This application is a 371 of International Patent Application No, PCT/CN2013/082181, filed Aug. 23, 2013, entitled “CONTENTION WINDOW VALUE ADAPTIVE ADJUSTING METHOD AND EQUIPMENT”, which claims priority to Chinese Patent Application No. 201210325365.2, filed Sep. 5, 2012, entitled “SELF-ADAPTIVE CONTENTION WINDOW VALUE ADJUSTMENT METHOD AND DEVICE”. The above-identified applications are hereby incorporated herein by reference in their entirety.
The disclosure relates to the technical field of network communications, and in particular to a method and device for adjusting a contention window value adaptively.
An access protocol based on contention in 802.11 (being a wireless local area network standard initially formulated by IEEE) standard constitutes the basis of 802.11 media access control (referred to as MAC) protocol, and the standard specifies a distributed coordination function (referred to as DCF) for a contention phase for the media access control layer (MAC) of the WLAN. The DCF uses the technology of Carrier Sense Multiple Access with Collision Detection (referred to as CSMA/CA) to detect a media state by means of physical and virtual carrier sense functions, and each terminal may independently determine to access a channel and enter into a back-off process when the access is failed so as to reconnect the channel, thereby providing a more flexible wireless communication manner.
In the wireless communication field, each terminal may independently determine to enter into the channel and enter into the back-off process when the access is failed so as to reconnect the channel. However, only one shared channel exists in the wireless local network, and therefore, a station with services to be sent needs to perform channel contention; when stations participated in channel contention are sensed to be idle, duration of a distributed coordination inter frame space (DIFS) is delayed, and a random back-off duration is further waited, and if the channel is still idle at the moment, then the channel is accessed. The random back-off duration is also called a contention window (CW), and in order to reduce the collision probability; the size of an optimal contention window depends on the quantity of stations participating in channel contention in a channel at the same time slot. If the number of stations participated in the contention is less, then the collision probability is low, and now a smaller contention window may be used so as to reduce delay; and if the number of stations participated in the contention is much, then the collision probability is high, and now it is suitable to use a larger contention window so as to reduce collision and improve throughput of the whole network.
In a wireless local area network standard, a back-off method of binary index in a unit of time slot is usually used to acquire a contention window value, and CW is a random integer selected from equal distribution on the section [0, CW−1], and CW ε [CWmin, CWmax], and during retransmission for an ith time, CW(i)=min[2i·CWmin, CWmax], and min( ) represents taking a minimum value within brackets. The CW is reset to be CWmin after being sent successfully every time. However, in the case of network congestion, if the CW is reset to be CWmin after successful sending, it would easily cause collision and retransmission, and reduce network throughput; and in the case of network congestion being relieved, the transmission would be doubled and the number of network idle time slots would be increased, and unnecessary delay would be introduced and the network throughput would be reduced.
The main object of the embodiments of the disclosure is to provide a method and device for adjusting a contention window value adaptively so as to reduce network delay and improve network throughput.
The embodiments of the disclosure propose a method for adjusting a contention window value adaptively, and the method comprises the following steps:
measuring the number n of stations participated in a contention currently;
acquiring, according to the number n of stations participated in a contention currently, the practical collision probability Pc of the current contention window value CWold and optimal collision probability Pcopt under the maximum network throughput;
adjusting, when a data frame is transmitted successfully, initial contention window value CWinit according to the practical collision probability Pc and optimal collision probability Pcopt; and
adjusting, when a data frame is transmitted unsuccessfully, a retransmission contention window value CWnew according to the practical collision probability Pc.
Preferably, acquiring, according to the number n of stations participated in the contention currently, the practical collision probability Pc of the current contention window value CWold and optimal collision probability Pcopt under the maximum network throughput specifically comprises:
when the number of stations participated in the contention currently is n and current contention window value is CWold, determining the practical collision probability Pc=1−(1−τ)n−1[1+(n−1)τ], where τ is a sending probability of a station when a time slot of a channel begins and the current contention window value is CWold; and
when the number of stations participated in the contention currently is n and network throughput is maximum, determining the optimal collision probability Pcopt=1−(1−τopt)n−1[1+(n−1)τopt], where τopt is a sending probability of a station when a time slot of a channel begins and network throughput is maximum.
Preferably, adjusting the initial contention window value CWinit according to the practical collision probability Pc and optimal collision probability Pcopt specifically comprises:
comparing the practical collision probability Pc with a lower limit, which is Pcmax=Pcopt−DL, of a collision probability threshold value and an upper limit, which is Pcmin=DL, of the collision probability threshold value, wherein DL is an interactive tolerance threshold;
when Pc<cmin, determining a current network to be idle, and reducing the initial contention window value CWinit=min[CWold−CWstep1, CWmax], where CWstep1 is a step length of a first initial contention window value;
when Pc>Pcmax, determining a current network to be congested, and increasing the initial contention window value CWinit=min[CWold+CWstep2, CWmax], where CWstep2 is a step length of a second initial contention window value;
when Pcmin≦Pc≦Pcmax, determining a current network to be good, and maintaining the initial contention window value CWinit=min[CWold, CWmax].
Preferably, determining a current network to be idle, and reducing the initial contention window value CWinit when the Pc<Pcmin specifically comprises:
when Pc<Pcmin, detecting whether the current contention window value CWold is less than a contention window threshold value Thr(n);
if yes, determining the current contention window value CWold to be appropriate with respect to the current network, and the step length of the initial contention window value CWstep1=0, and maintaining the initial contention window value CWinit=min[CWold, CWmax];
if no, determining the current contention window value CWold to be too large with respect to the current network, and the step length of the initial contention window value CWstep1>0, and reducing the initial contention window value CWinit=min[CWold−CWstep1, CWmax].
Preferably, adjusting the retransmission contention window value CWnew according to the practical collision probability Pc specifically comprises:
acquiring a Packet Error rate (PER) from a media access control layer;
detecting whether the PER is much greater than the practical collision probability Pc;
if yes, determining that a reason for data frame transmission failure is caused by bad network environment, and maintaining the retransmission contention window value CWnew=min[CWold, CWmax]; and
if no, then determining that the reason for data frame transmission failure is caused by collision, and increasing the retransmission contention window value CWnew=min[CWold+CWstep3], where CWstep3 is a step length of the retransmission contention window value.
The disclosure further provides a device for adjusting a contention window value adaptively, and the device comprises:
a measurement component configured to measure the number of stations participated in a contention currently:
an acquisition component configured to, according to the number n of stations participated in the contention currently, acquire the practical collision probability Pc of the current contention window value CWold and optimal collision probability Pcopt under the maximum network throughput;
a first adjustment component configured to, when a data frame is transmitted successfully, adjust an initial contention window value CWinit according to the practical collision probability Pc and optimal collision probability Pcopt; and
a second adjustment component configured to, when data frame is transmitted unsuccessfully, according to the practical collision probability Pc, adjust retransmission contention window value CWnew.
Preferably, the acquisition component specifically comprises:
a first acquisition unit configured to, when the number of stations participated in the contention currently is n and the current contention window value is CWold, determine the practical collision probability Pc=(1−(1+τ)n−1[1+(n−1)τ], where τ is a sending probability of a station when a time slot of a channel begins and the current contention window value is CWold; and
a second acquisition unit configured to, when the number of stations is participated in current contention is n and network throughput is maximum, determine the optimal collision probability Pcopt=1−(1−τopt)n−1[1+(n−1)τopt], where τopt is a sending probability of a station when a time slot of a channel begins and network throughput is maximum.
Preferably, the first adjustment component specifically comprises:
a first comparison unit configured to compare the practical collision probability Pc with a lower limit, which is Pcmax=Pcopt−DL, of a collision probability threshold value and an upper limit, which is Pcmin=Pcopt+DL, of the collision probability threshold value upper limit, where DL is an interactive tolerance threshold;
a first adjustment unit configured to, when Pc<Pcmin, determine a current network to be idle, and reduce the initial contention window value CWinit=min[CWold−CWstep1, CWmax], where CWstep1 is a step length of a first initial contention window value;
a second adjustment unit configured to, when Pc>Pcmax, determine a current network to be congested, and increase the initial contention window value CWinit=min[CWold−CWstep2, CWmax], where CWstep2 is a step length of a second initial contention window value; and
a third adjustment unit configured to, when Pcmin≦Pc≦Pcmax, determine a current network to be good, and maintain the initial contention window value CWinit=min[CWold, CWmax].
Preferably, the first adjustment unit is specifically configured to
when Pc<Pcmin, detect whether the current contention window value CWold is less than a contention window threshold value Thr(n);
if yes, then determine the current contention window value CWold to be appropriate with respect to the current network, and the step length of the initial contention window value CWstep1=0, and maintaining the initial contention window value CWinit=min[CWold, CWmax].
if no, then determine the current contention window value CWold to be too large with respect to the current network, and the step length of the initial contention window value CWstep1>0, and reduce the initial contention window is value CWinit=min[CWold−CWstep1, CWmax].
Preferably, the second adjustment component specifically comprises:
a packet error rate acquisition unit configured to acquire a PER from a media access control layer;
a second comparison unit configured to detect whether the PER is much greater than the practical collision probability Pc;
a fourth adjustment unit configured to, when the PER is greater than Pc, determine that a reason for data frame transmission failure is caused by bad network environment, and maintain the retransmission contention window value CWnew=min[CWold, CWmax]; and
a fifth adjustment unit configured to, when the PER is not much greater than Pc, then determine that a reason for data frame transmission failure is caused by collision, and increase the retransmission contention window value CWnew=min[CWold+CWstep3, CWmax], where CWstep3 is a step length of the retransmission contention window value.
The embodiments of the disclosure can better reflect network collision situation, dynamically adjust initial contention window value associating with retransmission contention window value, thus making the contention window value finally approaching to optimal value, improve the network throughout, and reduce the delay.
Objectives and advantages related to the disclosure will be illustrated in the subsequent descriptions and appended drawings.
It should be understood that specific embodiments described here are only used for illustrating the disclosure and not intended to limit the disclosure.
As shown in
The diagram showing relationships in
As shown in
step S10, the number n of stations participated in a contention currently is measured;
step S20, according to the number n of stations participated in the contention currently, a practical collision probability Pc of the current contention window value CWold and optimal collision probability Pcopt under the maximum network throughput are acquired;
step S30, when a data frame is transmitted successfully, an initial contention window value CWinit is adjusted according to the practical collision probability Pc and optimal collision probability Pcopt; and
the practical collision probability and optimal collision probability are calculated according to the number of stations participated in the contention in the current network, and when the data frame is transmitted successfully, the practical collision probability is compared with the optimal collision probability under the maximum network throughput so as to dynamically adjust the initial contention window value.
Step S40, when the data frame is transmitted unsuccessfully, a retransmission contention window value CWnew is adjusted according to the practical collision probability Pc.
When the data frame is transmitted unsuccessfully, the practical collision probability is compared with the packet error rate so as to dynamically adjust the retransmission contention window value.
The present embodiment may better reflect network collision situation, dynamically adjust the initial contention window value and retransmission contention window value jointly, which may make the contention window value is finally approaching to optimal value, improve the network throughout, and reduce the delay.
As shown in
step S21, when the number of stations participated in the contention is n and the current contention window value is CWold, the practical collision probability Pc=1−(1−τ)n−1[1+(n−1)τ] is determined, where τ is a sending probability of a station at the beginning of a time slot of a channel when the current contention window value is CWold; and
step S22, when the number of stations participated in the contention currently is n and network throughput is maximum, the optimal collision probability Pcopt=1−(1−τopt)n−1[1+(n−1)τopt] is determined, where τopt is a sending probability of a station at the beginning of a time slot of a channel when the network throughput is maximum.
The τ in the present embodiment is related to the number n of stations participated in the contention currently and current contention window value CWold, and τopt is related to the number n of stations participated in the contention currently and an optimal CW value, i.e. it being obtained according to maximum network throughput. The two parameters may be obtained through statistic calculation. According to the number n of stations participated in the contention in the current network, the practical collision probability Pc of the current contention window value CWold and optimal collision probability Pcopt, under the maximum network throughput are calculated so as to dynamically adjust the initial contention window value CWinit and retransmission contention window value CWnew, which may better reflect network collision situation, and make the contention window value close to an optimal value so as to improve the network throughout, and reduce the delay.
As shown in
Step S30 specifically comprises:
step S31 the practical collision probability Pc is compared with a lower limit, which is Pcmax=Pcopt−DL, the collision probability threshold value and with a upper limit, which is Pcmin=Pcopt+DL, of the collision probability threshold value, where DL is an interactive tolerance threshold;
wherein the interactive tolerance threshold DL may be obtained through simulation;
step S32, when Pc<Pcmin, a current network is determined to be idle, and the initial contention window value CWinit=min[CWold−CWstep1, CWmax] is reduced, where CWstep1 is a step length of a first initial contention window value;
when Pc<Pcmin, it represents that the collision is lighter and the network is relative idle, and the contention window value should be reduced to improve time slot utilization ratio and reduce delay.
Step S33, when Pc>Pcmax, a current network is determined to be congested, and the initial contention window value CWinit=min[CWold+CWstep2, CWmax] is increased, where CWstep2 is a step length of a second initial contention window value;
when Pc>Pcmax, it represents that collision is rather severe, and the network is rather congested, and the contention window value should be increased to reduce the collision.
Step S34, when Pcmin≦Pc≦Pcmax, a current network is determined to be good, and the initial contention window value CWinit=min[CWold, CWmax] is maintained.
In the present embodiment, the practical collision probability Pc is compared with the optimal collision probability Pcopt, under the maximum network throughput, and the initial contention window value CWinit is adjusted dynamically which may better reflect network collision situation, and make the contention window value close to an optimal value so as to improve the time slot utilization rate and reduce delay when the network is relatively idle, and reduce collisions when the network is relatively congested.
As shown in
Step S30 specifically comprises:
step S31, the practical collision probability Pc is compared with a lower limit, which is Pcmax=Pcopt−DL, of the collision probability threshold value and with a upper limit, which is Pcmin=Pcopt+DL, of the collision probability threshold value, where DL an interactive tolerance threshold;
Step S321, when P<Pcmin, it is detected whether a current contention window value CWold is less than a contention window threshold value Thr(n); if yes, turn to step S322; and if no, turn to step S323;
The contention window threshold value Thr(n) is a function of the number n of stations participated in the contention currently, and may be an experience value obtained through relationship curve of the number of stations in the contention and collision probability according to the embodiment shown in
Step S322, the current contention window value CWold is determined to be appropriate with respect to the current network, and the step length of the initial contention window value CWstep1=0, and the initial contention window value CWinit=min[CWold, CWmax] is maintained;
step S323, the current contention window value CWold is determined to be too large with respect to the current network, and the step length of the initial contention window value CWstep1<0, and the initial contention window value CWinit=min[CWold−CWstep1, CWmax] is reduced;
and since current contention window value CWold is too large with respect to the current network, and the step length CWstep=2−1·CWold of regulated first initial contention window value should be decreased substantially, and the initial contention window value CWinit=min[2−1·CWold, CWmax] is decreased by half, so as to alleviate the decrease of throughput caused by the contention window value being too large as soon as possible.
Step S33, when Pc>Pcmax, a current network is determined to be congested, and the initial contention window value CWinit=min[CWold−CWstep2, CWmax] is increased, where CWstep2 is a step length of a second initial contention window value;
at the moment, CWstep2=f(CWold)·L(n), where f(CWold) is a decreasing function of CWold, and L(n) is an increasing function of n, and CWstep2 obtained through the two functions enables CWinit to approximately satisfy a relationship curve of the number of contention stations and collision probability in the embodiment as shown in
Step S34, when Pcmin≦Pc≦Pcmax, a current network is determined to be good, and the initial contention window value CWinit=min[CWold, CWmax] is maintained.
According to results of the practical collision probability Pc respectively comparing with the optimal collision probability Pcopt and the contention window threshold value Thr(n), the initial contention window value CWinit is regulated in the present embodiment. When the network is relatively idle and the current contention window value CWold is too large with respect to the current network, the contention window value is decreased substantially so as to alleviate the decreasing of throughput caused by the contention window value being too large; when the network is congested, the contention window value is increased to reduce collision.
As shown in
Step S40 specifically comprises:
step S41, a Packet Error Rate (PER) is acquired from a Media Access Control (MAC) layer;
wherein PER=the number of frames which are verified wrongly number of totally verified frames.
Step S42, it is detected the PER is much greater than the practical collision probability Pc, and if yes, turn to step S43; and if no, turn to step S44.
PER>a·Pc may be used for determining that PER is much greater than Pc, where a is a multiple and may be determined according to the practical network condition, for example, when a=100, then when PER is greater than 100 multiples of Pc, the PER is determined to be much greater than Pc.
Step S43, a reason for data frame transmission failure is determined to be caused by bad network environment, and the retransmission contention window value CWnew=min[CWold, CWmax] is maintained; and
step S44, the reason for data frame transmission failure is determined to be caused by collision, and the retransmission contention window value CWnew=min[CWold+CWstep3, CWmax] is increased, where CWstep3 is the step length of the retransmission contention window value;
at the moment, CWstep3=f(CWold)·L′(n), where f(CWold) is a decreasing function of CWold, and L′(n) is a second increasing function of n, and CWstep3 obtained through the two functions enables CWnew to approximately satisfy a relationship curve of the number of contention stations and collision probability in the embodiment as shown in
By comparing the practical collision probability with the PER, in the present embodiment the network collision situation may be reflected better, the retransmission contention window value may dynamically be adjusted to make the contention window value finally approaching to optimal value, improve the network throughout, and reduce the delay.
As shown in
Step S501, CWinit=min[CWmin, CWmax] configured; and in the protocol of 802.11n, CWmin is specified to be 16.
Step S502, a random number is selected from the equal distribution on section [0, CW−1] as a random back-off duration;
Step S503, a station senses a channel to be idle, the DIPS duration is delayed;
Step S504, it is detected whether the channel is idle; if no, turn to step S505; and if yes, turn to step S506;
Step S505, a back-off counter is frozen, and back-off counting is paused, and step S503 is performed;
Step S506, the back-off counting, is continued, and it is detected whether the back-off counter reaches 0; if no, turn to step S504; and if yes, turn to step S507;
During a back-off period, if the channel maintains an idle state, then back-off counting is continued, and it is detected whether the back-off counter reaches 0, and if the channel is busy, then the back-off counting is paused until the channel is idle again, then the counting is continued.
Step S507, a data frame is transmitted.
Step S505, it is detected whether the data frame is transmitted successfully; if yes, turn to step S509; and if no, turn to step S510.
Step S509, the flow of adjusting the initial contention window value is performed;
and the flow of adjusting the initial contention window value may be referred to embodiments as shown in
Step S510, it is detected whether a maximum retransmission time is reached; if yes, turn to step S511; and if no, turn to step S512.
Step S511, the data frame is discarded.
Step S512, the flow of adjusting the retransmission contention window value is performed.
The flow of adjusting the retransmission contention window value may be referred to embodiments as shown in
Since the flow of adjusting the initial contention window value and the flow of adjusting the retransmission contention window value m the present embodiment use all the technical solutions of the above embodiments as shown in
As shown in
a measurement component 10 configured to measure number n of stations participated in a contention currently;
an acquisition component 20 configured to acquire the practical collision probability Pc of the current contention window value CWold and optimal collision probability Pcopt under the maximum network throughput according to the number n of stations participated in the contention currently;
a first adjustment component 30 configured to according to the practical collision probability Pc and optimal collision probability Pcopt when a data frame is transmitted successfully, adjust a initial contention window value CWinit; and
a second adjustment component 40 configured to adjust a retransmission contention window value CWnew according to the practical collision probability Pc to when the data frame is transmitted unsuccessfully.
In the present embodiment, the practical collision probability and optimal collision probability are calculated according to the number of stations participated in contention in the current network, and when the data frame is transmitted successfully, the practical collision probability is compared with the optimal is collision probability under the maximum network throughput so as to dynamically adjust the initial contention window value; and when the data frame is transmitted unsuccessfully, the practical collision probability is compared with the packet error rate so as to dynamically adjust the retransmission contention window value. In the disclosure, the network collision situation may be reflected better, and the initial contention window value and retransmission contention window value may be adjusted dynamically. Through the above solution the contention window value may approach to an optimal value, the network throughout may be improved, and the delay maybe reduced.
As shown in
The acquisition component 20 specifically comprises:
a first acquisition unit 21 configured to, when the number of stations participated in the contention currently is ii and a current contention window value is CWold, determine the practical collision probability Pc=1−(1−τ)n−1[1+(n−1)τ], where τ is a sending probability of a station at the beginning of a time slot of a channel when the current contention window value is CWold; and
a second acquisition unit 22 configured to, when the number of stations participated in the contention currently is n and network throughput is maximum, determine the optimal collision probability Pcopt=1−(1−τopt)n−1[1+(n−1)τopt], where τopt is a sending probability of a station at the beginning of a time slot of a channel when the network throughput is maximum.
The τ in the present embodiment is related to the number n of stations participated in the contention currently and current contention window value CWold, and τopt is related to the number it of stations participated in the contention currently and an optimal CW value, i.e. it being obtained according to maximum network throughput. The two parameters may be obtained through statistic calculation. According to the number it of stations participated in contention in the current network, the practical collision probability Pc of the current contention window value CWold and optimal collision probability Pcopt, under the maximum network throughput are calculated so as to dynamically adjust the initial contention window value CWinit and retransmission contention window value CWnew, which may better reflect network collision situation, and make the contention window value close to an optimal value so as to improve the network throughout, and reduce the delay.
As shown in
The first adjustment component 30 specifically comprises:
a first comparison unit 31 configured to compare the practical collision probability Pc, with a lower limit, which is Pcmax=Pcopt−DL, of a collision probability threshold value and with a upper limit, which is Pcmin=Pcopt+DL, of the collision probability threshold value, where DL an interactive tolerance threshold, and the interactive tolerance threshold DL may be obtained through simulation;
a first adjustment unit 32 configured to, when Pc<Pcmin, determine a current network to be idle, and reduce the initial contention window value CWinit=min[CWold−CWstep1, CWmax], where CWstep1 is a step length of a first initial contention window value;
a second adjustment unit 33 configured to, when Pc>Pcmax, determine the current network to be congested, and increase the initial contention window value CWinit=min[CWold+CWstep2, CWmax], wherein the CWstep2 is a step length of a second initial contention window value; at the moment CWstep2=f(CWold)·L(n), where f(CWold) is a decreasing function of CWold, and L(n) is an increasing function of n, and the CWstep2 obtained, through the two functions enables CWinit to approximately satisfy a relationship curve illustrating relationships between the number of contention stations and collision probability in the embodiment as shown in
a third adjustment unit 34 configured to, when Pcmin≦Pc≦Pcmax, determine a current network to be good, and maintain the initial contention window value CWinit=min[CWold, CWmax].
In the present embodiment, when Pc<Pcmin, it represents that the collision is lighter and the network is relative idle, and the contention window value should be reduced to improve time slot utilization ratio and reduce delay; when Pc>Pcmax, it represents that collision is rather severe, and the network is rather congested, and the contention window value should be increased to reduce the collision. In the present embodiment, the practical collision probability Pc is compared with the optimal collision probability Pcopt under the maximum network throughput, and the initial contention window value CWinit is adjusted dynamically. The above solution can better reflect network collision situation, and make the contention window value close to an optimal value so as to improve the time slot utilization rate and reduce delay when the network is relatively idle, and reduce collisions when the network is relatively congested.
The first adjustment unit 32 in the embodiment of the disclosure is specifically configured to:
when Pc<Pcmin, detect whether the current contention window value CWold is less than a contention window threshold value Thr(n), where the contention window threshold value Thr(n) is a function of the number n of stations participated in the contention currently, and may be an experience value obtained through relationship curve illustrating relationships between the number of stations in contention and collision probability according to the embodiment shown in
if yes, determine the current contention window value CWold to be appropriate with respect to the current network, and set a step length of the initial contention window value CWstep1=0, and maintain the initial contention window value CWinit=min[CWold, CWmax];
and if no, determine the current contention window value CWold to be too large with respect to the current network, set a step length of the initial contention window value CWstep1>0, and reduce the initial contention window value CWinit=min[CWold−CWstep1, CWmax].
In the present embodiment, when the CWold is greater than the contention window threshold value Thr(n), and since current contention window value CWold is too large with respect to the current network, and the step length CWstep=2−1·CWold of regulated first initial contention window value should be decreased substantially, and the initial contention window value CWinit=min[2−1·CWold, CWmax] is decreased by half, so as to alleviate the decrease of throughput caused by the contention window value being too large as soon as possible. According to results of the practical collision probability Pc respectively comparing with the optimal collision probability Pcopt and the contention window threshold value Thr(n), the present embodiment regulates the initial contention window value CWinit; when the network is relatively idle and the current contention window value CWold is too large with respect to the current network, the contention window value is decreased substantially so as to alleviate the decreasing of throughput caused by the contention window value being too large; when the network is congested, the contention window value is increased to reduce collision.
As shown in
The second adjustment component 40 specifically comprises:
a packet error rate acquisition unit 41 configured to acquire a PER from a MAC layer, wherein PER=the number of frames which are verified wrongly÷the number of totally verified frames;
a second comparison unit 42 configured to detect whether the PER is much greater than the practical collision probability Pc;
a fourth adjustment unit 43 configured to, when the PER is greater than Pc, determine that the reason for data frame transmission failure is caused by bad network environment, and maintain the retransmission contention window value CWnew=min[CWold, CWmax]; and
a fifth adjustment unit 44 configured to, when the PER is not much greater than Pc, determine that the reason for data frame transmission failure is caused by collision, and increase the retransmission contention window value CWnew=min[CWold+CWstep3, CWmax], where CWstep3 is a step length of the retransmission contention window value. At the moment, CWstep3=f(CWold)−L′(n), where f(CWold) is a decreasing function of CWold, and L′(n) is a second increasing function of n, and CWstep3 obtained according to the two functions enables CWnew to approximately satisfy a relationship curve showing relationships between the number of contention stations and collision probability in the embodiment as shown in
In the present embodiment, PER>a·Pc, may be used for further determining that PER is much greater than Pc, where a is a multiple and may be determined according to the practical network condition, for example, when a=100, then when PER is greater than 100 multiples of Pc, the PER is determined to be much greater than Pc. By comparing the practical collision probability with the packet error rate, the present embodiment may better reflect network collision situation, dynamically adjust retransmission contention window value to make the contention window to value finally approaching to optimal value, improve the network throughout, and reduce the delay.
Any equivalent replacements of the structure or the flow based on the contents of the specification and drawings of the disclosure, or direct or indirect application of the equivalent replacements in other related technical fields shall fall within the scope of protection of the disclosure.
The above-mentioned technical solutions provided in the disclosure may be applied to contention window value adaptive adjustment, and based on the technical solutions provided in the disclosure the network collision situation may be reflected better, the initial contention window value and retransmission contention window value are dynamically adjusted, thus making the contention window value finally approaching to optimal value, improving the network throughout, and reducing the delay.
Number | Date | Country | Kind |
---|---|---|---|
2012 1 0325365 | Sep 2012 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2013/082181 | 8/23/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/036896 | 3/13/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020188750 | Li | Dec 2002 | A1 |
20050064817 | Ginzburg | Mar 2005 | A1 |
20050070317 | Liu | Mar 2005 | A1 |
20090303908 | Deb | Dec 2009 | A1 |
20110044303 | Ji | Feb 2011 | A1 |
20130051323 | Song | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
101631063 | Jan 2010 | CN |
102065517 | May 2011 | CN |
102421151 | Apr 2012 | CN |
102421151 | Apr 2012 | CN |
2005006661 | Feb 2005 | WO |
2005094190 | Oct 2005 | WO |
Entry |
---|
International Search Report for International Patent Application No. PCT/CN2013/082181, dated Dec. 5, 2013. |
PCT/CN2013/082181, Written Opinion of the International Searching Authority, dated May 12, 2013. |
English Translation—PCT/CN2013/082181, Written Opinion of the International Searching Authority, dated May 12, 2013. |
Communication dated Aug. 13, 2015 with Supplementary European Search Report corresponding to European Application No. EP 13835072.3. |
Number | Date | Country | |
---|---|---|---|
20150257174 A1 | Sep 2015 | US |