1. Field of the Invention
The invention relates to methods and compositions for reducing serum levels of triacylglycerides in human subjects. In particular, the invention relates to the oral administration of an effective amount of a fungal lipase formulation, to a human subject having high or borderline-high serum levels of triacylglycerides, for a time period sufficient to reduce serum triacylglyceride levels.
2. Description of Related Art
Triacylglyceride Levels
A recent study by Ford et al. (Arch Intern Med, 169(6):572-578, 2009), at the Centers for Disease Control (CDC), involving 5,610 participants, showed that 33.1 percent of the participants had serum triacylglyceride levels defined as borderline high (>150 milligrams per deciliter). Nearly 18 percent had serum triacylglyceride levels defined as high (>200 milligrams per deciliter). High triacylglyceride levels may lead to atherosclerosis, which can increase the risk of heart attack and stroke. Persons with high triacylglyceride levels often have additional conditions that can increase their chances of developing heart disease, such as obesity and diabetes.
Hypertriglyceridemia is a human condition characterized by the presence of high serum levels of triacylglycerides. It has been associated with obesity, but can also be induced by other factors, independent of overall body fat (C T Johansen and R A Hegele, Curr. Opin. Lipidol., 22(4):247-253, 2011). The presence of single nucleotide polymorphisms in cellular genes such APOA5, APOB, GCKR, and LPL can induce severe hypertriglyceridemia in human beings. It is thought that more than 20% of the susceptibility to hypertriglyceridemia is caused by genetic mutations. Endothelial cell dysfunction and adipose cell dysfunction can lead to hypertriglyceridemia (H W Breuer Curr. Med. Res. Opin. 17(1):60-73, 2001; A P van de Woestijne et. al. Obes. Rev. 10.1111 (epub ahead of print) Jul. 12, 2011. Hypertriglyceridemia can be induced by specific drugs. For example, interferon alfa-2b and asparaginase have been shown to induce hypertriglyceridemia by two unique biochemical mechanisms (Y K Keung et. al. South. Med. J. 92(9):912-914, 1999). Taken together, these studies indicate that high serum levels of triacylglycerides can be induced in human beings by multiple factors independent of obesity.
High serum levels of triacylglycerides (commonly called triglycerides; also referred to herein as “TAG”) have been identified as one of several lipid abnormalities commonly associated with patients that have type 2 diabetes (Bitzur et al., Diabetes Care 32 (suppl 2): S373-S377, 2009). It is currently unknown what mechanism(s) causes elevated serum TAG levels in these patients. The effect could be multi-factorial in nature, with contributions by diminished suppressive effects of insulin action, impaired clearance of lipid particles containing TAG, and the conscious dietary decisions by patients with type 2 diabetes to reduce carbohydrate caloric intake, replacing it with more meat and fats in their diets. Several prospective studies have identified hypertriglyceridemia as an independent predictor of type 2 diabetes. Recently, profiling of TAG molecules has been employed to help predict those that will acquire type 2 diabetes in the future (Rhee et al. J. Clin. Invest. 121(4):1402-1411, 2011). In view of these studies, clinicians monitor the level of triglycerides in a patient's serum, and researchers are looking for methods of lowering serum triglyceride levels.
Lipases
Lipases are enzymes that the body uses to break down fats to aid in the digestion of food. The specificity of lipases is derived from the molecular properties of the lipase, the structure of a potential substrate, and factors that affect the binding of the lipase to a substrate (Jensen R G et al. Lipids, 18(3):239-252, 1983). One of the most important lipases in the human body is pancreatic lipase. Pancreatic lipase breaks down triacylglycerides from ingested fats into smaller components that can be readily absorbed by intestinal cells (i.e., enterocytes), such as free fatty acids (FA) and 2-monoacylglyceride (2-MAG) (Pham, C. T. and Tso, P., Frontiers in Bioscience 6:d299-319, 2001; Levy et al. FASEB J. 9:626-635, 1995). The enterocyte synthesizes the FA and 2-MAG components into triacylglycerides (TAG) primarily via the Monoacylglyceride Pathway. The newly synthesized TAG are packaged into chylomicrons and then exocytosed into intracellular spaces and nearly lymphatic vessels. Chylomicrons containing TAG are ultimately distributed throughout the body for energy production and synthetic processes.
Historically, attempts to enhance/supplement lipid digestion have focused on oral administration of supplemental amounts of pancreatic lipase. However, naturally supplied pancreatic lipase is secreted directly into the intestine via the bile duct, while oral supplements must first transit the stomach. Pancreatic lipase is not stable in the acidic environment of the stomach whether it is empty (pH 1-2) or full (pH 3-4), and rapidly loses its enzymatic activity during exposure to these low pH conditions. Previous attempts to overcome the instability of pancreatic lipase activity at acid pH have shown unsatisfactory results. Approaches have included using enteric-coated tablets of pancreatic lipase (Graham D Y, New England Journal of Medicine 296:1314-1317, 1977), microsphere-encapsulated pancreatic lipase (see U.S. Pat. Nos. 5,260,074; 5,324,514; 5,352,460; 5,405,621), and cross-linked lipase crystals (see U.S. Patent Applications 2001/0046493 and 2003/0017144).
Accordingly, there remains a need for a lipase formulation that can be easily ingested and exert effective lipase activity, first in the acid pH environment of the full stomach and then in the neutral pH environment of the intestine.
The present invention provides lipase formulations that are stable and active in acidic and neutral pH environments, and that also break down dietary fats such as triacylglycerides into fatty acids (FA) and glycerol. By fully digesting triacylglycerides to FA and glycerol, which is beyond the scope of pancreatic lipase digestion, the lipase formulations of the invention enhance lipid digestion. The inventors have determined that these lipase formulations can significantly lower serum triacylglyceride levels in human beings.
As such, the invention provides improved lipase compositions useful in treating human beings with high and borderline-high serum levels of triacylglycerides, as well as methods of reducing serum triacylglyceride levels in humans by administering these compositions.
In particular, the invention provides for methods of reducing serum triacylglyceride levels in a human subject by administering a composition comprising an effective amount of a fungal lipase that (i) exhibits at least 50% of its maximum activity over the pH range of 2.0 to 8.0; and (ii) cleaves all three ester sites of a triglyceride, to a human subject in need thereof.
In one embodiment, the method involves administering the composition periodically and over a time period sufficient to reduce serum triacylglycerides by at least 20% compared to the serum triacylglycerides of the human subject before administering the composition to the human. For example, the composition may be administered at each meal, or a majority of meals, for at least a week or a month.
In another embodiment, the method reduces serum triacylglycerides in a human subject having at least 150 mg/dL of serum triacylglycerides. In another embodiment, the human subject is at risk for or has diabetes.
In particular embodiments, the effective amount of the lipase may be, for example, at least 15,000 FIP units/meal, at least 180,000 FIP units per gram of protein, or at least 2000 FIP units per gram of fat consumed by said human subject. Suitable fungal lipase may be a lipases derived from the Candida family such as a Candida rugosa (also known as Candida cylindracea) or Candida antarctica lipase.
The invention provides improved enzyme compositions and methods for treatment of human beings with higher than normal serum levels of triacylglycerides. In particular, the invention provides for the administration of lipases that are (1) active and stable throughout the digestion (i.e., active and stable in acidic, acidic-to-neutral, and neutral pH); and (2) will hydrolyze all three fatty acid bonds of a triacylglyceride, in amounts effective to reduce serum levels of triacylglycerides. The invention provides effective amounts of the lipase compositions, and it directs these compositions at human populations that will benefit from their administration.
Lipase Activity and Stability
The invention provides for the use of lipases that are active and stable in the acid environment of stomach and can begin digestion of dietary triacylglycerides there. The lipases are also active and stable in acidic-to-neutral pH and neutral pH conditions. As such, the lipases are active and stable throughout digestion. Examples of such lipases include lipases from the Candida family (e.g., C. rugosa and C. antarctica). In one embodiment, the lipase exhibits at least 50% of its maximum activity over the pH range of 2.0 to 8.0. It will be understood that other activity and stability ranges may be derived from, and are supported in, the Figures herein or from U.S. Publication No. 2008/0279839, which is hereby incorporated by reference.
Cleavage Activity of Lipase
The lipases used in the compositions and methods of the invention are capable of cleaving all three ester sites (sn-1, sn-2, and sn-3) of triacylglycerides. The lipases can cleave fatty acid components off of the TAG at these three sites whether they are short, medium, or long in length, and/or whether they are unsaturated or saturated.
It is understood that most lipases only cleave the sn-1 and/or sn-3 external sites of triacylglycerides and are unable to cleave all three ester sites. This results in the generation of up to two free fatty acid molecules and 2-monoacylglyceride (2-MAG) from triacylglyceride catabolism by these lipases, i.e., these lipases incompletely digest triacylglycerides. See
One study characterized the substrate specificity of 25 lipases from numerous sources and found only 6 lipases (mainly Candida and Geotrichum lipases) that showed reactivity towards the sn-2 region of triacylglycerides (Rogalska et al., Chirality, 5:24-30, 1993). Nearly all of the sn-2 position-reactive lipases analyzed preferred to hydrolyze the external sn-1 and sn-3 positions, rather the internal sn-2 position of triacylglycerides, except for the Candida antarctica lipase, which showed a slight preference for the sn-2 position. Some of the sn-2 position-reactive lipases were derived from Geotrichum species.
Recent work has indicated that some Geotrichum-derived lipases are stable within a pH range of 6.5-8.0 (e.g., Gopinath S. C. B., et al World J Review of MICB and Biotechnol., 19(7):681-689, 2003) suggesting that these particular lipases may be poorly effective in the acidic pH of the stomach for triacylglyceride digestion. Geotrichum-derived lipases that are stable at acidic pH, however, may be helpful and show some benefit at achieving improved digestion of triacylglycerides. Other microbial lipases, such as the one derived from Aspergillus niger, are stable at acidic pH, but will only attack the sn-1 and sn-3 positions of triacylglycerides, and also exhibit much greater substrate restriction than the more substrate-promiscuous Candida rugosa lipase, the preferred lipase of the invention. Accordingly, the invention contemplates the use of lipases, other than those derived from the Candida family, that cleave all three ester sites (sn-1, sn-2, and sn-3) of triacylglyceride.
Non-Binding Mechanistic Theory
The human body, through pancreatic lipase, breaks down triacylglycerides from ingested fats into free fatty acids (FA) and 2-monoacylglyceride (2-MAG). Intestinal enterocytes synthesize the FA and 2-MAG components into triacylglycerides primarily via the Monoacylglyceride Pathway. TAG are ultimately distributed throughout the body for energy production and synthetic processes.
Some studies have shown that 2-MAG can isomerize to the 1-monacylglyceride conformation in vitro. This phenomenon is not thought to be physiologically significant because absorption of 2-MAG by the enterocyte is too rapid for the isomerization process to occur. Normally, 70-75% of triacylglycerides produced by the enterocyte are synthesized via the Monoacylglyceride Pathway in the smooth endoplasmic reticulum (Mansbach and Parthasarathy, J. Lipid Research, 23:1009-1019, 1982; Levy et al. FASEB J, 9:626-635, 1995). After subsequent addition of apoproteins and other components, TAG-rich pre-chylomicrons are transported towards the basolateral region of the enterocyte and exocytosed into the extracellular space where the mature chylomicrons make their way to the lymphatics and are distributed throughout the body.
A second TAG-synthetic pathway is also active in enterocytes. The Phosphatidic Acid Pathway synthesizes far smaller amounts of TAG compared to the Monoacylglyceride Pathway, mainly because it is constrained by the scarceness of its key pathway substrate, glycerol 3-phosphate (glycerol-3P). Glycerol-3 phosphate is usually imported by the enterocyte from other sources, such as from hepatic production. It has been shown that both the Monoacylglyceride Pathway and Phosphatidic Acid Pathway converge at the smooth endoplasmic reticulum and produce essentially identical TAG-rich chylomicron particles for export (Yang, L-Y. and Kuksis, A., J. Lipid Research 32:1173-1186, 1991).
Without wishing to be bound, the inventors theorize that the lipase compositions described herein reduce the serum levels of triacylglycerides, by the concerted actions of the lipase (e.g., Candida lipase) and native pancreatic lipase on dietary lipids in vivo. By working together, the lipases are better able to completely digest most dietary triacylglycerides to three molecules of fatty acids and one molecule of glycerol. A suggested scenario of the biochemical events involved is shown in
During the enhanced digestive process, pancreatic lipase (PL) and Candida lipase (CL) digest triacylglycerides contained in mixed micelles to fatty acids (FA) and 2-monoacylglyceride (2-MAG). Candida lipase can then further digest the 2-MAG product into an additional FA molecule and free glycerol molecule. These two digestion products (FA and glycerol) are quickly absorbed by the intestinal enterocyte. The complete digestion of TAG causes a substantial decrease in the activity of the Monoacylglyceride Pathway since its substrate; 2-MAG has been greatly depleted. It has been shown in a previous study that the Phosphatidic Acid Pathway can become the major synthetic route of TAG production in the absence of 2-MAG (Mansbach and Parthasarathy, 1982). This synthetic compensation depends on the availability of the pathway substrate, glycerol-3 phosphate. Enterocyte glycerol kinase activity can produce the Phosphatidic Acid Pathway's substrate, glycerol-3 phosphate (glycerol-3P). The activity of glycerol kinase in the enterocyte, however, has been shown to be limited and most glycerol is believed to flow through and out the enterocyte to be used by other cellular synthetic pathways in the body. Most glycerol-3 phosphate is thought to be imported into the enterocyte from other sources. Thus, the concerted actions of native pancreatic lipase and Candida lipase on dietary lipids may lead to reduced amounts of triacylglycerides being synthesized and packaged into chylomicrons by intestinal enterocytes for extracellular transport, where such TAG-rich particles may end up ultimately contributing to serum levels of triacylglycerides in human beings.
It is believed that the broadly-reactive lipase formulations of the invention deplete the 2-MAG component critical for the synthesis of new triacylglycerides by intestinal enterocytes which use the Monoacylglyceride Pathway. As a result, the lipase formulations of the invention reduce the levels of serum triacylglycerides.
Administration of Lipase Formulations
The invention provides for administering an effective amount of the lipase formulations of the invention. The effective amount may include, for example, compositions comprising certain levels of lipase activity (measured in FIP units), or lipase amounts such that, when the lipase is administered for sufficient time period, serum TAG levels are reduced compared to serum TAG levels before administration the compositions.
In one embodiment, the effective amount of the lipase comprises at least 15,000 FIP units per meal, which may be delivered by one or more capsules or tablets. For example, the effective amount may be at least 25,000, 40,000, 50,000, 70,000, 90,000, 100,000, 125,000, 150,000, 175,000, 200,000, 225,000, or 250,000 FIP units, which may be delivered by one or more capsules or tablets. It will be understood that the invention contemplates ranges of these effective amounts (e.g., 15,000 to 250,000 FIP units per meal, capsule or tablet).
In another embodiment, the effective amount of the lipase comprises at least 2000 FIP units per gram of fat consumed by a human subject. For example, the enzyme's activity may be at least 2250, 2500, 3000, 3500, 4000, 4500, or 5000 FIP units per gram of fat consumed by a human subject. It will be understood that the invention contemplates ranges of these effective amounts (e.g., 2,000 to 5,000 FIP units per gram of fat consumed by a human subject).
In another embodiment, the enzyme in the lipase composition of this invention comprises at least 180,000 FIP units per gram of the lipase. For example, the enzyme's activity may be at least 200,000, 225,000, 250,000, 300,000, 350,000, 375,000, 400,000, 450,000, or 500,000 FIP units per gram of the lipase. It will be understood that the invention contemplates ranges of these amounts (e.g., 180,000 to 500,000 FIP units per gram of the lipase).
In another embodiment, the lipase may comprise at least 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 100% of the dosage weight. It will be understood that the invention contemplates ranges of these amounts (e.g., the lipase may comprise 2 to 100% of the capsule or tablet weight). The remainder of the dosage may be any combination of known pharmaceutical excipients, so long as the excipients do not unduly degrade the stability of the lipase during storage.
The lipase formulations of the invention are administered for a time period sufficient to reduce serum TAG levels compared to the serum TAG levels of the human subject to whom the lipase compositions of the invention had not been administered. For example, the lipase compositions may be administered over a time period sufficient to reduce serum triacylglycerides by at least 20, 25, 30, 35, 40, or 50% compared to the serum triacylglyceride level of the human subject before administering the composition to said human. In preferred embodiments, the period of chronic administration sufficient to reduce serum triacylglycerides by these levels may be for at least one, two, three, or four weeks (one month). In other embodiments, the compositions of the invention may be administered for longer periods of time such as two, four, six, nine, or twelve months. In yet another embodiment, the compositions of the invention may be administered as part of a daily regimen (e.g., administered with meals) for many years or the remainder of the subject's life.
Typically, the lipase formulations of the invention are administered with food (e.g., with each meal) at the time the food (e.g., meal) is consumed. Alternatively, the lipase formulations may be administered “substantially contemporaneously with food.” As used herein, “substantially contemporaneously with food” means that the lipase formulations are administered before or after ingestion of food (e.g., a meal) and preferably within 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 minutes before or after ingesting food (e.g., a meal).
The lipase dosages of the invention are typically administered in the form of capsules or tablets. In a preferred embodiment, the lipase formulation is administered in a single capsule or tablet. In another embodiment, the lipase formulation is administered using multiple capsules or tablets. Exemplary capsule or tablets may be 200-500 mg.
Human Populations
The invention provides for methods of administering the lipase formulations to human subjects having elevated TAG levels. In one embodiment, the human subject has above normal TAG levels (at least 150 mg/dL). In another embodiment, the human subject has borderline high TAG levels (150-199 mg/dL), high TAG levels (200-499 mg/dL), or very high TAG levels (2500 mg/dL).
The invention provides for methods of administering the lipase formulations to human subjects having diseases or conditions associated with elevated TAG levels. In one embodiment, the human subject is at risk for or has diabetes. In another embodiment, the human subject has diabetes and is compensating for low carbohydrate caloric intake with higher fat and protein intake. In another embodiment, the human subject is at risk for or has type 2 diabetes (e.g., the human subject has type 2 diabetes and is at risk for coronary disease).
It will be understood that the embodiments and concepts described herein may be used in combination. For example, the invention provides for a method of reducing serum triacylglyercide levels in a human subject comprising administering a composition comprising an effective amount of a fungal lipase, wherein (i) the fungal lipase is from C. cylindracea; (ii) the effective amount of C. rugosa (cylindracea) is at least 15,000 FIP units/meal; (iii) the composition is administered over a time period sufficient to reduce serum triacylglycerides by at least 20% compared to the serum triacylglycerides of the human subject before administering the composition to said human; and (iv) said human subject has at least 150 mg/dL of serum triacylglycerides before administering the composition. Accordingly, other combinations of lipases, effective amounts, modes of administrations, and patient populations are also envisioned.
The following examples are not intended to limit the invention in any way.
For the pH effects graph shown in
The effects of pH on the enzymatic activities and stabilities of two other microbial lipases are shown in
Digestion of Triacylglycerides Using Lipase Formulations (Examples 2-5)
The inventors preformed hydrolysis experiments using various lipases at pH 4 and 7, and measured the amount of glycerol, if any, released from triacylglycerides by the lipases.
Hydrolysis Experiments
The experiments tested the hydrolysis of triacylglyceride oils (soybean and olive oil) using the following lipases: pig pancreas lipase (American Labs Inc., Omaha Nebr.), Aspergillus niger lipase (Bio-Cat Inc., Troy Va.), Rhizopus oryzae lipase (Bio-Cat Inc.), and Candida rugosa lipase (Bio-Cat Inc.).
A standard reaction protocol was used to assess triacylglyceride digestion by different lipases. The lipase reactions were performed using a 100 ml jacketed beaker, kept at 37° C. by using a Fisher Isotemp recirculating water bath. 5 mL of 0.05M CaCl2 and 1 mL of 5 mg/mL bile salts were added to the pre-warmed jacketed beaker. The reaction mixture beaker was slowly stirred using a stir bar on a magnetic stir plate. For most experiments (results shown in
Triacylglyceride Digestion Analysis
Triacylglyceride digestion was quantitated by HPLC. For HPLC analysis, the oil layer was dissolved in acetone, the amount dependent on sample concentration. The HPLC system consisted of an Agilent 1100 series Degasser, Quaternary Pump, Autosampler, Column Oven, Refractive Index Detector and two Supelcosil LC-18 Columns (150×4.6 mm; Sigma-Aldrich) in series. The flow rate was 1 mL/min of Acetone/Acetonitrile (64:36, v/v) with the column oven set at 25° C. The Refractive Index Detector's Optical Temperature was set at 30° C. and peak width was set at >0.2 min. The triglyceride results were quantitated by using a modified version of the separation methods employed by Perkins (1979) and Podlanta and Töregård (1982), and as described in Supelco Bulletin 787D (Sigma-Aldrich 1997).
A comparative temporal digestion of soybean oil triglycerides by four lipases (each containing 12,900 FIP Units) was performed using the standard reaction protocol (pH 4). Samples were prepared by dilution of aqueous layer in water; the oil layer was extracted in water (50:50, v/v) by vortexing for 30 seconds. The oil/water mix was then centrifuged at 10,000 rpm for 5 minutes. The water layer was diluted as needed using water. 1 mg/mL glycerol stock solution and all standards were prepared in water.
The amount of glycerol produced was quantitated by HPLC using a modified version of the separation method employed by Gandi et al. (The Application Notebook, Metrohm e-publication, LC_GC Chromatography online.com Dec. 2, 2009). The HPLC system consisted of an Agilent 1100 series Degasser, Quaternary Pump, Autosampler, Column Oven, Refractive Index Detector and Supelocgel C-610H Carbohydrate Column (300×7.8 mm: Sigma-Aldrich)). The flow rate was 0.5 mL/min of 0.1% phosphoric acid with the column oven set at 30° C. The Refractive Index Detector's Optical Temperature was set at 30° C. and peak width was set at >0.2 min.
The inventors also tested whether the enhanced lipid digestive effects of Candida lipase on soybean oil triacylglycerides appears to be a general phenomenon applicable to action on other sources of triacylglycerides. As such, experiments were performed using olive oil and shortening as a source of triacylglycerides.
Control reactions (without lipase) contained 822±2 mg/ml olive oil triacylglycerides and no free glycerol was detected.
Similar results were found using olive oil as a source of triacylglycerides as when using soybean oil. Like with soybean oil, Candida lipase was the most effective lipase tested at digesting olive oil triacylglycerides and similarly produced the largest amount of glycerol during the digestive reaction. Similar results were found when using melted shortening (Crisco; Food Lion) dissolved in chloroform as a source of triacylglycerides (data not shown). Candida lipase effectively digested shortening triacylglycerides to the similar low levels seen with soybean and olive triacylglycerides at both pH 4 and pH 7 (109 mg/ml and 164 mg/ml remaining triacylglycerides detected, respectively, compared to control 856 mg/ml triacylglycerides). Thus, Candida lipase appeared to generally be the most effective enzyme tested to digest lipids.
A 1-month study was undertaken to determine the effects of a Candida lipase composition on serum triacylglyceride levels in vivo.
Capsules containing 355 mg of the improved lipase composition were administered to three healthy human subjects. All of the components contained in the invention are GRAS (generally regarded as safe). The 355 mg capsules contained the following ingredients:
Candida rugosa lipase
The participants orally ingested a 355 mg capsule, during each meal, for a 1-month period.
Serum levels of triacylglycerides were determined for each participant before the study began and after the 1-month treatment. The serum levels of triacylglycerides and various other serum proteins were quantitated using local hospital laboratories certified as skilled in the performance of such tests.
The results are shown in the following table:
The results indicate that Candida lipase was able to reduce serum levels of triacylglycerides in the two study participants who started the study with either borderline high or high levels of triacylglycerides. No consistent changes were noted in related parameters tested such as total cholesterol or its derivative (e.g., HDL) in the three study participants. The effect of Candida lipase treatment on the participant that started the study with normal serum levels of triacylglycerides was negligible.
It is well-known that triacylglycerides can be produced and stored by adipose and liver cells. It is conceivable that there is a basal level of triacylglycerides in human beings produced by these alternative TAG synthetic sources that is influenced by genetics and environmental factors. As such, the compositions described herein may be best suited for individuals with borderline or high serum levels of triacylglycerides for whom dietary sources and enterocyte activities may contribute to higher serum levels of triacylglycerides.
High serum levels of triacylglycerides (TAG) have been found in many patients that have type 2 diabetes (Bitzur et al., Diabetes Care 32 (suppl 2): S373-S377, 2009). As such, reduction of high serum levels of triacylglycerides by the compositions described herein may help reduce the risk of coronary disease in patients with type 2 diabetes.
The following documents are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3898130 | Komatsu | Aug 1975 | A |
3995066 | Muys et al. | Nov 1976 | A |
4056442 | Huang et al. | Nov 1977 | A |
4245041 | Denney | Jan 1981 | A |
4251519 | Robbins et al. | Feb 1981 | A |
4259440 | Gupta et al. | Mar 1981 | A |
4264589 | Felts et al. | Apr 1981 | A |
4275011 | Tanaka et al. | Jun 1981 | A |
4394445 | Nix et al. | Jul 1983 | A |
5108916 | Cobbs et al. | Apr 1992 | A |
5578304 | Sipos | Nov 1996 | A |
5604119 | Haraldsson et al. | Feb 1997 | A |
5759543 | Morozova et al. | Jun 1998 | A |
6051220 | Scharpe | Apr 2000 | A |
6660508 | Cheung | Dec 2003 | B1 |
6699496 | Kojima | Mar 2004 | B1 |
7056720 | Jaye et al. | Jun 2006 | B2 |
20020061302 | Sander-Struckmeier et al. | May 2002 | A1 |
20040253257 | Cheung | Dec 2004 | A1 |
20050249783 | Perez-Camargo et al. | Nov 2005 | A1 |
20050250817 | Shlieout et al. | Nov 2005 | A1 |
20060084153 | Bao et al. | Apr 2006 | A1 |
20060121017 | Margolin et al. | Jun 2006 | A1 |
20070202566 | Bornscheuer et al. | Aug 2007 | A1 |
20080199448 | Ross et al. | Aug 2008 | A1 |
20080213241 | Davidson et al. | Sep 2008 | A1 |
20080260709 | Sawada et al. | Oct 2008 | A1 |
20080279839 | Schuler et al. | Nov 2008 | A1 |
20090035293 | Svendsen | Feb 2009 | A1 |
20090317371 | Arbab | Dec 2009 | A1 |
20090324574 | Mathur et al. | Dec 2009 | A1 |
20100034797 | Svendsen et al. | Feb 2010 | A1 |
20100040592 | Margolin et al. | Feb 2010 | A1 |
20100239559 | Freedman et al. | Sep 2010 | A1 |
20100269989 | Wang et al. | Oct 2010 | A1 |
20110052514 | Justen et al. | Mar 2011 | A1 |
20110110910 | Svendsen et al. | May 2011 | A1 |
20110158976 | Svendsen et al. | Jun 2011 | A1 |
20110171294 | Edens et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
1 964 9097 | May 1998 | DE |
0 387 945 | Sep 1990 | EP |
1 546 328 | Mar 1978 | GB |
1 084 431 | May 1979 | GB |
WO 9118623 | Dec 1991 | WO |
WO 9949877 | Oct 1999 | WO |
WO 9949877 | Dec 1999 | WO |
WO 03016518 | Feb 2003 | WO |
WO 2006136159 | Dec 2006 | WO |
WO 2007055735 | May 2007 | WO |
WO 2008028300 | Mar 2008 | WO |
WO 2010020693 | Feb 2010 | WO |
WO 2010025126 | Mar 2010 | WO |
WO 2010085975 | Aug 2010 | WO |
WO 2010124387 | Nov 2010 | WO |