The present invention relates to a method of injecting a polymer to treat disordered, insufficient, or injured structures in a living creature, in particular, a human being. This invention also relates to a composition suitable for use in such a method, its preparation and use.
Many structures in the human body rely upon the flexibility or elasticity of the tissue to exhibit the preferred properties or to perform a desired task. The resilience of the tissue often provides a means for better load distribution and shock-absorbing characteristics. The elasticity may function to create a more natural appearance or more desirable tactile property. Specific examples of these types of structures include the intervertebral discs, or the connective and soft tissue beneath the skin, often associated with providing shape and resilience for the external, visible parts of the body (i.e., maxillofacial).
Intervertebral Disc
The spinal column is composed of 24 vertebrae, which are stacked on top of each other. The individual bony vertebral bodies are separated by spinal discs; these soft structures serve several functions: maintaining the proper spacing and alignment between the vertebrae, absorbing and distributing loads on the vertebrae. The intervertebral disc has a strong fibrous outer ring called the annulus and a softer, gelatinous center called the nucleus pulposus. The annulus surrounds and contains the nucleus and serves as a strong ligament that connects the adjacent vertebrae. The nucleus pulposus provides a shock absorbing mechanism for the spine. The disc also aids in maintaining the appropriate disc height to prevent nerve root impingement by adjacent bony spinal structures.
As the body ages, the disc loses much of its natural cushioning properties through the loss of fluids and elasticity. The annulus may develop small cracks and tears, which can be painful. Annular tears may weaken the fibrous structure to the point that the nucleus pulposus is no longer sufficiently contained and bulges out, or herniates, into the spinal canal or other structures. This pressure on the spinal cord or nerve roots from the herniation can cause severe pain and can eventually lead to impairment of bodily function or paralysis. A herniated disc can also be caused by placing forces on the spine during standard daily activities—moving, lifting, sneezing, or by traumatic events.
The disc height and resilience can be significantly reduced by the loss or dehydration of nucleus material. The loss of the “shock-absorbing” ability of the intervertebral discs can increase the peak loads seen by the adjacent vertebral bodies. In addition, the aging population often exhibits osteoporosis which can weaken the vertebral body, increasing the risk for potential vertebral compression fractures.
Current treatments for the aging intervertebral disc, annular tears, and disc herniation include removal of herniated material through mechanical, laser, or chemical means, insertion of pre-formed nucleus replacement devices, repair of the annulus by suturing or changing the structure of the fibers. The disc may be completely removed and replaced with an articulating prosthesis or a stationary spinal spacer to fuse the adjacent vertebrae. All of the options have the same primary goal, which is pain relief at the affected level, allowing the patient to regain mobility. However, these treatments affect the natural mechanics of the disc by changing the properties of the annulus or nucleus, or by completely replacing the structure(s).
What is proposed is a therapy which would allow the clinician to inject a flowable substance which will polymerize in situ to mimic many of the desired characteristics of the affected structure. The polymer could be tailored to produce a tougher material to fill or repair tears or weaknesses in the annulus, and a softer, more resilient material would be applied to augment or replace the nucleus pulposus.
Plastic surgery applications include the filling of voids in soft tissue or bone that may have occurred due to tumor or cyst removal, trauma, or deformity correction. The application of the material would provide underlying support and structure for the affected areas, and the characteristics of the implant could be tailored for functional or cosmetic purposes. The durometer of the polymer can be chosen to better match or augment the tissue that is being filled, replaced or reconstructed.
It may also be desirable to select a compliant or flexible material for void filling or defect repair in bony structures which are adjacent to soft tissue structures that may be subject to swelling or edema. The flexibility of the implant could allow a pressure release or reduction mechanism during the healing and swelling period. An example would be as a bur hole cover in the skull. In addition, the compliant, rubber-like nature of this implant will also allow more accessibility to the underlying tissue for biopsy, aspiration of fluids, etc.
By employing the present invention, all of the difficulties and drawbacks found in the prior art have been eliminated and a highly effective method for treating diseased, injured, or disordered structures, particularly intervertebral discs, in living creatures is attained. In addition, the present invention also achieves a unique composition particularly formulated and suitable for use in the method of the present invention.
The method of the present invention comprises the injection of an elastomeric filler into the structure to be treated via a percutaneous route, usually under X-Ray guidance, such as lateral projection fluoroscopy. The material is injected as a paste or semi-liquid from a suitable gun or injection system via a needle, that has been passed into body to apply the material to the affected area. The elastomeric filler, once injected, will polymerize in situ. The resulting material provides reinforcement to or replacement of tissue or anatomical structures that are deficient due to the aging process, tumor removal or other surgical intervention, trauma. In addition to the reinforcing, strengthening and shock-absorbing properties, it is desirable that the starting filler composition is of a viscosity that allows it to flow into the voids or spaces as required.
Therefore, it is a principal object of the present invention to provide filler material and a method for using the filler material into an intervertebral disc, the substrate beneath the cartilage in articulating joints, the voids in bony or cartilaginous structures created or treated during plastic or neurosurgical procedures, or other similar applications, which is easily prepared and delivered to the affected area while also providing the desired filling, reinforcing, strengthening and shock-absorbing properties.
Another object of the present invention is to provide filler material and a method for using the filler material in the affected areas having the characteristic features described above which is inherently flexible and viscous to provide flowability throughout the structures as required both during its application and after curing, thereby achieving self-regulating control realized from the fluid properties of the injected liquid and the elastomeric characteristics of the polymerized material.
Another object of the present invention is to provide filler material and a method for using the filler material in the body having the characteristic features described above which is capable of being prepared to exhibit varying levels of hardness or stiffness after curing, thereby allowing the selection and formulation of the filler material with appropriate mechanical properties specifically suited for each application.
Another object of the present invention is to provide filler material and a method for using the filler material in the body having the characteristic features described above which is capable of being prepared with additives that remain active for a length of time after curing, thereby allowing localized therapeutic treatment of the affected area or anatomic structure.
Another object of the present invention is to provide a method for application of the filler material in the body in a controlled and directed manner that results in the placement of the material in targeted areas and having a specific geometry that is preferred for the treatment modality.
Other and more specific objects will in part be obvious and will in part appear hereinafter.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:
By referring to
In
As detailed above, each intervertebral disc 23 maintains the proper spacing and alignment between vertebral bodies 21 and 22, while also absorbing and distributing loads imposed upon the vertebrae. Due to aging, injury, and excessive loads, intervertebral disc 23 often incurs a wide variety of injuries or physical degradation loses, causing the disc to lose much of its natural cushioning properties. In addition, cracks or tears in the disc structure weaken the fibrous structure forming the disc, often causing the disc to deform, bulge, or herniate into the spinal canal or other structures. These various maladies cause severe pain, as well as leading to an impairment of various bodily functions.
By employing the present invention, any damaged or impaired intervertebral disc 23 is capable of being repaired in a direct, easily implemented process. As detailed herein, a needle or cannula is inserted into the damaged or impaired vertebral disc 23 and a uniquely formulated, curable, filler composition is injected into the interior of the intervertebral disc. In the preferred embodiment, the curable filler material comprises an elastic form stable material which is allowed to cure or polymerize in situ, effectively reforming the damaged intervertebral disc 23 and curing the damages or impairments originally present in disc 23.
By referring to
As discussed above, due to the aging process and/or injury, nucleus pulposus 31 often loses fluids and elasticity, thereby losing much of its natural cushioning properties. Furthermore, annulus 30 often develops cracks or tears, which weaken the fibrous structure thereof to a sufficient extent that nucleus pulposus 31 is no longer sufficiently contained within annulus 30.
These problems frequently occur, resulting in various physical difficulties, including severe pain, impairment of bodily functions, impairment of daily activities and/or paralysis. However, by employing the present invention, intervertebral disc 23 can be repaired and the physical difficulties eliminated or substantially reduced.
In accordance with the present invention, a flowable, curable filler composition comprising an elastic form stable material is injected directly into nucleus pulposus 31 and allowed to cure in situ. Once the elastic form stable material has polymerized, the material mimics the physical characteristics inherently present in nucleus pulposus 31.
In this way, all of the physical difficulties or impairments suffered by the individual are virtually eliminated or substantially reduced. In addition, by forming the flowable, curable filler composition of the present invention to impart a tougher material to disc 23 when cured, tears or weaknesses in annulus 30 of disc 23 are able to be repaired.
As shown in
In accordance with the present invention, it has been found that the preferred curable filler composition comprises an elastic form stable material. Preferably, this material comprises a silicone elastomer, with poly (dimethyl siloxane) being preferred. In addition, in the preferred formulation, the composition also incorporates a cross-linking agent and a diluent.
One composition of the curable filler material of the present invention which has been found to be extremely successful comprises between about 60% and 85% by weight based upon the weight of the entire composition of poly (dimethyl siloxane), between about 2% and 5% by weight based upon the weight of the entire composition of a cross-linking agent, and between about 10% and 20% by weight based upon the weight of the entire composition of a diluent. In addition, if desired, a radiopaque material may be incorporated into the composition in order to enable the delivery of the material into disc 23 to be monitored by using suitable equipment, such as x-rays.
In this regard, it has been found that between about 100% and 20% by weight based upon the weight of the entire composition of the radiopaque material is preferably employed. In addition, the radiopaque material preferably comprises one selected from the group consisting of silver powder, barium sulfate, bismuth trioxide, zirconium dioxide, tantalum or titanium powders or fibers, calcium sulfate, calcium phosphate, hydroxyapetite, tri-calcium phosphate, and other medically appropriate opacifier agents.
One preferred formulation of the “cure-in-place” silicone elastomer of the present invention comprises two highly viscous liquid components, namely reinforced dimethyl methylvinyl siloxanes and reinforced dimethyl methylhydrogen siloxanes, supplied in equal parts (1:1 ratio). In addition, this preferred composition is preferably supplied in a pre-filled, two-part mixing and dispensing cartridge/syringe system wherein the two viscous liquid components are maintained separately until the time of use. When desired, the components are thoroughly intermixed with each other in the desired uniform ratio to achieve the desired uniform consistency.
Once the mixing process has been completed, the resulting silicone elastomer is immediately injected into the desired site wherein the material polymerizes in situ in approximately 3 to 15 minutes. Once cured, the silicone elastomer results in a tough, rubbery consistency which has low toxicity and presents a low risk of unfavorable biological reactions. In addition, the preferred formulation preferably incorporates a radio-opaque material in order to enable the delivery of the material to be monitored with standard fluoroscopy.
In accordance with the present invention, it has been found at the following compositions represents the preferred formulations for the two component system of this invention:
Component A:
Vinyldimethyl terminated dimethyl polysiloxane/trimethylsiloxy terminated polydimethyl siloxane, 64%
Silica, amorphous, 21%
Barium Sulfate powder, USP, 15%
Pt Catalyst>0.001%
Component B:
Vinyldimethyl terminated dimethyl polysiloxane/trimethylsiloxy terminated polydimethyl siloxane, 63%
Silica, amorphous, 21%
Barium Sulfate powder, USP, 15%
Trimethyl methyl-hydro dimethyl siloxane (crosslinker), 1%
By employing the compositions detailed above, all of the desired goals and objectives of the present invention are realized.
It has also been found that the curable filler material employed in the method of the present invention preferably possesses a durometer in the cured state which ranges between about 10 A and 90 A. In addition, it has also been found that the curable filler material can be delivered to disc 23 in two stages, with the first stage being employed to fill cracks or tears in annulus 30, while the second stage is employed to repair nucleus pulposus 31. In this regard, the second stage material is delivered to disc 23 after the first stage material has cured. By employing this process, assurance is provided that the material supplied during the second stage is completely retained in disc 23, since any damage or maladies in annulus 23 are fully repaired prior to the delivery of the material for the second stage.
If desired, it has been found that the delivery of the curable filler material to disc 23 in two stages can be achieved in a manner which closely resembles or mimics the normal, anatomical construction. In this regard, the first stage of the repair of annulus 30 is achieved by employing filler material resulting in a durometer in the cured state which ranges between about 30 A and 90 A. In addition, in the second stage, which is employed to repair nucleus pulposus 31, the filler material employed comprises a durometer in the cured state which ranges between about 10 A and 50 A. By employing this dual durometer or differential material construction, the natural or normal anatomical configuration is realized, with a softer, more flexible, and more compressible material forming nucleus pulposus 31 while being peripherally surrounded by a stronger material forming annulus 30.
It has also been found that the present invention can be implemented by employing a hydrogel as the material for forming nucleus pulposus 31. In this regard, the silicone elastomer detailed above is employed for forming the first stage or repairing annulus 30 in the manner detailed above. Once cured, the second stage of the repair is implemented by injecting a hydrogel into annulus 30 forming nucleus pulposus 31. In this way, the desired disc repair is achieved in a manner which achieves all of the desired goals and objectives.
It has also been found that the method of the present invention can be employed in combination with a disc oblation procedure. In this regard, a void is created within intervertebral disc 23 and, once established, the curable filling material of the present invention is supplied thereto. Furthermore, it has also been found that the process of the present invention can be employed in combination with a balloon kyphoplasty procedure or similar deployment of an expandable device or with a steerable biopsy needle or instrument. In this procedure, an expandable balloon or similar device is inserted into disc 23 as a replacement or reinforcement for annulus 30. Once in position, the curable filler material of the present invention is delivered into the balloon or expandable device for providing the filler material thereto, or to inject the material and expand a balloon to compress the material outward toward the annulus forming a reinforced surface. Alternatively, a steerable instrument, such as an articulating or flexible needle or catheter may be used to coat the interior surface of the annulus thus reinforcing it.
Although the foregoing detailed disclosure has focused on the use of the present invention in connection with the repair or reconstruction of a disordered intervertebral disc, the present invention has equal applicability and efficacy in other surgical areas, as discussed above. In this regard, plastic surgery represents another specific area where the method and material composition and formulations of the present invention is equally applicable. Consequently, all of the foregoing detailed disclosure is hereby repeated and reiterated herein, with complete applicability to these other areas where the same overall procedures and material formulations can be employed.
It will thus be seen that the object set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in carrying out the above method and in the composition set forth without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intend to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
Particularly, it is to be understood that in said claims, ingredients or compounds recited in the singular are intended to include compatible mixtures of such ingredients wherever the sense permits.
This application is related to U.S. Provisional Patent Application Ser. No. 60/738,857, filed Nov. 22, 2005, entitled METHOD AND COMPOSITION FOR REPAIR AND RECONSTRUCTION OF INTERVERTEBRAL DISCS AND OTHER RECONSTRUCTIVE SURGERY.
Number | Date | Country | |
---|---|---|---|
60738857 | Nov 2005 | US |