The present invention relates to the field of integrated circuits; more specifically, it relates to a circuit and method for compensating for tunneling leakage currents in an integrated circuit chip.
Integrated circuit manufacturing tolerances on critical field effect (FET) device parameters can affect device performance. For example, variations in gate dielectric (often an oxide) thickness, FET channel length and threshold voltage will produce skews in performance and in power consumption creating distributions referred to as fast, nominal and slow process, or alternatively as best-case, nominal and worst-case product corners.
Further, as dielectric thicknesses have decreased, tunneling leakage has become an appreciable fraction of the total integrated circuit power consumption. Tunneling leakage is especially problematic for the best-case or fast process distribution, because the faster devices draw more current than slow devices. In the absence of speed sorting, the speed of integrated circuits is specified at the slowest end of the distribution to insure all manufacturing output can be sold. An integrated circuit with fast processing will therefore be sold for performances slower than its actual capabilities and will conduct the highest amount of gate leakage.
Device dielectric tunneling leakage current can also affect burn-in of integrated circuits. During burn-in, a static voltage that is a multiple of the normal operating voltage of the integrated circuit is applied to the integrated circuit in order to force devices with weak gate dielectrics and other defects to fail. A typical burn-in condition multiplies the normal power supply between 1.1× and 1.5×, which results in a static tunneling current increase. Burn-in power dissipation can be 60 watts compared to about 20 watts at the normal, lower power supply. At these higher burn-in voltages power dissipation of the integrated circuit can be high enough to cause catastrophic failure of both the integrated circuit and the associated burn-in boards and other equipment.
Therefore, a method of compensating for tunneling leakage that will reduce the power consumption of fast integrated circuit chips and the power distribution of integrated circuits chips during burn-in is needed.
A first aspect of the present invention is a tunneling leakage current compensation circuit, comprising: a current mirror coupled to a tunneling leakage monitor, the tunneling leakage monitor including a tunneling leakage monitoring device, the current mirror adapted to force a tunneling leakage current of the tunneling leakage device to a predetermined current value; and a voltage buffer coupled to the leakage monitor, the voltage buffer adapted to generate an output voltage based on a voltage level developed across the leakage monitoring device when the tunneling leakage current is at the predetermined current value.
A second aspect of the present invention is a method of compensating for tunneling current leakage in an integrated circuit chip, the method comprising: forcing a current of known value through a tunneling current leakage monitor device to provide a voltage signal; and regulating an on-chip power supply of the integrated circuit chip based on the voltage signal.
A third aspect of the present invention is a method of compensating for tunneling current leakage in an integrated circuit chip, the method comprising: providing a current mirror coupled to a tunneling leakage monitor, the tunneling leakage monitor including a tunneling leakage monitoring device, the current mirror for forcing a tunneling leakage current of the tunneling leakage device to a predetermined current value; and providing a voltage buffer coupled to the leakage monitor, the voltage buffer for generating an output voltage based on a voltage level developed across the leakage monitoring device when the tunneling leakage current is at the predetermined current value.
The features of the invention are set forth in the appended claims. The invention itself, however, will be best understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
For the purposes of the present invention, tunneling leakage is defined as both the current flow due to a statistical probability that carriers will pass through a dielectric layer having a voltage applied across the dielectric layer and the current flow through a dielectric layer related to dielectric structure and dielectric faults. A gate capacitor is defined as a capacitor formed from a gate, a gate dielectric and the channel region of an NFET or a PFET and commonly referred to as an NCAP or a PCAP respectively. This definition of a gate capacitor is intended to cover all thin dielectric capacitors formed using a thin dielectric film formed on a semiconductor substrate, wherein the semiconductor substrate is one of the plates of the capacitor.
A fast process or best-case process is defined as a process resulting in an integrated circuit chip having the minimum gate dielectric thickness, shortest channel length and lowest threshold voltage allowed by the manufacturing process specification. A slow process or worst-case process is defined as a process resulting in an integrated circuit chip having the maximum gate dielectric thickness, longest channel length and highest threshold voltage allowed by the manufacturing process specification. A nominal process or nominal case process is defined as a process resulting in an integrated circuit chip having a gate dielectric thickness, a channel length and a threshold voltage centered in the manufacturing process specification. For the purposes of the present invention, the terms slow process and worst-case process may be used interchangeably. For the purposes of the present invention, the terms nominal process and nominal-case process may be used interchangeably. For the purposes of the present invention, the terms fast process and best-case process may be used interchangeably.
It should also be understood that the voltage applied to the integrated circuit chip during burn-in is about 1.1 to 1.5 times the normal operating voltage of the integrated circuit chip.
The curves in
Turning to
In
In applications where an integrated circuit chip has multiple external voltage supplies feeding multiple VDDN power distribution networks, one, multiple or all external voltage supplies may be coupled to their respective power distribution networks by multiple corresponding sets of current mirrors, leakage monitors, voltage buffers and voltage regulators coupled together as described supra.
Current mirror 120, leakage monitor 125 and voltage buffer 130 and their interconnections are illustrated in detail in
The input of current source S1 is coupled to VDDX. The output of current source S1 is coupled to a node A as are the drain and gate of NFET N4. The source of NFET N4 is coupled to ground. The output of current mirror 120 at node A is voltage VC. Current source S1 can be supplied by a band gap current source or by other means, and a predetermined amount of current can be supplied to leakage monitor 125 by other means.
Leakage monitor 125 includes PFETS P1 and P2, NFETS N5 and a NCAP N6. NCAP N6 is an example of a gate capacitor. Other forms of gate capacitors as defined supra may be subsituted. The sources of PFETS P1 and P2 are coupled to VDDX and the gates of PFETs P1 and P2 and the drain of PFET P1 are coupled to the drain of NFET N5. The gate of NFET N5 is coupled to the gate of NFET N4. The drain of PFET P2 is coupled to a node B as is the gate of NCAP N6. The source and drain of NCAP N6 and the source of NFET N5 are coupled to ground. The output of leakage monitor 125 is a voltage VTUN on node B. NCAP N6 is an NFET wired as a capacitor and the gate dielectric of NCAP N6 leaks a predetermined and controlled tunneling current ILEAK.
Voltage buffer 130 includes a unity (1:1) differential amplifier DA1 and a pass gate PFET P3. The negative input of differential amplifier DA1 is coupled to node B, and the output of the differential amplifier is coupled to the gate of PFET P3. The drain of PFET P3 is coupled to a node C as is the positive input of the differential amplifier. The output of voltage buffer 130 is a voltage VDDREG on node C.
The inputs DAC0, DAC1, DAC2 and DAC3 determine the current mirrored into NFET N5 and reflected into NCAP N6. Thus, current ILEAK is fixed. Since ILEAK is an exponential function of VTUN, a small change in VTUN will result in a large change in ILEAK. With ILEAK forced through NCAP N6, voltage VTUN develops on the gate of NCAP N6. VTUN is buffered by differential amplifier DA1 and PFET P3 to provide VDDREG. VDDREG is used by voltage regulator 135 (see
In one example, ILEAK is set to the amount of current produced by unit area of a gate oxide capacitor fabricated to the worst-case process specification. Once this value for ILEAK is determined, the digital signal applied across inputs DAC0, DAC1, DAC2 and DAC3 may be programmed into integrated circuit chip 115 by fuses in fuse bank 150 for all integrated circuit chips of the same identical design regardless of where they fall in the range of worst-case to best case process.
Referring to
The delay of output signals 165A, 165B, and 165C are all about 0.40 nanoseconds+/−50 picoseconds. This delay should be compared with the range delay of the worst-case (slowest) inverter of
In
The leakage compensation circuit of the present invention can also be used to regulate the amount of current drawn during burn-in to an acceptable limit. A second tunneling current level, establishing a burn-in current per unit area of gate dielectric limit can be programmed by adjustment of the DAC inputs (see
Thus, a method of compensating for tunneling leakage that will reduce the power consumption of fast integrated circuit chips and the power dissipation of integrated circuits during burn-in is provided by the present invention.
The description of the embodiments of the present invention is given above for the understanding of the present invention. It will be understood that the invention is not limited to the particular embodiments described herein, but is capable of various modifications, rearrangements and substitutions as will now become apparent to those skilled in the art without departing from the scope of the invention. Therefore it is intended that the following claims cover all such modifications and changes as fall within the true spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5757175 | Morishita et al. | May 1998 | A |
5808484 | Phillips et al. | Sep 1998 | A |
5942934 | Ngo et al. | Aug 1999 | A |
6163191 | Miyagi | Dec 2000 | A |
6326800 | Kirihata | Dec 2001 | B1 |
6462527 | Maneatis | Oct 2002 | B1 |
6472897 | Shyr et al. | Oct 2002 | B1 |
6597619 | Stubbs et al. | Jul 2003 | B2 |
6844750 | Hsu et al. | Jan 2005 | B2 |
20040085845 | Ooishi | May 2004 | A1 |
20040263200 | Persun et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
11126815 | May 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050122160 A1 | Jun 2005 | US |