The present invention relates to a method and a computer system and its components for providing spectacles adapted to a future wearer.
Usually, a person needing to wear spectacles and having thus a prescription filled by an ophthalmologist or by another authorized eye care professional goes to the premise of an optician. The optician, on the basis of the aforesaid prescription, firstly determines a pair of lenses suiting the best the prescription and, in a second time, advises the future wearer to choose a spectacle frame amongst a limited choice of frames adapted to the pair of lenses.
However, some future wearers of spectacles are incited to choose the best looking frame rather than the pair of lenses suiting the best their prescription. These future wearers can be thus frustrated for being proposed such a limited choice of frames. In addition, in optician premises, the sale person is not always capable of doing a proper frame recommendation to the wearer. When the choice of frame is not adapted to the selected lenses, the resulting spectacles may be totally unaesthetic and generates huge client dissatisfaction.
The present invention aims to improve the situation.
To this end, the present invention proposes a method implemented by computer means, comprising the steps of:
It will be thus understood that, on the contrary of the prior art approach, the chosen frame is an input data of the system, while the suitable pair of lenses is an output data. The future wearer may choose the best looking frame and the computer system is able to output a suitable pair of lenses suiting both the wearer prescription and the frame choice. Of course, the computer system can be parameterized so as to give more or less importance to the frame choice or to the wearer optical comfort (according, among others, to the wearer prescription) for selecting a suitable pair of lenses, as it will be described hereafter. Therefore, the invention proposes, in an embodiment, to release the optical constraints, such as the constraints of the lenses optical performance (relatively for example to the aberrations and/or the optical deformations) in order to obtain more possible choices of lenses (for example a list of different lenses). Amongst those choices, the optician can chose the lenses which are the most adapted to the frame or to the price wished by the wearer, or a combination of these two criteria.
Other features and advantages of the invention become apparent on reading the following detailed description and examining the appended drawings, in which:
In the embodiment described hereafter by way of an example, the method is implemented to aid an optician to select a pair of ophthalmic lenses which suits chosen frame parameters and wearer data (including at least the wearer prescription). Once those ophthalmic lenses are selected, accurate measurements are performed on the frame to provide to the wearer and the aforesaid ophthalmic lenses are edged according to these frame measurements.
With reference to
In an advantageous embodiment, at least one criterion is further imputed in the system for choosing the pair of lenses. The computer system is therefore arranged for outputting at least one data set S1 relative to a pair of lenses selected (arrow carrying the reference SEL on
This criterion may be a criterion amongst at least:
The comfort criterion COM can include, for example, a wearing comfort that encompass, for example:
The aesthetics criterion AES can include, for example, the fact that the lenses front face curvatures substantially fit the curvatures C1, C2 of respective frame openings R1, R2 (
Another criterion may be also the deformability DEF of the frame in order to force the setting of the lenses in the frame. First, the optician may refuse to take into account the deformability of the frame and if he accepts to force the setting, the level of authorized deformation can be an input for satisfying or not the aforesaid deformability criterion.
In an embodiment described hereafter, the comfort criterion COM and the spectacles aesthetics criterion AES, at least, are imputed both in the computer system. The processing means of the computer system (memory MEM and processor μP) run a computer program having an algorithm which may be represented by the flow chart shown on
In general terms, the processing means are thus arranged for releasing a constraint related to the comfort criterion COM and for selecting at least one data set relative to a pair of lenses Sj suiting the best the spectacles aesthetics criterion AES, amongst a plurality of data sets S1, S2, . . . , SN relative to possible pairs of lenses suiting the comfort criterion COM.
In the example of
In step 42 of
For example, concerning the wearer prescription parameter n1=PRE, it has been observed by the Applicant that a plurality of front face lens curvatures can suit a same prescription. As a matter of fact, with reference to
Of course, those numbers of bases can be lower if the optical quality constraint is increased. Moreover, the rear face shapes of the possible lenses are adapted to the choice of the base made amongst all the possible bases.
It will be thus understood that, amongst N possible bases (with N possibly equal to 8), it can be selected at least one base which suits the best the curvatures C1, C2 of the rims R1,R2 of the chosen frame F.
In the example of embodiment shown in
In an embodiment where each spectacle lens L1 is intended to be mounted on a rim delimiting an opening R1 of the frame F, the aforesaid second data set F2 may include for example:
Of course, the type of the chosen frame (for example a fully rimmed frame, or a semi-rimmed frame or a rimless frame) may be also a data to be included in the second data set F2.
In practice, a mechanical sensor (as described for example in document U.S. Pat. No. 5,121,548 published in the name of the Applicant) measures the coordinates of at least 800 points on the surface of the rim grooves. A computer program can calculate the above mentioned data (A, B, C1, C2, etc.). However, in the invention, performing such measurements may not be necessary and all or part of required values (A, B, C1, C2, etc.) can be either captured manually by the optician and/or retrieved from a database where same model/size frame dimensions (previously measured) had been stored. When the optician input data related to the frame chosen by the wearer in the computer system, the computer system, interrogating the database, may output all the data set F2 corresponding to a frame of a same model and a same size.
Thus, the calculated ideal lens shape Sid includes a front face general curvature fitting with the front face general curvatures of the frame openings R1, R2. In an embodiment where the lenses are rimed or semi-rimed, the calculated ideal lens shape Sid may include also front face edges abutting with respective front faces of the rims (for example in a same plan Q1=P1 as shown in
With reference to
Therefore, in general terms, a plurality of lens front face general curvatures (or “bases”) can be suitable for a same wearer prescription and releasing the constraint related to the comfort criterion COM enables thus a choice of a plurality of lens front face shapes (bases and “abutting edges”). The processing means of the computer system are advantageously arranged for selecting at least one pair of lenses having a front face shape adapted to the frame for suiting the best the aesthetics criterion.
The parameters a1, a2, a3 can be in the form of weighing coefficients intervening in the calculation in step 49 of a distance between each possible lens S1, S2, . . . , SN and the ideal lens Sid.
For example, a possible distance calculation involving a possible pair of lens Si and the ideally shaped lens Sid can be given by an equation of the type:
Δ(Si,Sid)=a1(Ci−C)2+a2δ2, where:
It can be decided for example that coefficient a1 is much greater that coefficient a2 for satisfying the aesthetics criterion.
The list S1, S2, . . . , SN previously given in step 44 can be thus sorted in step 50 according to the different calculated distance values and the lens having the data set Sj giving the lower calculated distance Δ((Sj, Sid)) can be selected in step 51. Of course, according to another criterion such as the price PRI of the lenses, another choice in the list of possible lens (the lenses appearing in second or third in the list) can be made.
Of course, the comfort criterion can intervene again in order to assign mark values to the possible lenses of the sorted list in step 50:
It is to be noted that a variant of embodiment consists in calculating all the distances Δ((Si, Sid)) with all existing lenses without defining a list at step 44. Then, for each possible lens Si, a mark value VSi is given by an equation of the type: VSi=n1(Si)+n2(Si)+n3(Si)+ . . . −Δ((Si, Sid)), and for example: VSi=10 (if the lens suits the prescription)+1 (if the lens material is glass)+5 (if the wearer wears spectacles for the first time)−Δ(S1, Sid), or for example VSi=10 (if the lens suits the prescription)+3 (if the lens material is organic)+3 (if the base of lens Si is slightly different from the base of a previous lens)−Δ((Si, Sid)).
Then, all the VSi values are sorted from the greater to the lower and a list of few first choices (for example five choices) is outputted by the computer system.
The maximum values of coefficients n1, n2, n3, . . . , as well as the values of coefficients a1, a2, a3, . . . , can be optimized by way of experiments performed on a multiplicity of types of frame models and sizes. To that end, a feedback of the opticians on the quality of settings of the ordered lenses on the frame can be stored in a database.
It is to be noted that another variant of embodiment consists in asking the optician to input its own relative weights for the aforesaid criterions in order to obtain a sorted list of choices matching his own preference.
According to another and preferred embodiment, pairs of lenses which do not respect essential parameters (such as, for example, the wearer prescription) are excluded from the list of possible choices. The list is then sorted according to other parameters such as the lenses weight, the distance δ, the bases difference C1-C, etc. Another possible essential parameter can be the effective diameter of the lenses determined upon the values of the width A and height B (
Of course, even if the optician can force the setting of the lenses in a slightly deformable frame, the mark value of the list first choice can be lower than a feasibility threshold. In some cases, the lens base can be such that the lens L1 cannot be mounted in a frame opening R1 (
In these cases, the computer system may output a message for inciting the optician to recommend another frame choice. Advantageously, the processing means are arranged to determine, on the basis of the first and second data sets, a feasibility of lenses having a general geometry fitting respectively with the openings R1, R2 and/or with their rims.
However, it should be noted that when one pair of lenses has a general front face shape which fits satisfactorily with the frame openings and/or with their rims, the processing means are further arranged for determining respective shapes of rear faces of this pair of lenses, for example according to the comfort criterion. It can be usefully referred to document WO2007/017766 published in the name of the Applicant for finding details of a method for determining a lens rear face shape when the front face shape has already been defined.
The present invention is also aimed at a computer program product, stored in a computer system memory or on a removable medium able to cooperate with a computer reader, and comprising instructions for running the steps of the method within the sense of the invention, as described above for example with reference to
The present invention is also aimed at a computer system as shown by way of an example in
In the example of
The present invention also aims at the server SER of the computer system, which may comprise thus a memory storing a computer program for implementing the method of the invention.
Once the suitable lenses are validated and selected by the optician through his computer entity PC, an identifier of the selected lenses is sent through the network to the server SER and the server establishes a computer order form identifying the selected lenses and indicating their edging features. Then, this computer document is sent to a lens provider.
Of course, the present invention is not limited to the embodiment described hereinabove by way of example; it extends to other variants.
For example, it will be understood that the scope of the invention is not limited to the selection of a pair of lenses. As a matter of fact, a single lens can also be provided according to at least one criterion. In an embodiment, the replacement of a single lens to be mounted on pre-existing spectacles can be provided according to the method of the invention. The criterion to input in the system would be thus the comfort criterion and the selected lens would have the same features as the former one to be replaced.
Number | Date | Country | Kind |
---|---|---|---|
07301756.8 | Dec 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/68276 | 12/23/2008 | WO | 00 | 6/28/2010 |