aaactgaaac aacaccaatt aataatagac tttagtgctt ttaactaaga attattagtc
1980


ttttctgctt attttttcat catagtttag aacactttat attaacgaat agtttatgaa
2040


tctatttagg tttaaaaatt gatacagttt tataagttac tttttcaaag actcgtgctg
2100


tctattgcat aatgcactgg aaggggaaaa aaaaggtgca cacgcgtggc tttttcttga
2160


atttgcagtt tgaaaaataa ctacatggat gataagaaaa catggagtac agtcactttg
2220


agaaccttca atcagctggt aacgtcttcg ttaattggat actcaaaaaa gatggatagc
2280


atgaatcaca agatggaagg aaatgcgggc cacgaccaca gtgatatgca tatgggagat
2340


ggagatgata cctggatacc ctctttatat tacatcaaaa taagaaaata attataaca
2399










<210>    45


<211>  5616


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Cannabis sativa OAS coding sequence, regulatory


sequences and integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> THD3p


<222> (41) . . . (693)


<220> 


<221> L1


<222> (694) . . . (733)


<220> 


<221> Hex1


<222> (734) . . . (2899)


<220> 


<221> T3


<222> (2900) . . . (3303)


<220> 


<221> ADH1 terminator


<222> (3071) . . . (3263)


<220> 


<221> P5


<222> (3264) . . . (3837)


<220> 


<221> LTP2


<222> (3264) . . . (3303)


<220> 


<221> Tef1p


<222> (3304) . . . (3797)


<220> 


<221> L3


<222> (3798) . . . (3837)


<220> 


<221> OAS


<222> (3841) . . . (4995)


<220> 


<221> PRM9t


<222> (5039) . . . (5576)


<220> 


<221> LV5


<222> (5577) . . . (5616)


<400>    45








aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat
60


actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag
120


tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt
180


tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta
240


aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa
300


aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga
360


gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc
420


tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca
480


ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca
540


gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt
600


gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt
660


tttagtttta aaacaccaag aacttagttt cgactagaaa atttattata aaaggaagag
720


aaataattaa acaatgggta aaaactataa gtctttagac tccgttgtcg cctccgactt
780


tattgctttg ggtatcacct ccgaagttgc tgaaacttta cacggtagat tagctgagat
840


tgtttgtaac tacggtgccg ccactccaca aacttggatt aatatcgcta accatatttt
900


gtctccagac ttaccattct ccttgcatca aatgttgttt tacggttgtt ataaagattt
960


tggtccagct cctccagctt ggatcccaga tcctgaaaaa gttaagtcta ctaacttagg
1020


tgctttgtta gaaaaaagag gtaaagaatt cttgggtgtt aagtataaag atccaatctc
1080


ttccttctct cattttcaag aattctccgt tagaaaccca gaagtttatt ggagaaccgt
1140


tttgatggac gaaatgaaga tctccttctc taaggatcct gaatgtattt tgagacgtga
1200


cgatatcaac aatccaggtg gttctgaatg gttaccaggt ggttatttga actctgctaa
1260


aaattgtttg aacgtcaatt ccaacaaaaa attgaacgac accatgattg tttggagaga
1320


cgaaggtaac gatgacttac cattaaacaa gttgaccttg gaccaattga gaaagcgtgt
1380


ctggttggtc ggttacgcct tggaggaaat gggtttggaa aaaggttgtg ccatcgctat
1440


cgatatgcca atgcacgtcg acgccgtcgt tatctatttg gccatcgttt tagctggtta
1500


cgtcgtcgtc tccatcgctg actctttctc cgctccagaa atttccacta gattgagatt
1560


atccaaggcc aaggctattt tcactcaaga tcacattatt agaggtaaga agcgtattcc
1620


attgtactcc agagtcgtcg aagccaagtc tcctatggcc attgttatcc catgttctgg
1680


ttctaacatt ggtgctgaat tgagagatgg tgacatttcc tgggactatt tcttggaaag
1740


agctaaggaa tttaagaact gcgaatttac cgccagagaa caacctgttg atgcctacac
1800


taacattttg ttctcttctg gtacaactgg tgagccaaag gctatccctt ggactcaagc
1860


taccccatta aaggccgccg ctgatggttg gtcccacttg gacattcgta agggtgacgt
1920


catcgtctgg ccaactaact tgggttggat gatgggtcca tggttagttt acgcctcttt
1980


gttaaacggt gcttccattg ccttgtacaa cggttctcca ttggtttctg gtttcgctaa
2040


gtttgtccaa gacgccaagg ttaccatgtt aggtgttgtt ccatctatcg tcagatcttg
2100


gaagtctact aactgtgtct ctggttacga ttggtctact atcagatgct tctcttcctc
2160


tggtgaagcc tctaacgttg atgaatattt gtggttgatg ggtcgtgcca actacaagcc
2220


agttatcgaa atgtgtggtg gtacagagat cggtggtgct ttttccgctg gttccttttt
2280


gcaagctcaa tctttgtctt ctttctcttc tcaatgtatg ggttgtactt tgtatatttt
2340


ggataagaac ggttacccaa tgcctaagaa caaaccaggt atcggtgaat tagctttggg
2400


tccagttatg ttcggtgctt ccaagacctt gttgaacggt aatcaccatg atgtctattt
2460


caaaggtatg ccaactttaa acggtgaagt cttgagacgt cacggtgaca tctttgaatt
2520


gacttctaac ggttactacc atgctcacgg tagagctgat gatactatga acattggtgg
2580


tattaagatt tcttctatcg aaatcgaaag agtttgtaat gaagttgacg acagagtctt
2640


tgaaaccact gctattggtg tcccaccatt gggtggtggt ccagaacaat tagtcatttt
2700


cttcgttttg aaggattcta acgacactac catcgactta aaccaattga gattgtcttt
2760


caacttgggt ttgcaaaaga agttgaaccc attatttaaa gtcactagag ttgttccatt
2820


gtcttctttg ccaagaaccg ccaccaacaa gattatgaga agagttttga gacaacaatt
2880


ttctcatttc gaaggctgaa gacataaaac tgaaacaaca ccaattaata atagactttt
2940


ggacttcttc gccagaggtt tggtcaagtc tccaatcaag gttgtcggct tgtctacctt
3000


gccagaaatt tacgaaaaga tggaaaaggg tcaaatcgtt ggtagatacg ttgttgacac
3060


ttctaaataa gcgaatttct tatgatttat gatttttatt attaaataag ttataaaaaa
3120


aataagtgta tacaaatttt aaagtgactc ttaggtttta aaacgaaaat tcttattctt
3180


gagtaactct ttcctgtagg tcaggttgct ttctcaggta tagcatgagg tcgctcttat
3240


tgaccacacc tctaccggca tgccttaaat aacatactca tcactaaaca ttcttaacaa
3300


tcaaagcaac aggcgcgttg gacttttaat tttcgaggac cgcgaatcct tacatcacac
3360


ccaatccccc acaagtgatc ccccacacac catagcttca aaatgtttct actccttttt
3420


tactcttcca gattttctcg gactccgcgc atcgccgtac cacttcaaaa cacccaagca
3480


cagcatacta aatttcccct ctttcttcct ctagggtgtc gttaattacc cgtactaaag
3540


gtttggaaaa gaaaaaagag accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa
3600


aatttttatc acgtttcttt ttcttgaaaa tttttttttt tgattttttt ctctttcgat
3660


gacctcccat tgatatttaa gttaataaac ggtcttcaat ttctcaagtt tcagtttcat
3720


ttttcttgtt ctattacaac tttttttact tcttgctcat tagaaagaaa gcatagcaat
3780


ctaatctaag ttttaataca tctaccagtc aacagccaac aattaactaa ttaaacaatg
3840


aaccacttga gagctgaagg tccagcttcc gttttggcta tcggtacagc taaccctgaa
3900


aacatcttgt tgcaagatga attcccagac tattacttca gagttaccaa gtctgaacat
3960


atgactcaat tgaaggaaaa gtttagaaag atttgtgata agtctatgat cagaaagcgt
4020


aattgttttt tgaacgaaga acatttaaaa caaaatccaa gattggttga gcacgaaatg
4080


caaactttgg atgctagaca agatatgtta gtcgtcgaag tcccaaagtt gggtaaggat
4140


gcttgtgcta aggctattaa ggagtggggt caaccaaagt ccaaaatcac ccacttgatt
4200


ttcacttccg cttctactac cgacatgcca ggtgctgatt accactgtgc taagttgttg
4260


ggtttatccc cttctgttaa aagagttatg atgtaccaat tgggttgcta cggtggtggt
4320


actgttttga gaattgccaa ggacatcgct gagaataaca agggtgctag agttttggcc
4380


gtctgttgtg acatcatggc ttgtttattc agaggtccat ctgaatccga cttggaattg
4440


ttagtcggtc aagccatctt tggtgatggt gctgccgccg ttattgttgg tgctgaacca
4500


gatgaatccg tcggtgaaag accaatcttt gagttggtct ctactggtca aaccattttg
4560


ccaaactccg aaggtactat tggtggtcac atccgtgaag ctggtttgat ttttgattta
4620


cacaaggatg tcccaatgtt gatctctaac aacatcgaga agtgtttaat tgaagccttc
4680


accccaattg gtatttccga ctggaactct attttctgga ttactcatcc aggtggtaag
4740


gctattttag ataaggttga agaaaagttg cacttgaagt ctgataaatt cgttgactct
4800


agacacgttt tgtctgaaca tggtaatatg tcttcttcca ctgttttgtt cgttatggat
4860


gaattgagaa agagatcttt ggaagaaggt aagtccacta ctggtgacgg tttcgaatgg
4920


ggtgttttgt tcggtttcgg tccaggtttg actgttgaaa gagtcgttgt ccgttctgtt
4980


ccaatcaagt acggctaata ataattaaat actattttca aaattctact taaaaataac
5040


agaagacggg agacactagc acacaacttt accaggcaag gtatttgacg ctagcatgtg
5100


tccaattcag tgtcatttat gattttttgt agtaggatat aaatatatac agcgctccaa
5160


atagtgcggt tgccccaaaa acaccacgga acctcatctg ttctcgtact ttgttgtgac
5220


aaagtagctc actgccttat tatcacattt tcattatgca acgcttcgga aaatacgatg
5280


ttgaaaatgc ctctagagat gaaaaacaat cgtaaaaggg tcctgcgtaa ttgaaacatt
5340


tgatcagtat gcagtggcac agaaacaacc aggaatacta tagtcatagg caatacaagg
5400


tatatattgg ctatgcagac ccctccagaa agtaccgacg tcaagttaga tacacttaac
5460


gaacctagtg cacatttaat tgagaaaaat gtggctcttc ctaaggacat attccgttcg
5520


tacttgagtt attggatcta tgaaatcgct cgctatacac cagtcatgat tttgtccctc
5580


tttatattac atcaaaataa gaaaataatt ataaca
5616










<210>    46


<211> 10584


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Dictyostelium discoideum DiPKS coding sequence,


regulatory sequences and integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> S. cerevisiae GAL1 promoter


<222> (41) . . . (482)


<220> 


<221> L1


<222> (483) . . . (522)


<220> 


<221> DiPKS


<222> (523) . . . (9966)


<220> 


<221> Motif 1


<222> (5050) . . . (5076)


<220> 


<221> C-methyltransferase domain


<222> (5050) . . . (5412)


<220> 


<221> Motif 2


<222> (5309) . . . (5331)


<220> 


<221> Motif 3


<222> (5389) . . . (5421)


<220> 


<221> L2


<222> (9967) . . . (10006)


<220> 


<221> PRM9t


<222> (10007) . . . (10544)


<220> 


<221> LV5


<222> (10545) . . . (10584)


<400>    46








aggaatactc tgaataaaac aacttatata ataaaaatgc cggattagaa gccgccgagc
60


gggtgacagc cctccgaagg aagactctcc tccgtgcgtc ctcgtcttca ccggtcgcgt
120


tcctgaaacg cagatgtgcc tcgcgccgca ctgctccgaa caataaagat tctacaatac
180


tagcttttat ggttatgaag aggaaaaatt ggcagtaacc tggccccaca aaccttcaaa
240


tgaacgaatc aaattaacaa ccataggatg ataatgcgat tagtttttta gccttatttc
300


tggggtaatt aatcagcgaa gcgatgattt ttgatctatt aacagatata taaatgcaaa
360


aactgcataa ccactttaac taatactttc aacattttcg gtttgtatta cttcttattc
420


aaatgtaata aaagtatcaa caaaaaattg ttaatatacc tctatacttt aacgtcaagg
480


agctagaaaa tttattataa aaggaagaga aataattaaa caatgaacaa gaactccaaa
540


atccagtccc caaactcttc tgatgttgct gttattggtg ttggttttag attcccaggt
600


aactctaatg acccagaatc tttgtggaac aacttgttgg atggtttcga tgctattacc
660


caagtcccaa aagaaagatg ggctacttct tttagagaga tgggtttgat caagaacaag
720


ttcggtggtt tcttgaagga ttctgaatgg aagaatttcg accctttgtt ctttggtatc
780


ggtccaaaag aagctccatt cattgatcca caacaaaggt tgttgttgtc catcgtttgg
840


gaatctttgg aagatgctta catcagacca gatgaattga gaggttctaa cactggtgtt
900


ttcatcggtg tttctaacaa cgattacacc aagttgggtt tccaagacaa ctactctatt
960


tctccataca ctatgaccgg ctctaactct tcattgaact ccaacagaat ttcctactgc
1020


ttcgatttta gaggtccatc cattactgtt gataccgctt gttcttcttc cttggtttct
1080


gttaatttgg gtgtccaatc catccaaatg ggtgaatgta agattgctat ttgcggtggt
1140


gttaacgctt tgtttgatcc atctacatct gttgcctttt ccaagttggg tgttttgtct
1200


gaaaatggca gatgcaactc ttttagtgat caagcctctg gttacgttag atctgaaggt
1260


gctggtgttg ttgttttgaa gtctttggaa caagctaagt tggatggtga tagaatctac
1320


ggtgttatca agggtgtttc ctctaatgaa gatggtgctt ctaatggtga caagaactct
1380


ttgactactc catcttgtga agcccaatcc attaacattt ctaaggctat ggaaaaggcc
1440


tccttgtctc catctgatat ctattacatt gaagcccatg gtactggtac tccagttggt
1500


gatccaattg aagttaaggc cttgtccaag atcttctcca actctaacaa caaccagttg
1560


aacaacttct ctaccgatgg taatgataac gatgatgatg atgacgataa cacctctcca
1620


gaaccattat tgattggctc attcaagtcc aacatcggtc atttggaatc tgctgctggt
1680


attgcttctt tgattaagtg ttgcttgatg ttgaagaaca ggatgttggt tccatccatt
1740


aactgctcta atttgaaccc atccattcca ttcgatcagt acaacatctc cgttatcaga
1800


gaaatcagac aattcccaac cgataagttg gttaacatcg gtatcaattc tttcggtttc
1860


ggtggttcta actgccattt gattattcaa gagtacaaca acaacttcaa gaacaactct
1920


accatctgca ataacaacaa caacaacaat aacaacatcg actacttgat cccaatctcc
1980


tctaagacta agaagtcctt ggataagtac ttgattttga tcaagaccaa ctccaactac
2040


cacaaggata tttctttcga tgacttcgtc aagttccaaa tcaagtctaa gcagtacaac
2100


ttgtccaaca gaatgactac cattgctaac gattggaact ccttcattaa gggttctaac
2160


gaattccaca acttgatcga atctaaggat ggtgaaggtg gttcttcatc ttctaacaga
2220


ggtattgatt ccgccaatca aatcaacact actactacct ctaccatcaa cgatatcgaa
2280


cctttgttgg ttttcgtttt ctgtggtcaa ggtccacaat ggaatggtat gattaagacc
2340


ttgtacaact ccgagaacgt tttcaagaac accgttgatc atgttgacag catcttgtac
2400


aagtacttcg gttactccat tttgaacgtc ttgtctaaga tcgatgataa cgacgattcc
2460


atcaaccatc caatagttgc tcaaccatct ttgttcttgt tgcaaattgg tttggtcgag
2520


ttgtttaagt actggggtat ctacccatct atctctgttg gtcattcttt cggtgaagtc
2580


tcttcttatt acttgtccgg tatcatctct ttggaaaccg cttgtaaaat cgtctacgtc
2640


agatcctcta atcagaacaa aactatgggt tccggtaaga tgttggttgt ttctatgggt
2700


tttaagcaat ggaacgatca attctctgct gaatggtccg atattgaaat tgcttgttac
2760


aacgctccag attccatagt tgttactggt aacgaagaaa gattgaaaga attgtccatc
2820


aagttgtccg acgaatccaa tcaaattttc aacaccttct tgaggtcccc atgttctttt
2880


cattcttccc atcaagaagt catcaagggt tctatgttcg aagagttgtc taacttgcaa
2940


tctactggtg aaaccgaaat ccctttgttc tctactgtta ctggtagaca agttttgtct
3000


ggtcatgtta ctgctcaaca catctacgat aatgttagag aaccagtctt gttccaaaag
3060


acgattgaat ccattacctc ctacatcaag tctcactacc catccaatca aaaggttatc
3120


tacgttgaaa ttgctccaca cccaaccttg ttttcattga tcaaaaagtc catcccatcc
3180


tccaacaaga attcctcttc tgttttgtgt ccattgaaca gaaaagaaaa ctccaacaac
3240


tcctacaaga agttcgtttc tcagttgtac ttcaacggtg ttaacgttga cttcaacttc
3300


cagttgaact ccatttgcga taacgttaac aacgatcacc atttgaacaa cgtcaagcaa
3360


aactccttca aagagactac caattccttg ccaagatacc aatgggaaca agatgaatat
3420


tggtccgaac cattgatctc cagaaagaat agattggaag gtccaactac ttccttgttg
3480


ggtcatagaa ttatctacag cttcccagtt ttccaatccg ttttggactt gcaatctgac
3540


aactacaaat acttgttgga ccacttggtt aacggtaagc cagtttttcc aggtgctggt
3600


tatttggata tcatcatcga attcttcgac taccaaaagc agcagttgaa ttcctctgat
3660


tcctctaact cctacatcat caacgttgac aagatccaat tcttgaaccc aattcacttg
3720


accgaaaaca agttgcaaac cttgcaatct tctttcgaac ctatcgttac taagaagtct
3780


gccttctctg ttaacttctt catcaaggat accgtcgagg atcaatctaa ggttaagtct
3840


atgtctgacg aaacttggac taacacttgt aaggctacca tttccttgga acaacaacag
3900


ccatctccat cttctacttt gactttgtct aagaagcaag acttgcagat cttgagaaac
3960


agatgcgata ttagcaagct agacaagttt gagttgtacg acaagatctc taagaatttg
4020


ggcttgcagt acaactcctt gtttcaagtt gttgatacca tcgaaactgg taaggattgc
4080


tcttttgcta ctttgtcttt gccagaagat actttgttca ccaccatttt gaacccatgc
4140


ttgttggata actgtttcca tggtttgttg accttgatca acgaaaaggg ttctttcgtt
4200


gtcgagtcca tttcttctgt ttctatctac ttggagaaca tcggttcctt caatcaaact
4260


tctgttggta acgtccagtt ctacttgtac accactattt ctaaagccac ctcctttagt
4320


tctgaaggta cttgtaagtt gttcaccaag gatggttcct tgattttgtc tatcggtaag
4380


ttcatcatca agtccaccaa tccaaagtct actaagacca acgaaactat cgaatctcca
4440


ttggacgaaa ccttctctat tgaatggcaa tctaaggatt ctccaattcc aaccccacaa
4500


caaatccaac aacaatctcc attgaactct aacccatcct tcattagatc taccatcttg
4560


aaggacatcc agttcgaaca atactgctcc tccattatcc acaaagaatt gatcaaccac
4620


gaaaagtaca agaaccagca atccttcgat atcaactcct tggaaaacca cttgaacgat
4680


gaccaattga tggaatcctt gtccatctcc aaagaatact tgagattctt caccaggatc
4740


atctccatca ttaagcaata cccaaagatc ttgaacgaaa aagagctaaa agaattgaaa
4800


gaaatcatcg aattgaagta cccatccgaa gttcagttgt tggaattcga agttatcgag
4860


aaggtgtcca tgattatccc aaagttgttg ttcgaaaacg acaagcaatc ttccatgacc
4920


ttgttccaag ataacttgtt gaccaggttc tactccaatt ctaactctac cagattctac
4980


ttggaaaggg tttccgaaat ggtcttggaa tctattagac caatcgtcag agaaaagagg
5040


gtgttcagaa ttttggaaat tggtgctggt acaggctctt tgtctaatgt tgttttgact
5100


aagttgaaca cctacttgtc caccttgaat tctaatggtg gttctggtta caacatcatc
5160


attgagtaca ccttcaccga tatttccgcc aacttcatta ttggtgaaat ccaagaaacc
5220


atgtgcaact tgtacccaaa cgttactttc aagttctccg tcttggactt ggagaaagag
5280


attattaact cctccgattt cttgatgggt gattacgata tagttttgat ggcctacgtt
5340


atccatgccg tttctaacat taagttctcc atcgaacagt tgtacaagtt gttgtctcca
5400


agaggttggt tgttgtgtat tgaacctaag tccaacgttg tgttctccga tttggttttc
5460


ggttgtttta atcagtggtg gaactactac gatgatatta gaactaccca ctgctccttg
5520


tctgaatctc aatggaatca gttgttgttg aaccagtcct tgaacaacga atcctcttct
5580


tcttctaact gttacggtgg tttctccaac gtttctttta ttggtggtga aaaggatgtc
5640


gactcccatt ctttcatatt gcactgccaa aaagaatcca tctcccaaat gaagttagcc
5700


accactatta acaacggttt gtcatctggt tccatcgtta tcgttttgaa ctctcaacaa
5760


ttgaccaaca tgaagtccta cccaaaggtt attgagtata ttcaagaggc tacctctttg
5820


tgcaagacca ttgaaattat cgattccaag gacgtcttga actctaccaa ttcagttttg
5880


gaaaagatcc aaaagtcctt gttggtgttc tgtttgttgg gttatgactt gttggagaac
5940


aactaccaag aacagtcttt cgaatacgtt aagttgttga acttgatctc tactaccgcc
6000


tcttcatcta atgataagaa accaccaaag gtcttgttga tcaccaagca atctgaaaga
6060


atctccaggt ctttctactc cagatccttg attggtattt ccagaacctc tatgaacgag
6120


tacccaaatt tgtccattac ctctatcgat ttggatacca acgactactc attgcagtct
6180


ttgttgaagc caatcttcag caactctaag ttttccgaca acgagttcat cttcaaaaag
6240


ggcttgatgt tcgtgtccag gatctttaag aacaagcagt tgctagaatc ctccaacgct
6300


tttgaaactg actcttctaa cttgtactgt aaggcctctt ctgacttgtc ttacaagtac
6360


gctattaagc agtctatgtt gaccgaaaat cagatcgaaa tcaaggttga atgcgtcggt
6420


attaacttca aggacaacct attctacaag ggcttgttgc cacaagaaat tttcagaatg
6480


ggtgacatct acaatccacc atatggtttg gaatgctctg gtgttattac cagaattggt
6540


tctaacgtca ccgaatactc agttggtcaa aatgtttttg gtttcgccag acattctttg
6600


ggttctcatg ttgttaccaa caaggatttg gttatcttga agccagatac catctcattt
6660


tctgaagctg cttctatccc agttgtttac tgtactgctt ggtactcctt gttcaacatt
6720


ggtcagttgt ctaacgaaga atccatccta attcattctg ctactggtgg tgtaggtttg
6780


gcttctttga atttgttgaa aatgaagaat cagcaacagc aaccattgac caatgtttat
6840


gctactgttg gctctaacga gaagaagaag ttcttgatcg ataacttcaa caacttgttc
6900


aaagaggacg gcgaaaacat tttctctacc agagacaaag aatactccaa ccagttggaa
6960


tccaagatcg atgttatttt gaacaccttg tccggtgaat tcgtcgaatc taatttcaag
7020


tccttgagat ccttcggtag attgattgat ttgtctgcta ctcacgttta cgccaatcaa
7080


caaattggtc taggtaactt caagttcgac cacttgtatt ctgctgttga cttggaaaga
7140


ttgatcgacg aaaaacctaa gttgttgcag tccatcttgc aaagaattac caactctatc
7200


gtcaacggtt ccttggaaaa aattccaatt accatcttcc catccaccga aactaaggat
7260


gctatcgaat tattgtccaa gagatcccat atcggtaaag ttgttgtaga ttgcaccgat
7320


atctctaagt gtaatcctgt tggtgatgtg atcaccaact tctctatgag attgccaaag
7380


ccaaactacc agttgaattt gaactccacc ttgttgatta ctggtcagtc tggtttgtct
7440


atccctttgt tgaattggtt gttgtctaag tctggtggta acgttaagaa cgttgtcatc
7500


atttctaagt ccaccatgaa gtggaagttg cagactatga tttcccattt cgtttccggt
7560


ttcggtatcc attttaacta cgttcaagtc gacatctcca actacgatgc tttgtctgaa
7620


gctattaagc aattgccatc tgatttgcca ccaatcacct ctgtttttca tttggctgct
7680


atctacaacg atgttccaat ggatcaagtt accatgtcta ccgttgaatc tgttcataac
7740


cctaaagttt tgggtgccgt taacttgcat agaatctctg tttcttttgg ttggaagttg
7800


aaccacttcg tcttgttctc ttctattact gctattaccg gttacccaga ccaatctatc
7860


tacaattctg ccaactctat tttggacgct ttgtccaact ttagaaggtt tatgggtttg
7920


ccatccttct ccattaactt gggtccaatg aaggatgaag gtaaggtttc taccaacaag
7980


agcatcaaga agctattcaa gtctagaggt ttgccaagcc tatccttgaa caagttattt
8040


ggtttgttgg aggtcgtcat caacaaccca tctaatcatg ttatcccatc ccaattgatt
8100


tgctccccaa tcgatttcaa gacctacatc gaatctttct caactatgag gccaaagttg
8160


ttacacttgc aacctaccat ttccaagcag caatcttcta tcattaacga ttctaccaag
8220


gcttcctcca acatttcatt gcaagataag atcacctcca aggtgtctga tttgttgtcc
8280


attccaatct ccaagatcaa cttcgatcat ccattgaaac actacggctt ggattctttg
8340


ttgaccgttc aattcaaatc ctggatcgac aaagaattcg aaaagaactt gttcacccat
8400


atccaattgg ccaccatctc tattaactca ttcttggaaa aggtgaacgg cttgtctaca
8460


aacaataaca acaacaacaa ttccaacgtc aagtcctctc catccattgt caaagaagaa
8520


atcgttacct tggacaagga tcaacaacca ttgctattga aagaacacca gcacattatc
8580


atctccccag atattagaat caacaagcca aagagggaat ccttgattag aaccccaatc
8640


ttgaacaaat tcaaccagat caccgaatcc attatcactc catctacacc atctttgtcc
8700


caatccgatg ttttgaaaac tccaccaatc aagtctttga acaacactaa gaactccagc
8760


ttgattaaca ccccaccaat tcaatctgtc caacaacatc aaaagcaaca acaaaaggtc
8820


caagtcatcc aacaacagca acaaccatta tccagattgt cctacaagag caacaacaac
8880


tctttcgttt tgggtatcgg tatttctgtt ccaggtgaac ctatttccca acaatccttg
8940


aaagactcca tctccaatga cttttctgat aaggctgaaa ctaacgagaa ggtcaagaga
9000


atctttgagc aatctcaaat caagaccaga cacttggtta gagattacac taagccagag
9060


aactccatca agttcagaca tttggaaacc attaccgatg tgaacaacca gttcaagaaa
9120


gttgttccag atttggctca acaagcctgt ttgagagctt tgaaagattg gggtggtgat
9180


aagggtgata ttacccatat agtttctgtt acctccaccg gtattatcat cccagatgtt
9240


aatttcaagt tgatcgactt gttgggcttg aacaaggatg ttgaaagagt gtctttgaac
9300


ctaatgggtt gtttggctgg tttgagttct ttgagaactg ctgcttcttt ggctaaggct
9360


tctccaagaa atagaatttt ggttgtctgt accgaagtct gctccttgca tttttctaat
9420


actgatggtg gtgatcaaat ggtcgcctct tctatttttg ctgatggttc tgctgcttac
9480


attattggtt gtaacccaag aattgaagaa accccattat acgaagtcat gtgctccatt
9540


aacagatctt tcccaaatac cgaaaacgcc atggtttggg atttggaaaa agaaggttgg
9600


aacttgggtt tggatgcttc tattccaatt gtcattggtt ctggtattga agccttcgtt
9660


gatactttgt tggataaggc taagttgcaa acttccactg ctatttctgc taaggattgc
9720


gaattcttga ttcatactgg tggcaagtcc atcttgatga acatcgaaaa ttccttgggt
9780


atcgacccaa agcaaactaa gaatacttgg gatgtttacc atgcctacgg caatatgtca
9840


tctgcctctg ttattttcgt tatggatcat gccagaaagt ccaagtcttt gccaacttac
9900


tcaatttctt tggcttttgg tccaggtttg gcttttgaag gttgtttctt gaagaacgtc
9960


gtctaaagac ataaaactga aacaacacca attaataata gactttacag aagacgggag
10020


acactagcac acaactttac caggcaaggt atttgacgct agcatgtgtc caattcagtg
10080


tcatttatga ttttttgtag taggatataa atatatacag cgctccaaat agtgcggttg
10140


ccccaaaaac accacggaac ctcatctgtt ctcgtacttt gttgtgacaa agtagctcac
10200


tgccttatta tcacattttc attatgcaac gcttcggaaa atacgatgtt gaaaatgcct
10260


ctagagatga aaaacaatcg taaaagggtc ctgcgtaatt gaaacatttg atcagtatgc
10320


agtggcacag aaacaaccag gaatactata gtcataggca atacaaggta tatattggct
10380


atgcagaccc ctccagaaag taccgacgtc aagttagata cacttaacga acctagtgca
10440


catttaattg agaaaaatgt ggctcttcct aaggacatat tccgttcgta cttgagttat
10500


tggatctatg aaatcgctcg ctatacacca gtcatgattt tgtccctctt tatattacat
10560


caaaataaga aaataattat aaca
10584










<210>    47


<211>  4909


<212> DNA


<213> Artificial Sequence


<220> 


<223> Cassette with Cas9 coding sequence, regulatory sequences and


integration sequences


<220> 


<221> LV3


<222> (1) . . . (40)


<220> 


<221> TEF1p


<222> (41) . . . (446)


<220> 


<221> Cas9


<222> (470) . . . (4609)


<220> 


<221> LV5


<222> (4870) . . . (4909)


<400>    47








aggaatactc tgaataaaac aacttatata ataaaaatgc atagcttcaa aatgtttcta
60


ctcctttttt actcttccag attttctcgg actccgcgca tcgccgtacc acttcaaaac
120


acccaagcac agcatactaa atttcccctc tttcttcctc tagggtgtcg ttaattaccc
180


gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt tctttttctt cgtcgaaaaa
240


ggcaataaaa atttttatca cgtttctttt tcttgaaaat tttttttttg atttttttct
300


ctttcgatga cctcccattg atatttaagt taataaacgg tcttcaattt ctcaagtttc
360


agtttcattt ttcttgttct attacaactt tttttacttc ttgctcatta gaaagaaagc
420


atagcaatct aatctaagtt ttctagaact agtggatccc ccgggaaaaa tggacaagaa
480


gtactccatt gggctcgata tcggcacaaa cagcgtcggc tgggccgtca ttacggacga
540


gtacaaggtg ccgagcaaaa aattcaaagt tctgggcaat accgatcgcc acagcataaa
600


gaagaacctc attggcgccc tcctgttcga ctccggggag acggccgaag ccacgcggct
660


caaaagaaca gcacggcgca gatatacccg cagaaagaat cggatctgct acctgcagga
720


gatctttagt aatgagatgg ctaaggtgga tgactctttc ttccataggc tggaggagtc
780


ctttttggtg gaggaggata aaaagcacga gcgccaccca atctttggca atatcgtgga
840


cgaggtggcg taccatgaaa agtacccaac catatatcat ctgaggaaga agcttgtaga
900


cagtactgat aaggctgact tgcggttgat ctatctcgcg ctggcgcata tgatcaaatt
960


tcggggacac ttcctcatcg agggggacct gaacccagac aacagcgatg tcgacaaact
1020


ctttatccaa ctggttcaga cttacaatca gcttttcgaa gagaacccga tcaacgcatc
1080


cggagttgac gccaaagcaa tcctgagcgc taggctgtcc aaatcccggc ggctcgaaaa
1140


cctcatcgca cagctccctg gggagaagaa gaacggcctg tttggtaatc ttatcgccct
1200


gtcactcggg ctgaccccca actttaaatc taacttcgac ctggccgaag atgccaagct
1260


tcaactgagc aaagacacct acgatgatga tctcgacaat ctgctggccc agatcggcga
1320


ccagtacgca gacctttttt tggcggcaaa gaacctgtca gacgccattc tgctgagtga
1380


tattctgcga gtgaacacgg agatcaccaa agctccgctg agcgctagta tgatcaagcg
1440


ctatgatgag caccaccaag acttgacttt gctgaaggcc cttgtcagac agcaactgcc
1500


tgagaagtac aaggaaattt tcttcgatca gtctaaaaat ggctacgccg gatacattga
1560


cggcggagca agccaggagg aattttacaa atttattaag cccatcttgg aaaaaatgga
1620


cggcaccgag gagctgctgg taaagcttaa cagagaagat ctgttgcgca aacagcgcac
1680


tttcgacaat ggaagcatcc cccaccagat tcacctgggc gaactgcacg ctatcctcag
1740


gcggcaagag gatttctacc cctttttgaa agataacagg gaaaagattg agaaaatcct
1800


cacatttcgg ataccctact atgtaggccc cctcgcccgg ggaaattcca gattcgcgtg
1860


gatgactcgc aaatcagaag agaccatcac tccctggaac ttcgaggaag tcgtggataa
1920


gggggcctct gcccagtcct tcatcgaaag gatgactaac tttgataaaa atctgcctaa
1980


cgaaaaggtg cttcctaaac actctctgct gtacgagtac ttcacagttt ataacgagct
2040


caccaaggtc aaatacgtca cagaagggat gagaaagcca gcattcctgt ctggagagca
2100


gaagaaagct atcgtggacc tcctcttcaa gacgaaccgg aaagttaccg tgaaacagct
2160


caaagaagac tatttcaaaa agattgaatg tttcgactct gttgaaatca gcggagtgga
2220


ggatcgcttc aacgcatccc tgggaacgta tcacgatctc ctgaaaatca ttaaagacaa
2280


ggacttcctg gacaatgagg agaacgagga cattcttgag gacattgtcc tcacccttac
2340


gttgtttgaa gatagggaga tgattgaaga acgcttgaaa acttacgctc atctcttcga
2400


cgacaaagtc atgaaacagc tcaagaggcg ccgatataca ggatgggggc ggctgtcaag
2460


aaaactgatc aatgggatcc gagacaagca gagtggaaag acaatcctgg attttcttaa
2520


gtccgatgga tttgccaacc ggaacttcat gcagttgatc catgatgact ctctcacctt
2580


taaggaggac atccagaaag cacaagtttc tggccagggg gacagtcttc acgagcacat
2640


cgctaatctt gcaggtagcc cagctatcaa aaagggaata ctgcagaccg ttaaggtcgt
2700


ggatgaactc gtcaaagtaa tgggaaggca taagcccgag aatatcgtta tcgagatggc
2760


ccgagagaac caaactaccc agaagggaca gaagaacagt agggaaagga tgaagaggat
2820


tgaagagggt ataaaagaac tggggtccca aatccttaag gaacacccag ttgaaaacac
2880


ccagcttcag aatgagaagc tctacctgta ctacctgcag aacggcaggg acatgtacgt
2940


ggatcaggaa ctggacatca atcggctctc cgactacgac gtggatcata tcgtgcccca
3000


gtcttttctc aaagatgatt ctattgataa taaagtgttg acaagatccg ataaaaatag
3060


agggaagagt gataacgtcc cctcagaaga agttgtcaag aaaatgaaaa attattggcg
3120


gcagctgctg aacgccaaac tgatcacaca acggaagttc gataatctga ctaaggctga
3180


acgaggtggc ctgtctgagt tggataaagc cggcttcatc aaaaggcagc ttgttgagac
3240


acgccagatc accaagcacg tggcccaaat tctcgattca cgcatgaaca ccaagtacga
3300


tgaaaatgac aaactgattc gagaggtgaa agttattact ctgaagtcta agctggtctc
3360


agatttcaga aaggactttc agttttataa ggtgagagag atcaacaatt accaccatgc
3420


gcatgatgcc tacctgaatg cagtggtagg cactgcactt atcaaaaaat atcccaagct
3480


tgaatctgaa tttgtttacg gagactataa agtgtacgat gttaggaaaa tgatcgcaaa
3540


gtctgagcag gaaataggca aggccaccgc taagtacttc ttttacagca atattatgaa
3600


ttttttcaag accgagatta cactggccaa tggagagatt cggaagcgac cacttatcga
3660


aacaaacgga gaaacaggag aaatcgtgtg ggacaagggt agggatttcg cgacagtccg
3720


gaaggtcctg tccatgccgc aggtgaacat cgttaaaaag accgaagtac agaccggagg
3780


cttctccaag gaaagtatcc tcccgaaaag gaacagcgac aagctgatcg cacgcaaaaa
3840


agattgggac cccaagaaat acggcggatt cgattctcct acagtcgctt acagtgtact
3900


ggttgtggcc aaagtggaga aagggaagtc taaaaaactc aaaagcgtca aggaactgct
3960


gggcatcaca atcatggagc gatcaagctt cgaaaaaaac cccatcgact ttctcgaggc
4020


gaaaggatat aaagaggtca aaaaagacct catcattaag cttcccaagt actctctctt
4080


tgagcttgaa aacggccgga aacgaatgct cgctagtgcg ggcgagctgc agaaaggtaa
4140


cgagctggca ctgccctcta aatacgttaa tttcttgtat ctggccagcc actatgaaaa
4200


gctcaaaggg tctcccgaag ataatgagca gaagcagctg ttcgtggaac aacacaaaca
4260


ctaccttgat gagatcatcg agcaaataag cgaattctcc aaaagagtga tcctcgccga
4320


cgctaacctc gataaggtgc tttctgctta caataagcac agggataagc ccatcaggga
4380


gcaggcagaa aacattatcc acttgtttac tctgaccaac ttgggcgcgc ctgcagcctt
4440


caagtacttc gacaccacca tagacagaaa gcggtacacc tctacaaagg aggtcctgga
4500


cgccacactg attcatcagt caattacggg gctctatgaa acaagaatcg acctctctca
4560


gctcggtgga gacagcaggg ctgaccccaa gaagaagagg aaggtgtgat ctcttctcga
4620


gtcatgtaat tagttatgtc acgcttacat tcacgccctc cccccacatc cgctctaacc
4680


gaaaaggaag gagttagaca acctgaagtc taggtcccta tttatttttt tatagttatg
4740


ttagtattaa gaacgttatt tatatttcaa atttttcttt tttttctgta cagacgcgtg
4800


tacgcatgta acattatact gaaaaccttg cttgagaagg ttttgggacg ctcgaaggct
4860


ttaatttgcc ctctttatat tacatcaaaa taagaaaata attataaca
4909









Examples Only

In the preceding description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the embodiments. However, it will be apparent to one skilled in the art that these specific details are not required.


The above-described embodiments are intended to be examples only. Alterations, modifications and variations can be effected to the particular embodiments by those of skill in the art without departing from the scope, which is defined solely by the claims appended hereto.

Claims
  • 1.-70. (canceled)
  • 71. A method of producing phytocannabinoids or phytocannabinoid analogues, the method comprising: providing a yeast cell comprising a first polynucleotide coding for a polyketide synthase enzyme and a second polynucleotide coding for a cytosolic prenyltransferase enzyme, wherein: the polyketide synthase enzyme is for producing at least one precursor chemical from malonyl-CoA, the precursor chemical having structure I:
  • 72. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is H, and R3 is H.
  • 73. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is carboxyl, and R3 is H.
  • 74. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is methyl, and R3 is H.
  • 75. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is carboxyl, and R3 is methyl.
  • 76. The method of claim 71 wherein the polyketide synthase enzyme comprises a DiPKS polyketide synthase enzyme from D. discoideum.
  • 77. The method of claim 76 wherein the first polynucleotide comprises a coding sequence for the DiPKS polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 535 to 9978 of SEQ ID NO: 46.
  • 78. The method of claim 76 wherein the at least one precursor chemical comprises a precursor chemical wherein R2 is a methyl group and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a methylated phytocannabinoid analogue.
  • 79. The method of claim 76 wherein: the DiPKS polyketide synthase enzyme comprises a mutation affecting an active site of a C-Met domain for mitigating methylation of the at least one precursor chemical, resulting in the at least one precursor chemical comprising a first precursor chemical wherein R2 is methyl and R3 is H, and a second precursor chemical wherein R2 is H and R3 is H; andthe at least one species of phytocannabinoid or phytocannabinoid analogue comprises a methylated phytocannabinoid analogue and an unmethylated phytocannabinoid.
  • 80. The method of claim 79 wherein the DiPKS polyketide synthase enzyme comprises a DiPKSG1516D; G1518A polyketide synthase enzyme.
  • 81. The method of claim 80 wherein the first polynucleotide comprises a coding sequence for the DiPKSG1516D, G1518A polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 37.
  • 82. The method of claim 76 wherein: the DiPKS polyketide synthase enzyme comprises a mutation reducing activity at an active site of a C-Met domain of the DiPKS polyketide synthase enzyme for preventing methylation of the at least one precursor chemical, resulting in the at least one precursor chemical having a hydrogen R2 group and a hydrogen R3 group; andthe at least one species of phytocannabinoid or phytocannabinoid analogue comprises a decarboxylated phytocannabinoid or phytocannabinoid analogue.
  • 83. The method of claim 82 wherein the DiPKS polyketide synthase enzyme comprises a DiPKSG1516R polyketide synthase enzyme.
  • 84. The method of claim 83 wherein the first polynucleotide comprises a coding sequence for the DiPKSG1516R polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 38.
  • 85. The method of claim 76 wherein the yeast cell comprises a phosphopantetheinyl transferase polynucleotide coding for a phosphopantetheinyl transferase enzyme for increasing the activity of the DiPKS polyketide synthase enzyme.
  • 86. The method of claim 85 wherein the phosphopantetheinyl transferase comprises NpgA phosphopantetheinyl transferase enzyme from A. nidulans.
  • 87. The method of claim 86 wherein the phosphopantetheinyl transferase polynucleotide comprises a coding sequence for the NpgA phosphopantetheinyl transferase enzyme from A. nidulans with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 1170 to 2201 of SEQ ID NO: 10.
  • 88. The method of claim 71 wherein the polyketide synthase enzyme comprises an active site for synthesizing the at least one precursor chemical from malonyl-CoA without a longer chain ketyl-CoA.
  • 89. The method of claim 88 wherein the at least one precursor chemical comprises a pentyl group at R1 and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a pentyl-phytocannabinoid or methylated pentyl-phytocannabinoid analogue.
  • 90. The method of claim 89 wherein the at least one precursor chemical comprises at least one of olivetol olivetolic acid, methyl-olivetol, or methyl-olivetolic acid, and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises at least one of CBG, CBGa, meCBG, or meCBGa.
  • 91. The method of claim 71 wherein the cytosolic prenyltransferase enzyme comprises an NphB prenyltransferase enzyme from Streptomyces sp CL190.
  • 92. The method of claim 91 wherein the second polynucleotide comprises a coding sequence for NphB prenyltransferase enzyme from Streptomyces sp CL190 with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 987 to 1913 of SEQ ID NO: 44.
  • 93. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is H, and R3 is H.
  • 94. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is carboxyl, and R3 is H.
  • 95. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is methyl, and R3 is H.
  • 96. The method of claim 71 wherein the at least one precursor chemical comprises a precursor chemical wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is carboxyl, and R3 is methyl.
  • 97. The method of claim 71 wherein the yeast cell comprises a genetic modification to increase available geranylpyrophosphate.
  • 98. The method of claim 97 wherein the genetic modification comprises an inactivation of the Erg20 enzyme.
  • 99. The method of claim 98 wherein the yeast cell comprises an Erg20 polynucleotide including a coding sequence for Erg20K197E with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by SEQ ID NO: 3.
  • 100. The method of claim 71 wherein the yeast cell comprises a genetic modification to increase available malonyl-CoA.
  • 101. The method of claim 100 wherein the genetic modification comprises increased expression of Maf1.
  • 102. The method of claim 101 wherein the yeast cell comprises a Maf1 polynucleotide including a coding sequence for Maf1 with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 936 to 2123 of SEQ ID NO: 8.
  • 103. The method of claim 100 wherein the genetic modification comprises a modification for increasing cytosolic expression of an aldehyde dehydrogenase and an acetyl-CoA synthase.
  • 104. The method of claim 103 wherein the yeast cell comprises an Acs polynucleotide including a coding sequence for AcsL641P from S. enterica with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 3938 to 5893 of SEQ ID NO: 4, and a coding sequence for Ald6 from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 1494 to 2999 of SEQ ID NO 4.
  • 105. The method of claim 100 wherein the genetic modification comprises a modification for increasing malonyl-CoA synthase activity.
  • 106. The method of claim 105 wherein the yeast cell comprises an Acc1 polynucleotide including a coding sequence for Acc1S659A, S1157A from S. cerevisiae.
  • 107. The method of claim 106 wherein the Acc1 polynucleotide includes a coding sequence for the Acc1S659A, S1157A enzyme, with a portion thereof having a primary structure with between 80% and 100% amino acid residue sequence identity with a protein portion coded for by a reading frame defined by bases 9 to 1716 of SEQ ID NO: 7. Acc1S659A, S1157A.
  • 108. The method of claim 105 wherein the yeast cell comprises an Acc1 polynucleotide including the coding sequence for Acc1 from S. cerevisiae under regulation of a constitutive promoter.
  • 109. The method of claim 108 wherein the constitutive promoter comprises a PGK1 promoter from S. cerevisiae.
  • 110. The method of claim 109 wherein the PGK1 promoter has between 80% and 100% nucleotide identity with bases 7 to 750 of SEQ ID NO: 6.
  • 111. The method of claim 100 wherein the genetic modification comprises increased expression of an activator for sterol biosynthesis.
  • 112. The method of claim 111 wherein the yeast cell comprises a Upc2 polynucleotide including a coding sequence for Upc2E888D from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence identity with a protein coded for by a reading frame defined by bases 975 to 3701 of SEQ ID NO: 9.
  • 113. The method of claim 71 wherein the second polynucleotide comprises a coding sequence for a cytosolic prenyltransferase enzyme with a primary structure having between 80% and 100% amino acid residue sequence identity with any one of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35 or SEQ ID NO: 36.
  • 114. The method of claim 71 further comprising extracting the at least one species of phytocannabinoid or phytocannabinoid analogue from the yeast cell culture.
  • 115. A yeast cell for producing phytocannabinoids or phytocannabinoid analogues, the yeast cell comprising: a first polynucleotide coding for a polyketide synthase enzyme; anda second polynucleotide coding for a cytosolic prenyltransferase enzyme;wherein: the polyketide synthase enzyme is for producing at least one precursor chemical from malonyl-CoA, the precursor chemical having structure I:
  • 116. A method of transforming a yeast cell for production of phytocannabinoids or phytocannabinoid analogues, the method comprising: introducing a first polynucleotide coding for a polyketide synthase enzyme into the yeast cell line; andintroducing a second polynucleotide coding for a cytosolic prenyltransferase enzyme into the yeast;wherein: the polyketide synthase enzyme is for producing at least one precursor chemical from malonyl-CoA, the precursor chemical having structure I:
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority of United States Provisional Patent Application No. 62/460,526, entitled METHOD AND CELL LINE FOR PRODUCTION OF PHYTOCANNABINOIDS IN YEAST, filed Feb. 17, 2017, which is hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/CA2018/050189 2/19/2018 WO 00
Provisional Applications (1)
Number Date Country
62460526 Feb 2017 US