The disclosure relates to a method and to a control unit for operating a cleaning appliance in a delicate wash cycle and to a cleaning appliance.
Cleaning appliances, such as washing machines, are used in abundance in today's everyday life, both in the private and in the commercial sector. Since the items to be cleaned can react with varying degrees of sensitivity to influences such as temperatures, types of washing, or even cleaning agents, such cleaning appliances have a large number of cleaning programs that can be selected. Such cleaning appliances also generally have a drum in which ribs are arranged for circulating the cleaning liquor and the items to be cleaned.
Against this background, EP 2 309 048 A1 describes such a drum having at least one engagement rib for a washing machine.
The disclosure provides an improved method and an improved control unit for operating a cleaning appliance in a delicate wash cycle, and an improved cleaning appliance.
According to the disclosure, this is achieved by a method and by a control unit for operating a cleaning appliance in a delicate wash cycle and by a cleaning appliance having the features of the main claims. Advantageous embodiments and developments of the disclosure can be found in the subsequent sub-claims.
The advantages that can be achieved with the disclosure consist, in addition to an improved washing effect using, for example, gentle programs, in a reduction in the risk of shrinkage of the items to be cleaned.
A method for operating a cleaning appliance having a suds container for holding cleaning liquid and a rotatable drum for holding the textiles is therefore presented. The drum is arranged in the suds container. An inside of a drum casing of the drum is also smooth apart from a plurality of nubs. The nubs are shaped in order to cause the cleaning liquid in the drum to execute a wave motion during a cleaning process. Furthermore, the cleaning appliance has a feed unit for feeding the cleaning liquid into the suds container and a drive for causing the drum to execute a rotational motion. The method comprises a step of supplying a feed signal to an interface of the feed unit, the feed signal causing a cleaning liquid to be fed into the suds container until a predetermined target fill level is reached. The target fill level causes the textiles to float inside the drum. Furthermore, the method comprises a step of supplying a motion signal to an interface of the drive when the target fill level is reached, in order to cause the rotational motion of the drum.
The method can be executed, for example, in a cleaning appliance, preferably in a washing machine. The cleaning appliance can be shaped so as to wash textiles. The cleaning liquid can be, for example, a mixture of water and a detergent such as is typically used in cleaning appliances. The feed unit may comprise a valve for filling liquid from an external feed line. The drive can comprise a motor that can drive the drum directly or, for example, can drive a belt or a gear. The drum can be referred to as a laundry drum and can be non-ribbed. A non-ribbed drum is used, for example, when the drum does not contain any geometry protruding from the surface where the drum radius is reduced by more than 10%. “Non-ribbed” can be understood to mean that the drum has no ribs on the inside that extend between the drum base and the drum opening, for example parallel to the axis of rotation of the drum. A nub can be understood to mean a hump-like elevation on the inside of the drum. A nub can be pyramid-shaped or tapered. A nub can have a circle or a regular polygon as its base. A nub can also be referred to as a structural element, hump, or mini entraining element. Due to the non-ribbed design of the drum, very sensitive textiles can be cleaned gently. The floating of the textiles can prevent the laundry from falling and thus prevent the wool from shrinking. This can prevent wool fabric from shrinking, for example. Nevertheless, a good washing effect can be achieved. In addition, very long breaks of up to 2-3 minutes can be dispensed with.
According to one embodiment, the method can comprise a step of reading in an amount signal via an interface of an amount determination device, wherein the amount signal represents an amount of the textiles. Furthermore, the method can comprise a step of determining the target fill level using the amount signal. The amount determination device can be in the form of a sensor, for example, which is designed to determine the amount of the textiles by weighing the textiles, by using a mass moment of inertia method, or optically. The amount of textiles can indicate a weight or a volume of the textiles. Advantageously, an amount of cleaning liquid required for the cleaning process can be precisely metered as a result.
According to one embodiment, the target fill level can cause at least one lower third of the drum to be filled with the cleaning liquid. Advantageously, this allows the textiles to float safely.
According to one embodiment, the motion signal can be supplied in the supplying step in order to cause the rotational motion of the drum in a wave washing rhythm that is suitable for causing the wave motion of the cleaning liquid. The rotational motion can take place, for example, in at least one direction, but advantageously also alternately in a further direction opposite to said direction. As a result, the cleaning liquid can be caused as quickly as possible to execute a wave motion.
At this time, the wave washing rhythm may be suitable for causing the wave motion with a predetermined frequency of waves of the wave motion. For example, the frequency of the waves can be selected depending on a selected cleaning program or depending on the textiles to be cleaned, so that the waves can be stronger or weaker, for example, and the textiles can therefore flow through them at different strengths.
According to one embodiment, the motion signal can be supplied in the step of supplying in order to cause a motion frequency, a drum speed and, additionally or alternatively, a rotational pause value of the rotational motion suitable for implementing the wave washing rhythm. For example, the motion frequency, the drum speed, and additionally or alternatively the rotational pause value of the rotational motion can be changed in order to change the strength and the wave frequency of the cleaning liquid. For example, the motion frequency, the drum speed, and additionally or alternatively the rotational pause value can be adjusted depending on a selected cleaning program. Stored values can be used, which can be selected using a look-up table, for example.
In the step of supplying, the motion signal can be supplied in order to cause the rotational motion of the drum in a rocking rhythm with successive rotations of the drum at increasing rotational speeds without a complete revolution of the drum. Advantageously, the textiles are not moved by the drum due to the rotational motion with rapid changes and increasing amplitude, despite the rotating drum.
For example, the motion signal can cause the rocking rhythm with a frequency between 0.1 Hz and 0.3 Hz.
According to one embodiment, the motion signal can be supplied in the supplying step in order to cause the rotational motion of the drum to be executed for a predetermined period of time in one and the same direction. A period of time is selected that is at least long enough for a horizontal rotational motion of the textiles to be achieved during a cleaning process due to frictional contact of the textiles with a drum base of the drum. The horizontal rotational motion can be understood as meaning a circular motion of the textiles. As a result, a more thorough cleaning of the textiles can advantageously be achieved. The frictional contact is very gentle.
According to one embodiment, the period of time can be at least five minutes. This advantageously ensures that the textiles have been mobilized in a desired direction.
In the step of supplying, the feed signal can cause the cleaning liquid to be fed until the predetermined target fill level is reached if a program signal indicates that the user has selected the gentle program. In contrast, the feeding can cause the feed of the cleaning liquid until a minimum fill level is reached, which is lower than the target fill level and prevents the textiles from floating inside the drum if the program signal indicates that the user has selected the normal program. In this way, less sensitive textiles can be exposed to greater mechanical stress in the normal program.
The approach presented herein also creates a control unit designed to execute, control, or implement the steps of a variant of a method presented herein in corresponding devices. The problem addressed by the disclosure can also be solved quickly and efficiently by this embodiment variant of the disclosure in the form of a control unit.
The control unit can be designed to read in input signals and to determine and supply output signals using the input signals. An input signal can represent, for example, a sensor signal that can be read in via an input interface of the control unit. An output signal can represent a control signal or a data signal that can be supplied at an output interface of the control unit. The control unit can be designed to determine the output signals using a processing specification implemented in the hardware or the software. For example, the control unit can for this purpose comprise a logic circuit, an integrated circuit or a software module and can be implemented as a discrete component or comprised by a discrete component.
A computer program product or computer program with program code which can be stored on a machine-readable carrier or storage medium, such as a semiconductor memory, a hard disk memory or an optical memory, including non-transitory storage mediums even if such mediums do not necessarily store information permanently, for example random access memory (RAM), is also advantageous. If the program product or program is executed on a computer or a control unit, the program product or program can then be used to execute, implement, and/or control the steps of the method according to one of the embodiments described above.
Furthermore, a cleaning appliance for cleaning textiles is presented, which has a suds container for holding cleaning liquid and a rotatable drum for holding the textiles, which is arranged in the suds container. An inside of a drum casing of the drum is smooth apart from a plurality of nubs. The nubs are shaped in order to cause the cleaning liquid in the drum to execute a wave motion during a cleaning process. Furthermore, the cleaning appliance has a feed unit for feeding the cleaning liquid into the suds container, a drive for causing the drum to execute a rotational motion, and a control unit in an aforementioned variant for controlling the feed unit and the drive to operate the cleaning appliance.
The cleaning appliance can be implemented as a washing machine, for example, in which a method can be executed in one of the aforementioned variants. The cleaning appliance can be implemented, for example, as a household appliance, but also as a professional device.
Furthermore, according to one embodiment, the nubs can be shaped in the form of so-called royal cells.
According to one embodiment, the nubs can be shaped as a dome-like enlargement and can protrude into an interior space of the drum. Advantageously, the nubs in this way form a resistance for the cleaning liquid and additionally or alternatively for the textiles in order to set the cleaning liquid and additionally or alternatively the textiles in motion.
An embodiment of the disclosure is shown in the drawings in a purely schematic manner and will be described in more detail below. In the drawings:
In other words, a concept for a wave washing rhythm for very delicate textiles 102 in a non-ribbed drum 108 for the cleaning appliance 100 is presented. As a result, very sensitive textiles 102, such as wool or silk, are gently washed achieving a good washing effect. The textiles 102 are passed through by a wave motion of the cleaning liquid 106 without mechanical load, so that an indirect washing takes place via an activation of the free liquor, comparable to a wave pool in which the strength and frequency of the waves can be varied via various adjustment parameters, such as a rocking frequency, rotational speed, and/or break times.
The read-in unit 300 is designed to read in an amount signal 304 via an interface of an amount determination device 306. The amount signal 304 represents an amount of the textiles. According to this embodiment, the read-in unit 300 is also designed to determine a target fill level using the amount signal 304.
The supply unit 302 is designed to supply a feed signal 308 to an interface of the feed unit 110. In this case, the feed signal 308 causes the cleaning liquid to be fed into the suds container until a predetermined target fill level is reached, which causes the textiles to float inside the drum. Furthermore, the supply unit 302 is designed to supply a motion signal 310 to an interface of the drive 112 when the target fill level is reached, in order to cause the rotational motion of the drum.
According to this embodiment, the target fill level causes at least one lower third of the drum to be filled with the cleaning liquid. According to this embodiment, the motion signal 310 optionally causes the rotational motion in a wave washing rhythm that is suitable for causing the wave motion of the cleaning liquid. In summary, this means that the motion signal 310 ultimately causes the wave motion of the cleaning liquid by setting the drum in motion. Further optionally, the wave washing rhythm is adapted to cause the wave motion with a predetermined frequency of waves. According to this embodiment, the motion signal 310 supplied by the supply unit 302 causes a motion frequency, a drum speed, and/or a rotational pause value of the rotational motion suitable for implementing the wave washing rhythm.
Furthermore, according to one embodiment, the motion signal 310 causes the rotational motion of the drum in one and the same direction for a predetermined period of time. The period of time is optionally selected to be at least long enough for a horizontal rotational motion of the textiles to be achieved during a cleaning process due to frictional contact of the textiles with a drum base of the drum. The period of time is, for example, at least five minutes.
According to one embodiment, the motion signal 310 causes the rotational motion of the drum in a rocking rhythm with successive rotations of the drum at increasing rotational speeds without a complete revolution of the drum taking place. For example, the frequency of the rocking rhythm is between 0.1 Hz and 0.3 Hz.
According to one embodiment, the read-in unit 300 is designed to read in a program signal 320 via an interface of an input device 322 of the cleaning appliance. The program signal 320 indicates a user's program selection. For example, in the event that the program signal 320 indicates a selection of the gentle program, the feed signal 308 is determined in such a way that the cleaning liquid is fed up to the target fill level. If, on the other hand, the program signal 320 indicates a selection of a normal program, the feed signal 308 is determined according to one embodiment such that the cleaning liquid is fed up to a minimum fill level that is so low that the textiles do not float in the drum. In this case, the motion signal 310 is determined in such a way that the rotational motion already described or another suitable rotational motion of the drum is caused.
According to one embodiment, the program signal 320 and, additionally or alternatively, the amount signal 304 are used to set the motion frequency, the drum speed, and/or the rotational pause value of the rotational motion. A suitable adjustment specification or, for example, a look-up table can be used.
In other words, according to one embodiment, a high water level, which is also referred to as the target fill level, is adjusted at the beginning of a washing program for very delicate laundry. The textiles, which are also referred to as laundry, float up such that there is no direct contact between the textiles and the drum casing. The textiles to be washed are “artificially” suspended, so to speak, which means that the drum casing according to this embodiment does not cause any “hard” mechanical stress. According to this embodiment, a level of the target fill level depends on the amount of laundry detected in advance by means of the amount determination device 306. The amount of laundry is determined by different actions, such as mass moment of inertia methods or weighing the textiles, for example at the start of the program. The greater the amount of laundry, the higher the target fill level is adjusted. After the cleaning liquid has been fed by means of the feed unit 110, the cleaning liquid, also referred to as washing suds, is caused to execute a wave motion by the corresponding wave washing rhythm and by the nubs, also referred to as structural elements. For example, the laundry is not moved directly due to the lack of laundry entraining elements, i.e. the ribs, but rather flows through the “wave pool” so that the textiles are massaged. This process ensures an absolutely gentle textile treatment in connection with an improved washing effect. If there is no change of direction during the wave washing rhythm for a longer period of time, the textiles are additionally caused to execute a horizontal rotational motion by a structure of the drum base according to this embodiment. This results in a further mechanical flow. If, for example, the wave washing rhythm is executed like a rocking rhythm, which means rapid changes with increasing amplitude, the laundry is not moved despite the rotating drum. According to an alternative embodiment, these two processes can be varied depending on the program, the amount of laundry, and sensitivity.
Due to the wave washing rhythm presented herein and the high water level, an improved washing mechanics is achieved for sensitive loads. This means faster washing and/or an improved washing effect is achieved. According to this embodiment, resources are saved at the same time as a result of the load-dependent target fill level. Due to the variable water level and the wave washing rhythm, optimal washing results are achieved even for small laundry loads of, for example, less than 0.5 kg of wool.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 108 764.0 | Mar 2020 | DE | national |
The present disclosure claims priority to and the benefit of PCT Application PCT/EP2021/057277, filed on Mar. 22, 2021, which claims priority to and the benefit of German Application 10 2020 108 764.0, filed on Mar. 30, 2020, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/057277 | 3/22/2021 | WO |