The present invention relates generally to a system and method for the capture and coding of video and audio to computer via a compact encoding apparatus that supports an efficient common transport. More particularly, the present invention relates to the integration of the elements of digitizing, state-of-the art coding, and interfaces in a novel form factor that permits considerable ease of use.
The fields of video and audio coding are well established, with such familiar technologies as MPEG-1, MPEG-2, and MPEG-4 video coding standards, as well as the well-known ITU/H.26x series; and similarly, with audio codes such as MP3, AC-3, and Advanced Audio Coding (AAC). Presently, the most advanced technology for video coding is the international standard, ITU-T/H.264/ISO/IEC MPEG-4, Part 10, “Advanced Video Coding” (AVC) (hereafter “H.264”), released in July 2003, and amended in July 2004. Similarly AAC is presently considered to be the most advanced general purpose technology for audio coding. Prior art software, firmware, hardware, and tools exist to support previous audio/video coding standards. However, the prior art relates to apparatus which pertains to a decade-old MPEG-2 video standard (ca. 1994). The H.264 coding standard, released in 2003 and amended in 2004, was incorporated into Apple's iPod® around 2004, incorporated into Sony's PSP® in 2005, and in Apple's iPhone® in 2007.
This convergence of coding technologies and formats is limited, unforeseen in the marketplace within recent years, and non-existent as it relates to the system and method set forth in the invention disclosed herein. As such, the prior art does not support encoding with the H.264/AVC standard, and fails to provide the highly compact nature and the capture, compression, and delivery capabilities of the system disclosed.
Accordingly, it is desirable to provide a method and apparatus that provides a highly compact apparatus that captures, in one instance, 2-channel audio and 1-channel NTSC/PAL video, and delivers it to a computer via USB, or a network via an Ethernet interface, for local storage or transmission. In another instance, it captures mixed audio/video in either SDI or HD-SDI input format, compresses it, and delivers it again via USB or Ethernet output.
It is further an object of this invention to support the most advanced compression formats for video and audio.
Another object of this invention is to provide users with a highly convenient method for creating content that can be played in popular media apparatus.
It is yet another object of the invention to avoid tape-based storage and provide a user-friendly method incorporating a “no-moving-parts” approach to creating, transferring, storing, and serving rich multimedia content.
The foregoing needs are met, to a great extent, by the present invention, wherein in one aspect an apparatus is provided that in some embodiments provide a highly compact apparatus that captures 2-channel audio and 1-channel NTSC/PAL video and delivers it to a personal computer via a USB or Ethernet interface for local storage or transmission. Correspondingly, a method is provided for capturing audio and video and delivering it a personal computer for local storage or transmission.
In accordance with one embodiment of the present invention, a system for audio video capture and transmission is provided, said system comprising a compact, real-time audio video capture and encoder apparatus for audio and video data capture and encoder processing; a transmitting client facility having a real-time transmitter for transmitting the captured and encoded audio and video data; and a receiving client facility having a real-time receiver, a decoder and a renderer apparatus for receiving, decoding, and rendering the captured and encoded audio and video data.
In accordance with another embodiment of the present invention, a system for audio video capture and transmission with streaming capability is provided, said system comprising: a highly compact capture device having a hardware board configured for audio and video data capture and encoder processing; an operating facility for receiving the captured and encoded audio and video data from the highly compact capture device; wherein the operating facility has a graphical user interface for configuration of said capture device, a resource for packaging the data, and streaming means; and wherein said operating facility further includes decoding means and displaying means for decoding and displaying a signal received from the capture device; and wherein the system ingests a plurality of raw audio and/or video analog streams with optional auxiliary data, compresses streams in real-time, packages the compressed data in real-time into a common format for wide platform playback, delivers the data in real-time to an external system via a data transport protocol, provides the graphical user interface for selecting an apparatus parameter within the operating facility to format the compressed data, and streams the compressed data to a receiving device.
In accordance with yet another embodiment of the present invention, a method for audio video capture and transmission with streaming capability is provided, said method comprising: capturing a plurality of raw audio and/or video data from a highly compact capture device; encoding the captured audio and/or video data processing; receiving the captured and encoded audio and/or video data from the highly compact capture device; configuring the capture device via a graphical user interface; compressing streams of the audio and video data in real-time; packaging the compressed data in real-time into a common format for wide platform playback; delivering the data in real-time to an external system via a data transport protocol; providing the graphical user interface for selecting an apparatus parameter within the operating facility to format the compressed data, and streaming the compressed data to a receiving device.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. An embodiment in accordance with the present invention provides a method as well as an apparatus comprised of a three-part system, comprising: a highly compact apparatus, whether instantiated in software (computer-readable code), firmware (specialized software for a digital signal processor (DSP)), VHDL (Very High Speed Integrated Circuit (VHSIC) Hardware Description Language, a specialized language for programming field programmable gate arrays (FPGAs)), or in a hardware circuit board, whose purpose is multimedia encoder processing; a secondary apparatus, whether instantiated in software, firmware, or hardware, residing in either the same or an external system, for the purpose of providing a graphical user interface, a resource for data packaging, or for streaming; and a third apparatus, also in software, firmware or hardware, for receiving, decoding and displaying the received signal, which in total provides several functionalities benefiting the user.
The system according to the present invention ingests raw audio and/or video streams, whether analog or digital, together with optional auxiliary data such as metadata. The raw combination of audio/video/auxiliary data streams is compressed in real-time (or faster) using state-of-the-art audio and video codecs, plus optional coding of auxiliary data, wherein the compressed data is packaged in real-time (or faster) into a common format for wide platform playback. The data is delivered in real-time (or faster) to an external system such as a computer via common data transport protocols such as USB or Ethernet
The system according to the present invention optionally streams the compressed formatted data to a third apparatus such as a PC, using common network transport protocols such as TCP/IP or RTP/RTCP over UDP, and provides a simple graphical user interface for convenient apparatus parameter selection, and it provides an ability to receive, decode, and display the received, compressed signal. The capture apparatus of the system is referred to herein as SmartCapture™. Thus, SmartCapture™ is a highly compact audio/video capture/encoding apparatus with an accessible external interface and a convenient graphical user interface (GUI).
An embodiment of a first hardware aspect of the present inventive SmartCapture™ apparatus and method is illustrated in
In a second aspect of this embodiment, illustrated in
With reference to
When the USB connector 36 is inserted into a USB port on a transmitting computer, the SmartPlayer system comprising the software component of the present invention is employed and graphical user interface (GUI) 50 is activated on the host computer's screen 48, as illustrated in
Using the operations menu bar 54, a user may employ the Options screen 68. Device Settings and Record Settings subscreens are illustrated. Using the Device settings subscreen, the user may select from drop down menus to indicated the type of encoding, presets, bitrate control, video controls and frame rate desired.
A second, all software-based embodiment of the system and method of the present invention is illustrated in
As shown in
With respect to
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims priority to provisional U.S. patent application entitled, A Method and Apparatus for Video Capture and Coding in a USB Apparatus, filed Aug. 10, 2006, having a Ser. No. 60/836,879, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60836879 | Aug 2006 | US |