The present disclosure generally relates to the field of auto parts manufacturing. More specifically, the present disclosure relates to a method and a cutting apparatus capable of cutting blank profiles.
Auto parts are commonly build in very large manufacturing plants, using machines that are at once very large and very expensive. A typical auto parts example is shown on
The illustrated notching unit 20 includes 12 cutting tools 22 that each are capable of moving laterally in synchrony with a movement of the infinite belt 32, for cutting up to six (6) notches at each end of the blank inner and outer sweeps 24 and 26. These movements require the machine 20 to include at least 13 motors (not specifically shown), one for each of the 12 moving cutting tool 22 and an additional one, usually larger, for running the infinite belt 32. Generally, these 13 motors are servo controlled motors to ensure proper synchrony of all components of the machine 20.
A typical notching unit such as the notching unit 20 is at once very expensive, in a large part because of the cost of its numerous servo controlled motors, and very bulky, occupying very significant floor space of an auto part manufacturing plant. A typical notching unit is actually wider than most standard transport containers and requires special means for delivery from its point of fabrication to the auto part manufacturing plant.
The operator 28 places blank inner and outer sweeps 24 and 26 on each pallet 30 that passes at the end 34 of the notching unit 20. If the operator 28 does not complete this operation in time before a given pallet 30 is moved into the first position 1, the operation of the notching unit 20 may need to be stopped, or at least slowed down, either automatically or command of the operator 28. Alternatively, the operation of the notching unit 20 may continue in the absence of one or both of the blank inner and outer sweeps 24 and 26 on the given pallet 30, which would be an inefficient use of the notching unit 20.
It is rare that a typical notching unit will be dedicated to manufacturing a unique type of car window sweeps. The various cutting tools 22 of the notching unit 20 are conventionally dismounted and replaced with other sets of cutting tools 22 whenever there is a need to manufacture car window sweeps for another car model. In fact, different pairs of car window sweeps are required for each of the four (4) doors of a typical sedan. Changing a set of up to 12 cutting tools 22 may require several hours of downtime of the notching unit 20.
Therefore, there is a need for improvements that compensate for at least some of the problems related to cost, size and maintenance needs of typical notching units.
In a first aspect of the present disclosure, there is provided a cutting apparatus for cutting blank profiles. The cutting apparatus comprises a first cutting device located at a first position in the cutting apparatus, a second cutting device located at a second position, the second position being separated from the first position along a first axis of the cutting apparatus, and a third cutting device located at a third position, the third position being separated from the first position along a second axis and along a third axis of the cutting apparatus. The cutting apparatus also comprises a chariot configured to move along the third axis of the cutting apparatus and a support mounted to the chariot, the support being configured to hold a blank profile and to move along the first axis and along the second axis of the cutting apparatus.
In a second aspect of the present disclosure, there is provided a cutting apparatus for cutting blank profiles. The cutting apparatus comprises a plurality of cutting devices, a chariot and a support. A first plurality of pairs of cutting devices is located in a first plane of the cutting apparatus, each pair of the first plurality of pairs of cutting devices including a cutting device on each of opposite first and second sides of a third axis of the cutting apparatus. A second plurality of pairs of cutting devices is located in a second plane of the cutting apparatus, each pair of the second plurality of pairs of cutting devices including a cutting device on each of the first and second sides of the third axis of the cutting apparatus. The chariot is configured to move along the third axis of the cutting apparatus. The support is mounted to the chariot. The support is configured to hold a blank profile and to move along a first axis and along a second axis of the cutting apparatus.
In a third aspect of the present disclosure, there is provided a cutting apparatus for cutting blank profiles According to the present disclosure, there is also provided a cutting apparatus for cutting blank profiles. The cutting apparatus comprises a plurality of cutting devices, a chariot and a support. A first plurality of pairs of cutting devices is located in a first plane of the cutting apparatus, each pair of the first plurality of pairs of cutting devices including a cutting device on each of opposite first and second sides of a third axis of the cutting apparatus. A second plurality of pairs of cutting devices is located in a second plane of the cutting apparatus, each pair of the second plurality of pairs of cutting devices including a cutting device on each of the first and second sides of the third axis of the cutting apparatus. The chariot is configured to move between the first and second sides of the third axis of the cutting apparatus. The support is mounted to the chariot. The support is configured to hold a blank profile, to move along a first axis of the cutting apparatus towards either of the first and second sides of the third axis of the cutting apparatus, and to move along a second axis of the cutting apparatus between the first and second planes of the cutting apparatus.
In a fourth aspect, of the present disclosure, there is provided a method of cutting blank profiles. A blank profile is carried toward a first cutting device located at a first position in a cutting apparatus and the first cutting device is used to cut a first notch in the blank profile. The blank profile is carried toward a second cutting device located at a second position in the cutting apparatus, the second position being separated from the first position along a first axis of the cutting apparatus and the second cutting device i used to cut a second first notch in the blank profile. The blank profile is carried toward a third cutting device located at a third position in the cutting apparatus, the third position being separated from the first position along a second axis and along a third axis of the cutting apparatus and the third cutting device is used to cut a a third notch in the blank profile.
In a fifth aspect of the present disclosure, there is provided a method of cutting blank profiles. A blank profile is positioned in a first plane. While in the first plane, the blank profile is positioned in a free space between a first pair of cutting devices, moved toward one of the cutting devices of the first pair for making a first cut at a first end of the blank profile, moved toward another one of the cutting devices of the first pair for making a second cut at a second end of the blank profile opposite from the first cut, moved in the free space between the first pair of cutting devices, positioned in a free space between a second pair of cutting devices, moved toward one of the cutting devices of the second pair for making a third cut at one of the first and second ends of the blank profile, moved toward another one of the cutting devices of the second pair for making a fourth cut at one of the first and second ends of the blank profile opposite from the third cut, and moved in the free space between the second pair of cutting devices. The blank profile is moved from the first plane to a second plane. While in the second plane, the blank profile is positioned in a free space between a third pair of cutting devices, moved toward one of the cutting devices of the third pair for making a fifth cut at one of the first and second ends of the blank profile, moved toward another one of the cutting devices of the third pair for making a sixth cut at one of the first and second ends of the blank profile opposite from the fifth cut, moved in the free space between the third pair of cutting devices, positioned in a free space between a fourth pair of cutting devices, moved toward one of the cutting devices of the fourth pair for making a seventh cut at one of the first and second ends of the blank profile, and moved toward another one of the cutting devices of the fourth pair, for making an eighth cut at one of the first and second ends of the blank profile opposite from the seventh cut.
The foregoing and other features will become more apparent upon reading of the following non-restrictive description of illustrative embodiments thereof, given by way of example only with reference to the accompanying drawings.
Embodiments of the disclosure will be described by way of example only with reference to the accompanying drawings, in which:
Like numerals represent like features on the various drawings.
Various aspects of the present disclosure generally address one or more of the problems related to cost, size and maintenance needs of typical notching units.
Generally speaking the present technology addresses at least some of the disadvantages of conventional multi-pallet notching units by providing a cutting apparatus having cutting devices placed in fixed positions and distributed over two planes on either sides of a first axis. The cutting apparatus has a chariot that can move along one axis. A support, mounted on the chariot, holds one or more blank profiles. The support can move in relation to the chariot along two other axes so that the one or more blank profiles can be carried in three dimensions (3D) toward the various cutting devices.
The disclosed cutting apparatus may be used as a notching unit adapted to cut a plurality of configured notches on both ends of elongated profiles. Though the foregoing has been discussing the field of auto parts manufacturing and the specific example of car window sweeps, the present disclosure is not limited to such field and to the manufacturing of such auto parts. The present technology can be adapted to the fabrication of other car parts as well as to the fabrication of parts for other uses than the automotive industry. As a non-limitative example, the present technology may be used in the construction industry for cutting metal profiles or plastic profiles, for example CPV profiles, for the manufacture of window frames.
The following terminology is used throughout the present disclosure:
Referring now to the drawings,
The cutting apparatus 100 has frame 102 defining a 3D enclosure over a first axis 114, a second axis 124 and a third axis 126. The frame 102 encloses a plurality of cutting devices 104. The cutting devices 104 are distributed over two (2) planes 106, 108, each plane 106 and 108 including a plurality pairs of cutting devices 104, each pair including a cutting device 104 on each of opposite sides 110, 112 of the third axis 126 of the cutting apparatus 100. A chariot 116 is adapted to move along the third axis 126. A support 118 is mounted to the chariot 116. The support 118 holds an optional pallet 120 that, in turn, holds a blank profile 122. The support 118 may include a manually operable latch, one or more screwable knobs, magnetic or pneumatic quick connects (not shown) for quick mounting and dismounting the pallet 120. The support 118, with or without the pallet 120, is adapted to hold at least one blank profile 122, or two (2) blank profiles 122 as shown on
Without limiting the present disclosure, operation of the cutting apparatus 100 may use servo motors (not shown) controlled by a controller (not shown) for moving the chariot 116 and the support 118. One such servo motor may be used for moving the chariot 116 along the third axis 126. Two (2) servo motors may be used to move the support 118, one to move the support 118 along the first axis 114 and another one to move the support 118 along the second axis 124. Use of other mechanisms to move the chariot 116 and the support 118 is also contemplated.
Each of the cutting devices 104 may be configured to cut a notch at an end of the blank profiles 122 when the ends of the blank profiles 122 are inserted into the cutting devices 104. Optionally, depending on the needs of the application, each cutting device 104 located on a same side 110 or 112 may be adapted to cut a different notch at the end of a given blank profile 122.
As shown on
Other configurations may be contemplated. In a first alternative configuration of the cutting apparatus 100, the chariot 116 may be configured to move up and down along between two (2) vertical planes, the third axis 126, becoming a vertical axis, the support 118 moving between the various cutting devices 104 over the first and second axes 114 and 124 that both become horizontal axes. This first alternative configuration may be represented by visualizing
In operation, referring again to
Without limitation, the above sequence may be applied to cut notches into blank profiles to fabricate car window sweeps. In the above sequence, the expression “blank profile” continues being used to designate a profile having been subject to one or more cutting operations. Though such a profile may not actually remain “blank” throughout the process, this term is used, as the profile goes through the process, in order to simplify the present disclosure.
Variations of the above sequence are contemplated. For example, if 12 notches are to be cut in the blank profile 122, the above sequence may be extended by bringing the blank profile within positions 3 and 6 shown on
The above sequence may be modified, for example by moving the blank profile 122 between positions in a different order, for example by passing through positions 1, 4, 5, 2, 3 and then 6, or in any other order.
Depending on adaptations made on the cutting devices 104, each of the first, third, fifth and seventh cuts may be a different cut, for example a different notch, and/or each of the second, fourth, sixth and eighth cuts may also be a different cut, for example a different notch.
Using the cutting apparatus 100 having the configuration as shown on
Having described hereinabove the fundamentals of the present technology, a more detailed embodiment will now be introduced.
The cutting apparatus 200 includes a chariot 116 mounted on horizontal rails 208 and adapted to move along a third axis 126 (reference 126 being shown on earlier Figures) that extends horizontally within a frame 202 of the cutting apparatus 200. The cutting apparatus 200 also includes a plurality of cutting devices 104 located in an upper plane 106 and in a lower plane 108. The planes 106 and 108 are defined by the location of a number of beams 222 that support the cutting devices 104. A support 118 mounted to the chariot 116 and holding a pallet 120 is movable in relation to the chariot 116 along a horizontal first axis 114 toward sides 110 and 112 of the cutting apparatus 200, and along a vertical second axis 124 toward either of the upper and lower planes 106 and 108 of the cutting apparatus 200.
The cutting apparatus 200 of
The cutting apparatus 200 comprises a frame 202 that contains major components including the cutting devices 104, the chariot 116, the support 118 and a control panel 216. The control panel 216 is configured to control a synchronous operation of the cutting devices 104 with an operation of the servo motors for the chariot 116 and for the support 118. As illustrated on
The operator may install one or two blank profiles 122 directly on the support 118 or, optionally, on the pallet 120 placed on the support 118. In some configurations, the pallet 120 may be detachable from the support 118 so that the operator may attach blank profiles 122 on one pallet 120 while other blank profiles 122 tied to another pallet 120 are being processed by the cutting apparatus 200. Using the display 210 or a keyboard, the operator may select a height of the support 118 at a loading position within the window 214.
The frame 202 may be divided into sub-frames 204 and 206. One sub-frame 206 includes the chariot 116 mounted on the rails 208, the support 118, the control panel 216 and all cutting devices 104 located on one side 110 of the cutting apparatus 200. Another sub-frame 204 includes all cutting devices 104 located on the other side 112 of the cutting apparatus 200. The sub-frames 204 and 206 are detachable. Though wider than the sub-frame 204, the sub-frame 206 may still fit within a standard-size container for ease of transportation. Quick-connect electrical links (not shown) may be provided between the sub-frames 204 and 206 to facilitate connection and disconnection between the cutting devices 104 of the sub-frame 204 and the control panel 216.
Additional variants of the cutting apparatus 200 are provided to facilitate its reconfiguration. For example,
The foregoing describes embodiments of the present technology in which the cutting devices 104 are assembled in pairs distributed over two (2) planes 106, 108 and over two (2) sides 110, 112 within the cutting apparatus 100. However, the present technology is not limited to a particular distribution of cutting devices within a 3D space of a cutting apparatus.
In a variant, a fourth group of cutting devices 104 (not shown on
In the same or another variant of the cutting apparatus 300, each of the first, second or third groups 302, 304 and 306, including the fourth group, if present, may include a single cutting device 104 or a larger number of cutting devices 104. Referring again to
Still referring to
The foregoing describes embodiments of the present technology in which the chariot 116 moves along the third axis 126 while the support 118 moves along the first and second axes 114 and 124 in relation to the chariot 116, whereby the support 118 and the pallet 120 move over 3D within a cutting apparatus. However, the present technology is not limited to a particular manner of moving the support 118, the pallet 120 and the blank profile 122 toward the various cutting devices 104.
Both chariots 410 and 412 have a similar structure, are similarly installed within the central sub-frame 404 and are operated similarly. Considering the chariot 410, it is adapted for moving along the second axis 124 by moving on a base 420, the base 420 being mounted on a pair of rails 422 and 424 of the central sub-frame 404 and being capable of moving along the third axis 126 so that the chariot 410 can effectively move along both second and third axes 124 and 126. The support 414 can move in relation to the chariot 410, along the first axis 114, so that the support 414 as well as a pallet 120 and blank profile 122 can effectively move along all three axes 114, 124 and 126.
Three (3) servo motors (not shown) may be used, respectively, to move the chariot 410 on its base 420 along the second axis 124, to move the base 420 on the rails 422 and 424 along the third axis 126 and to move the support 414 in relation to the chariot 410 along the first axis 114. Use of other mechanisms to move the chariot 410 and the support 414 is also contemplated. These servo motors as well as all cutting devices 104 are controlled by a control panel such as the control panel 216 introduced in the description of earlier Figures.
Without limitation, in the example of
The control panel controls a synchronous operation of servo motors that move the chariots 410 and 412 and the supports 44 and 416, while also controlling the operation of the cutting devices 104, so that both chariots 410 and 412 between the base planes formed by the rails 422, 424, 432 and 434 without colliding. For instance, the control panel may cause the chariot 410 to move along the second axis 124 towards the rail 422, in the upper part of the central sub-frame 404 in the drawings, while causing the chariot 412 to move along the second axis 124 towards the rail 434, in the upper part of the central sub-frame 404 in the drawings. Thereafter, as the chariots 410 and 412 are separated along this second axis 124, the control panel may cause the chariots 410 and 412 and their bases 420, 430 to move in any direction along the third axis 126 and cause the supports 414 and 416 to move in any direction along the first axis 114, both chariots 410 and 412 and both supports 414 and 416 moving concurrently without risk of collision between the chariots 410 and 412 or between the supports 414 and 416.
The control panel may be installed in any one of the sub-frames 404, 406 and 408. The cutting apparatus 400 may include protective panels such as the panels 220 described hereinabove, these panels being installed as needed for safe operation and maintenance of the cutting apparatus 400.
A loading position 436 is defined at one end of the central sub-frame 404. The loading position 436 may be defined within an operator window of one of the protective panels 220 (shown on earlier Figures). The supports 414 and 416 are mounted on the chariots 410 and 412 so that they both face the loading position 436. The operator 128 may stand at the loading position 436 and install a pair of blank profiles 122 on one of the supports 414 and 416 while another pair of blank profiles 122 mounted on the other one of the supports 414 and 416 is being processed by the cutting apparatus 400. The cutting apparatus 400 may further include the display 210 and the emergency switch 218, installed near the loading position 436.
In an embodiment, each of the outer sub-frames 404 and 406 may be constructed in a manner as expressed in the foregoing description of
All sub-frames 404, 406 and 408 may individually fit within a standard-size container for ease of transportation. Quick-connect electrical links (not shown) may be provided between the central sub-frame 404 and the outer sub-frames 406 and 408 to facilitate connection and disconnection between the cutting devices 104 of the outer sub-frames 406 and 408, the servo-motors of the central sub-frame 404, and the control panel.
Those of ordinary skill in the art will realize that the description of the cutting apparatus and of the method of cutting blank profiles are illustrative only and are not intended to be in any way limiting. Other embodiments will readily suggest themselves to such persons with ordinary skill in the art having the benefit of the present disclosure. Furthermore, the disclosed cutting apparatus and method of cutting blank profiles may be customized to offer valuable solutions to existing needs and problems related to cost, size and maintenance needs of typical notching units. In the interest of clarity, not all of the routine features of the implementations of the cutting apparatus and of the method of cutting blank profiles are shown and described. In particular, combinations of features are not limited to those presented in the foregoing description as combinations of elements listed in the appended claims form an integral part of the present disclosure. It will, of course, be appreciated that in the development of any such actual implementation of the cutting apparatus and method for cutting blank profiles, numerous implementation-specific decisions may need to be made in order to achieve the developer's specific goals, such as compliance with application-, system-, and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the field of auto parts manufacturing having the benefit of the present disclosure.
The present disclosure has been described in the foregoing specification by means of non-restrictive illustrative embodiments provided as examples. These illustrative embodiments may be modified at will. The scope of the claims should not be limited by the embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
The present application claims priority to U.S. Provisional Patent Application No. 62/423,537, filed on Nov. 17, 2016, the entirety of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/056637 | 10/25/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62423537 | Nov 2016 | US |