The present invention is generally related to railroad trains, and more particularly, to techniques for monitoring integrity of a railroad train and determining passage of the train relative to a plurality of virtual blocks defined along a rail track over which the train travels.
Traditional rail traffic signal systems have used an extensive array of wayside equipment to control railway traffic and maintain safe train separation distances. In these traditional systems railway control is achieved by detecting the presence of a train, determining a route availability for each train, conveying the route availability to a train's crew, and controlling the movement of the train in accordance with the route availability.
The presence of a train is typically detected directly through a sensor device, or track circuit, associated with a specific section of the rails, referred to as a block. The presence of a train causes an impedance change in a block's track circuit. In this manner, the occupancy of each block is determined. Vital decision logic is employed, utilizing the block occupancy information in conjunction with other information provided, such as track switch positions, to determine a clear route availability for trains. Traditional railway systems require the installation and maintenance of expensive apparatus on the wayside for communicating route availability to approaching trains. The wayside equipment physically displays signals, or aspects, that are interpreted by a crew on board a train approaching the signaling device. Thus, the interpretation of signal aspects can be subject to human error through confusion, inattention or inclement weather conditions.
An alternative to conventional track circuit-based signaling systems are communication-based train control (CBTC) systems. These train control systems generally include a computer at one or more fixed locations for determining the movement, authority and/or constraints applicable to each specific train. The computer then transmits this train-specific information in unique messages addressed or directed to each individual train.
Advantages of the present invention will be more apparent from the following description in view of the accompanying drawings where:
Before describing in detail an exemplary system in accordance with aspects of the present invention, it should be observed that such aspects reside primarily in a novel structural combination of standard sensing devices and computational modules configured to process data from such sensing devices and not necessarily in the particular specific configurations of such devices. Accordingly, the structure, control and arrangement of these standard devices have been illustrated in the drawings by readily understandable block diagrams which show just those specific details that are considered pertinent to the present invention, so as not to burden the disclosure with superfluous details that will be readily apparent to those skilled in the art having the benefit of the description herein. Thus, the block diagram illustrations of the figures may not necessarily represent the physical structural arrangement of the exemplary system, but are primarily intended to illustrate the major components of the system in a convenient functional grouping, whereby the present invention may be more readily understood.
Aspects of the present invention recognize that there may be a plurality of failure modes that can affect a determination of train integrity, such as whether sections of the train have become separated from one another (train separation), that could lead to an erroneous determination of a train having actually cleared a boundary of a respective one of the virtual blocks. For example, if a blockage in a pneumatic line (e.g., an airline) that extends along the entire length of the train were to occur, just monitoring a front airline pressure at a head-of train (H.O.T.) location may not be able to detect a train separation condition since a blockage upstream of the separation point would prevent quick detection of pressure loss in the airline.
Similarly, just monitoring motion of an end-of-train (E.O.T.) location may not be able to detect a train separation condition. For example, the E.O.T. may continue to move with forward motion even though a train separation has occurred. Thus, aspects of the present invention identify such failure modes and build up multiple detection layers through the use of multiple sensing devices configured to monitor a different parameter and generate data useful for evaluating whether at least one of the failure modes has occurred. The foregoing combination of data results in a highly reliable system for monitoring and determining passage of a train relative to the plurality of virtual blocks.
In one exemplary embodiment, system 8 may include a H.O.T. transceiver 12 in communication (e.g., wireless communication) with a suite of E.O.T. sensing devices 14 by way of an E.O.T. transceiver 15. For example, the suite of sensing devices 14 may include an E.O.T. pressure-sensing device 16 pneumatically coupled to the pneumatic line 18. The suite of sensing devices 14 may further include a motion sensor 20, such as an accelerometer, and a global positioning system receiver 22.
In one exemplary embodiment, system 8 may include a suite of H.O.T. sensing devices 30, such as one or more pressure sensing devices 32 and 34 as may be pneumatically coupled to pneumatic line 18. It will be appreciated that H.O.T. sensing devices that may already be part of a lead locomotive, such as speed and position sensing devices, or calculations performed by an onboard controller, may be used for evaluating E.O.T. data in combination with H.O.T. data.
A database 40 (or any suitable digital data storage device) may be used for storing a plurality of rules for relating the data collected at the head-of-train location to the data collected at the end-of-train location. These rules may be configured to reduce a probability of making an erroneous determination as to whether the entire train has cleared a boundary for a respective one of the virtual blocks. An example of a straightforward rule may be as follows: If H.O.T. pressure is maintained and a loss of E.O.T. pressure is sensed, then this combination of information may indicate lack of train integrity, even though a blocked airline condition may be present. Another exemplary rule may be as follows: If the magnitude of E.O.T. GPS-based speed is consistent with the magnitude of H.O.T. speed and accelerometer based motion indicates E.O.T. travel motion opposite to H.O.T. travel direction, then this combination of information may indicate lack of train integrity. For example, one separated section of the train could be moving opposite to another separated section of the train within a same range of speed.
A processor 42 is configured to process the data collected at the end-of-train and at the head-of train locations using the rules in database 40 to determine whether the entire train has actually cleared a respective one of the virtual blocks. In the event such a determination indicates clearance of the respective block, processor 42 may declare that virtual block as being unoccupied and thus available for another train to enter the block. Conversely, in the event such determination indicates a lack of clearance of the respective block, processor 42 may declare the virtual block as being occupied and thus unavailable for another train to enter the block. The foregoing block status information may be communicated to a train operator by way of a user interface 44.
In accordance with other aspects of the present invention, based on the results of the determination performed by processor 42, transceiver 12 (or any suitable onboard communication device) may be automatically commanded (without requiring any action by onboard personnel) by processor 42 to communicate to an offboard location, such as wayside equipment 50, and/or a centralized traffic control system 52, a present status of the virtual block as to whether or not such block is available for another train, or whether the system is unable to make a determination within an acceptable range of confidence and therefore communicate a cautionary status regarding one or more virtual blocks. This ability for automatically communicating virtual block status and/or to communicate a cautionary status in connection with any such blocks is particularly advantageous since it avoids the possibility of errors due to human intervention, such as may occur if an onboard operator has to interpret and report situational occurrences. Moreover, this conveniently reduces tasks for onboard personnel whom otherwise would have to perform actions for communicating block status to the offboard location.
In diagram 60, a line 62 represents a request (e.g., polling) of new E.O.T. data. Note that blocks a, b and c continue to be designated as occupied as well as blocks d, e and f, since the requested E.O.T. data has not been received and processed by processor 42.
In diagram 70, a line 72 represents a new known rear location of train 52, as verified with the new E.O.T. data update. Note that in this case, virtual blocks a, b and c are now designated as clear (as represented by the “yyyyy” letter pattern). In the event the system is unable to satisfactorily verify train integrity, then blocks a, b and c would be designated as unverified (as represented by the question mark pattern) in diagram 80 and this loss of integrity information would be automatically communicated in the form of a cautionary message to the off-board location, such as traffic control system 52 (
One exemplary manner of clearing block occupancy may be as follows:
It is contemplated that one may provide a suitable margin that accounts for train position measurement uncertainty (e.g., worst case H.O.T. location) plus the total time delay associated with the polling of the E.O.T. and the receipt of a response.
An exemplary manner of supervising train integrity may be as follows:
Analytically-derived Exemplary Probabilities Regarding An Undetected Train Break Condition.
Accordingly, it is expected that the combined probability calculation will conservatively meet typical requirements, such as required by
Safety Integrity Level (SIL) 4 train safety standards=1×10−10
Aspects of the invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data, which thereafter can be read by a computer system. Examples of computer readable medium include read-only memory, random-access memory, CD-ROMS, DVDs, magnetic tape, optical data storage devices. The computer readable medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
Based on the foregoing specification, the invention may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the invention. The computer readable media may be, for example, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), etc., or any transmitting/receiving medium such as the Internet or other communication network or link. The article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
An apparatus for making, using or selling the invention may be one or more processing systems including, but not limited to, a central processing unit (CPU), memory, storage devices, communication links and devices, servers, I/O devices, or any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody the invention as set forth in the claims.
User input may be received from the keyboard, mouse, pen, voice, touch screen, or any other means by which a human can input data to a computer, including through other programs such as application programs.
One skilled in the art of computer science will easily be able to combine the software created as described with appropriate general purpose or special purpose computer hardware to create a computer system or computer sub-system embodying the method of the invention.
While the preferred embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those of skill in the art without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3967801 | Baughman | Jul 1976 | A |
5129605 | Burns et al. | Jul 1992 | A |
5364047 | Petit et al. | Nov 1994 | A |
5398894 | Pascoe | Mar 1995 | A |
5452870 | Heggestad | Sep 1995 | A |
5533695 | Heggestad et al. | Jul 1996 | A |
5738311 | Fernandez | Apr 1998 | A |
5757291 | Kull | May 1998 | A |
5813635 | Fernandez | Sep 1998 | A |
5817934 | Skantar | Oct 1998 | A |
5823481 | Gottschlich | Oct 1998 | A |
5950967 | Montgomery | Sep 1999 | A |
6032905 | Haynie | Mar 2000 | A |
6311109 | Hawthorne et al. | Oct 2001 | B1 |
6375275 | Smith, Jr. et al. | Apr 2002 | B1 |
6434452 | Gray | Aug 2002 | B1 |
6459965 | Polivka et al. | Oct 2002 | B1 |
6480766 | Hawthorne et al. | Nov 2002 | B2 |
6837550 | Dougherty et al. | Jan 2005 | B2 |
6845953 | Kane et al. | Jan 2005 | B2 |
6848658 | McAllister | Feb 2005 | B2 |
6853888 | Kane et al. | Feb 2005 | B2 |
6865454 | Kane et al. | Mar 2005 | B2 |
7092801 | Kane et al. | Aug 2006 | B2 |
20040205400 | Vollmar et al. | Oct 2004 | A1 |
20040236482 | Kane et al. | Nov 2004 | A1 |
20050085961 | Kane et al. | Apr 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060290478 A1 | Dec 2006 | US |