In the text which follows, the invention will be explained in greater detail with reference to the illustrative embodiments specified in the figures of the drawing, in which:
On the transmit path 1, a transmitter supplies a data signal X0 to be transmitted to a block 2. In block 2, a serial/parallel conversion of the data signal X to be transmitted, a bit allocation for allocating bits to the individual carrier frequencies, individual carrier frequencies being occupied by zero for the method according to the invention, and QAM mapping for allocating the QAM dots take place. The data signal X describes a sequence of blocks of complex Fourier coefficients from which, by means of an IFFT transformation, the time domain signal Z is derived which is subdivided into time intervals—the so-called frames—corresponding to the sampling rate and to the IFFT length of the system. In the text which follows, the section of the data signal X within such a frame or block is called a data symbol. A data symbol within the frame is subdivided into a predetermined number of carrier frequencies in the case of the multi-carrier transmission system. In the case of an ADSL data transmission, a data frame for a data symbol consists of 512 carrier frequencies. Some of these carrier frequencies, typically 10-20 carrier frequencies, are reserved for forming a correction signal for reducing the crest factor. For this purpose, just these reserved carriers are set to zero or additionally or alternatively occupied with additional data in a certain percentage.
At the output of block 2, the data signal X to be transmitted, which is already subdivided into a multiplicity of carrier frequencies, can be picked up. This data signal X is coupled for the purpose of buffering into a buffer storage device 3 which is used for delaying or, respectively, temporarily storing these data signals X and which at its output supplies the suitably delayed data signal X′ to a subsequent IFFT module 4. In the IFFT module 4, the supplied signal X′ is modulated by means of inverse Fourier transformation. The signal Z thus modulated, which exhibits a sampling frequency of 2.208 MHz in the case of an ADSL data transmission and a sampling frequency of 4.416 MHz in the case of an ADSL+ data transmission, is supplied at its output to a subsequent filter unit or filter chain 5. The data signal Z output by the IFFT unit 4 is filtered in the filter 5 and output as signal Z1 which, as will be explained in detail in the text which follows, is still crest-factor-reduced.
To generate crest-factor-reduced data signals Z, Z1, a circuit for crest factor reduction 10 is provided according to the invention. The circuit for crest factor reduction 10 is arranged in parallel with a part of the transmit path 1 and defines a model path 11. The model path 11 branches away from the transmit path 1 at the data paths 6 of block 2 at the output end, so that the CF circuit 10 is also supplied with the data signal X subdivided into individual frequency data carriers. The carrier frequencies 6 occupied with data are supplied to a further IFFT module 12 which advantageously exhibits the same characteristic as the IFFT module 4. If the carrier frequencies 6′ are not occupied with additional data, they are typically occupied with zero.
The IFFT module 12 generates at its output end an output signal Z′ which, due to the identical characteristic, corresponds as precisely as possible to the output signal Z generated by the IFFT module 4. This signal Z′ is supplied to an oversampling block 13 which oversamples the signal Z′ L-fold, for example 4-fold or 2-fold. The L-fold oversampled signal Z″ is supplied to a downstream model filter 14. The model filter 14 is as accurate as possible a replica of the filter or filter chain 5 following the CF circuit 3. This takes into account the characteristic of the filter 5 and its influence on the signal Z to be transmitted. It makes it possible to ensure that, although the output signal Z has been changed by the output filter 5 and there is thus the possibility of generating an excessive crest factor, the filtered output signal Z1 still does not exhibit any excessive peak values.
The model filter 14 is followed by a computing unit 15 which determines from the oversampled and filtered signal Z′″ the corresponding peak values, their amplitude and their position within the data frame. The computing unit 15 also generates a scaling factor and an angle of phase rotation which determines a time displacement for a correction signal. The computing unit 15 is followed by a unit 16 which generates at its output a correction signal D which is used for reducing the crest factor of the data signal X to be transmitted. For this purpose, the unit 16 performs a phase rotation and scaling of the correction signal D as a function of the position and amplitude, determined by the computing unit 15 of the respective maximum value.
On this correction signal D, the signal X′, suitably delayed by the buffer device 3, is superimposed in such a manner that only the reserved carrier frequencies, which are not occupied by data, in the frequency domain are occupied by the correction signal D.
The delayed signal X′ thus exhibits carrier frequencies 6 provided for the data transmission and carrier frequencies 6′ not provided for the data transmission which contain the correction signal in the frequency domain.
From the reserved carrier frequencies 6′ thus generated, dirac-like time domain functions producing a reduction in the crest factor in the output signals Z, Z1 can be generated by means of the IFFT modulation in block 4.
The computing unit 15 is preferably constructed as a program-controlled unit, particularly as a microprocessor or microcontroller. In this arrangement, it can also be provided that individual or several of the units 12, 13, 14, 16 of the CF circuit are also implemented in the functionality of the microprocessor or microcontroller.
In contrast to the illustrative embodiment in
In contrast to the illustrative embodiments in
According to the invention, a CF circuit 10 is also provided in this case. In contrast to the illustrative embodiments of
In contrast to the illustrative embodiment in
The method for reducing the crest factor in the frequency domain according to the invention will be described in greater detail by means of the algorithm described in the text which follows:
For generating dirac-like time domain functions for the correction signals D, it has been found to be successful to select from the available carrier frequencies randomly distributed carrier frequencies for generating this dirac-like correction function. With a real-valued initialization of these carrier frequencies in the frequency domain with a constant value K, a usable dirac-like time domain function is obtained, as a rule, in always normalized form. The constant value K is dimensioned in such a manner that this normalized time domain function exhibits a peak value normalized to one at the position of the peak value of the corresponding time vector of the correction signal.
Depending on the characteristic of the subsequent filter 5 in the signal path 1 only a basic scaling α0 and a displacement Φ0 of the dirac-like correction function has to be taken into consideration additionally in order to take into account the delay and scaling of the correction function due to the filtering. Since such a correction function does not explicitly need to be stored in a memory, this results at least in memory advantages for the implementation with the generation of a correction function in the frequency domain.
The method according to the invention is distinguished by the following method steps:
p
i(k)→{αi(k)3φi(k)}
where n designates the carrier index over all carrier frequencies and M designates the set of carrier frequencies intended for the correction function.
[{tilde over (D)}(k)]n=α0·[D(k)]n·e−j·φ0n
{tilde over (D)}(k)•−∘{tilde over (d)}(k)
Z(k)=Z′(k)−{tilde over (d)}(k)
In the case of the illustrative embodiments of
In a particularly advantageous embodiment, which has already been executed by means of
For this purpose, a higher-valued QAM pattern is defined within a corresponding integrated circuit for the correction signals for crest factor reduction and some bits in the reserved carrier frequencies, for example some LSB bits, are used for the data transmission and the rest is used for the correction signal for crest factor reduction. In the model branch, calculation is carried out as usual in the time domain after the IFFT transformation with oversampling and model filtering. The part-signal carrying data in the reserved carrier can easily be taken into consideration as well. However, the update for the signal path occurs in a frequency domain as described above. After a last iteration, the correction signal is quantized to one of the possible signal points given by the MSB bits. For example, two data bits (two LSB bits) of a QAM pattern can be used for the additional data. This leaves 26=64 possible values for the correction signal as a quasi-virtual coordinate origin for a quadruple QAM setup. The advantage of this is that immediate decoding is possible in the receiver by ignoring the respective MSB bits.
Although the present invention has been described above by means of preferred illustrative embodiments, it is not restricted to these but can be modified in many ways.
In particular, the invention is not restricted to the above data transmission systems and methods but can be expanded, for the purpose of crest factor reduction, to all systems and methods based on multi-carrier data transmission. In particular, the invention shall not be restricted to ADSL data transmission but can be expanded to all xDSL data transmissions. Mobile applications such as DAB (digital audio broadcasting) or DVB-T (digital video broadcasting-terrestrial) or OFDM-based WLAN (wireless local area network) applications are also conceivable.
Naturally, the elements of the circuit for crest factor reduction and the specified IFFT modules and filters are conventional hardware components but can also be implemented as software.
As well, the invention shall not necessarily be restricted to 2-fold or 4-fold oversampling of the data signal to be transmitted. Instead, it can also be provided that no oversampling, even subsampling or oversampling of any degree takes place.
In particular, the invention shall not be restricted to the above numerical information but can be arbitrarily modified within the framework of the invention and of expert knowledge.
D′ Correction signal
Number | Date | Country | Kind |
---|---|---|---|
103 25 839.6 | Jun 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/05905 | 6/1/2004 | WO | 00 | 3/29/2007 |