The invention relates to a method and a device for analyzing electric cable networks, to detect, characterize and locate defects in the cable in such a network.
The electric cables concerned can be power transmission cables or communication cables, in fixed installations (distribution network, internal or external communication network) or mobile installations (power or communication network in an airplane, a boat, a motor vehicle, etc.). The cables can be of any type: coaxial or two-wire, in parallel lines or in twisted pairs, shielded or otherwise, and so on, provided that the signal propagation speed in these cables can be known. These networks can be organized in various known topologies: bus, tree, mesh, ring, star, linear or a hybrid of these various topologies.
The defects concerned are defects that can affect the electrical operation of the circuits of which the cables are part and that can have sometimes very critical consequences (electrical system failures in an airplane for example), or even defects that can directly cause fires to begin (short circuits, electrical arcs in dry medium or in the presence of moisture, etc.). It is important to be able to detect these defects to remedy them in time.
It will be understood that the problem of detecting the defects is all the greater when the electric cable networks are longer and more complex or when they are more difficult to access (buried cables, for example). This is why remote detection and locating systems have been devised, operating from one end of the cable. The methods used are “reflectometry” methods, in which a signal injected at one end of a cable is propagated in this cable and a portion of the amplitude of the signal is reflected at the position of the defect, because of the impedance discontinuity that the signal encounters at this position. If the signal propagation speed in the cable (linked to its characteristic impedance) is known, the measurement of the duration that separates the output wave from the reflected wave gives an indication of the distance between the end of the cable and the defect.
In the time-domain reflectometry (TDR) methods, an electromagnetic wave is injected into the cable in the form of a voltage pulse, a voltage level, or similar. The wave reflected at the position of the impedance discontinuity is detected at the injection position and the time difference between the output and received fronts is measured. The position of the defect is determined from this difference, and the amplitude and the polarity of the reflected pulse give an indication of the type of defect (open circuit, short circuit, resistive defect, or other).
There are also frequency-domain reflectometry (FDR) methods, which consist in injecting at the input of the cable a sinusoid frequency-wobulated continuously or by levels and in measuring the frequency or phase difference between the output wave and the reflected wave. The published patent application WO 02/068968 describes a frequency-domain reflectometry method. In a variant called SWR, for “Standing Wave Reflectometry”, the nodes and antinodes of a standing wave generated by the combination of an incident wave and its reflection are detected.
The frequency-domain reflectometry methods are effective for analyzing a simple cable. They are difficult to use when the cable includes branches. The time-domain reflectometry methods can be used even with branches, but analyzing the reflected signals is difficult because of the presence of multiple reflections.
Also proposed, in the published patent application WO 2004/005947, is a method that combines both time and frequency domains that consists in injecting a linearly wobulated signal with an envelope of Gaussian amplitude.
Spread-spectrum reflectometry methods have also been proposed, in the article entitled “Spread Spectrum Sensors for Critical Fault Location on Live Wire Networks” by Cynthia Furse et al., in the Journal of Structural Control and Health Monitoring, Volume 12, Issue 3-4, 2005. A signal is transmitted in the form of a low-level pseudo-random code over a network, even when it is in service; this signal and its echo reflected by any defect are correlated with variable time offsets to establish a time-dependent correlation curve. This curve shows correlation peaks with time offsets linked to the positions of the defects and the network junctions and/or branches. This system is particularly suited to the detection of intermittent defects because it can function even when the network is in use; now, the intermittent defects may very well only occur when the network is in service and disappear when it is no longer in service (for example, a defect that occurs when an airplane is flying but disappears on the ground). This method can be used for cables that include branches, but it retains ambiguities: it is impossible to say which branch contains a detected defect. U.S. Pat. No. 5,369,366 describes such a method.
The article by Eiji Nishiyama and Kenshi Kuwanami in the IEEE review 2002 0-7803-7525-4/02 pp 465 to 468 briefly describes a method that uses the injection of pseudo-random sequences at one or more points of a simple linear network in closed loop configuration.
A similar method, but one that quite simply uses the signals or natural noise circulating in the cable, and not a pseudo-random code injected at the input of the cable, has been proposed in the article by Chet Lo and Cynthia Furse entitled “Noise-Domain Reflectometry for Locating Wiring Faults”, published in IEEE Transactions on Electromagnetic Compatibility, Vol. 47 No. 1 Feb. 2005. Strong-correlation peaks are detected in a process of correlating the signal with itself. This method suffers from the same defect as the previous one, namely that it does not allow position ambiguities to be easily eliminated when there are several branches.
The aim of the invention is to help eliminate the defect position determination ambiguities of the prior methods, notably in cables having a T structure (also called Y structure), that is, comprising at least one branch.
To achieve this, the invention proposes a method of testing a cable network comprising at least one junction from which N secondary sections (N being greater than or equal to 2) extend, the method comprising the following operations:
Thus, instead of injecting one and the same sequence at several points of the network, different and mutually non-correlated sequences are injected. The expression “non-correlated sequences” should be understood to mean sequences that are completely decorrelated, or little correlated, that is, their inter-correlation according to a delay T does not produce any significant correlation peak of amplitude comparable to the peak of self-correlation of a sequence with itself. In other words, the correlation of two little-correlated sequences mainly produces noise and not characteristic correlation peaks such as those that are generated by a sequence and the reflection of this same sequence on a network impedance discontinuity.
The sequences can be “pseudo-random sequences of type M”, or even “maximum length pseudo-random sequences”; these are sequences produced by a cascade of n shift registers with a loopback of the cascade on itself and intermediate loopbacks from the output of certain registers in the middle of the cascade (called linear feedback shift register or LFSR).
The weak correlation can be obtained notably by establishing pseudo-random digital sequences of different lengths (established by generators having different numbers of registers), or sequences that have sufficiently different bit rates, the ratio of which is not an integer and is preferably:
The sequences can also be naturally de-correlated by choosing orthogonal pseudo-random sequences, such as codes used to separate GPS satellite channels or to separate telecommunication channels by spread spectrum (Gold codes, for example).
Pseudo-random sequences can be generated from characteristic polynomials of degree n (n being equal to the number of registers of the LFSR). To make best use of the capacities thereof and generate sequences of maximum length, the characteristic polynomial must be irreducible and in this case the period of the LFSR will be equal to T0=2n−1 (expressed in number of bits of the sequence). For a given sequence length and a given rate, a weak correlation can be obtained by choosing different characteristic polynomials. In practise, a minimum number n of registers is required for the polynomials to be de-correlated from each other. For example, if:
One way of evaluating whether two sequences are sufficiently de-correlated from each other is to measure whether their inter-correlation ratio (level of the maximum inter-correlation peak between two different sequences/level of the maximum self-correlation peak of the same sequence) is typically less than 5 to 10%:
[MaxIntercorrelation−MinIntercorrelation]/[MaxSelfcorrelation]<=0.10
The device for implementing this method therefore comprises at least two sources of pseudo-random sequences of digital sequences that are mutually non-correlated and able to be connected at two points of a network to be tested, means of synchronizing the sources with each other, a device for detecting the composite signal present at least one point of the network, and means of computing the correlation function between this signal and each of the pseudo-random sequences delayed by a variable delay (τ).
Other features and benefits of the invention will become apparent from reading the detailed description that follows and which is given in reference to the appended drawings in which:
This is a simple example of a T (or Y) network. The sections concerned and represented by a line can consist of a sheathed conductive wire or a pair of sheathed wires or a coaxial cable. This network can be used immaterially to transport power or communication signals from the input E1 to the outputs E2 and E3, or in the opposite direction, from an output E2 or E3 to the other output or to the input E1. This is why the “ends” of the network are hereinafter called the inputs and outputs E1, E2, E3, bearing in mind that each of them can serve equally as an input or as an output, in normal use of the network or when searching for network defects; it should be noted that the search for detects can very well, in the present invention, be conducted in parallel with normal use.
The section ends E1, E2, E3 can be open-circuited or short-circuited, or loaded by a matched or unmatched impedance. If there is impedance matching, the test signals are not reflected at these ends. If there is a short circuit, there is no transmission beyond the short circuit and there is negative reflection. If there is an open circuit, there is reflection without or almost without attenuation. If there is an impedance mismatch, there is partial reflection.
In the conventional defect detection methods, a test pulse would typically be applied from the input E1, and a signal pattern called “time reflectogram” would be collected at this same input; the reflectogram is the plot of a curve representing the trend of a voltage amplitude recorded at the input E1 over time.
If there is a defect in one of the sections, it can have the effect of displacing some of the pulses or quite simply adding pulses to the diagram of
In the inventive method, a pulse is not injected at one point but pseudo-random sequences of binary signals are injected, at several points of the network (preferably the existing ends E1, E2, E3), the different sequences being de-correlated from each other.
A pseudo-random sequence consists of a series, of greater or lesser length, of bits of random distribution, this distribution being such that a correlation of this sequence with the same sequence delayed by a time τ gives a very narrow correlation peak around τ=0; outside of this narrow peak (width practically equal to the duration of two bits of the sequence), the correlation value is zero or in any case very low compared to the amplitude of the peak.
Such a sequence is generally produced by the cascading of several shift registers, a loopback of the cascade on itself, and exclusive-OR operations and/or intermediate loopbacks from the outputs of the registers.
Among the pseudo-random sequences, there are notably the sequences called M sequences or maximum length sequences which, from n cascaded registers, form sequences 2n−1 bits long.
The time period of a sequence is defined as follows:
T0=[2n−1]/D
where n is the number of registers or the degree of the characteristic polynomial and D the rate of the sequence.
To obtain sequences that are de-correlated from each other, it is possible to choose sequences:
Such a pseudo-random bit sequence can be output at one end of a network, such as, for example, the input E1 of the network of
The result of these propagation phenomena with losses and partial reflections is that a composite signal reappears at the input E1, and this composite signal, analog rather than digital, is the superimposition of the sequence initially injected and of several signals that each represent the same sequence but delayed and attenuated by the successive propagations and reflections.
The resultant of these sequences that are identical but of variable levels and different delays produces a composite signal such as, for example, that of
Rather than graduating the x axis of the delay τ correlation curve, it is possible to graduate it by distance L along the network from the point of injection of the sequence, the correspondence being L=Vp·τ/2, where Vp is the propagation speed of the digital signals in the network and the factor 1/2 being there to take account of the fact that the path of the sequence includes a round trip between the injection point and the discontinuity point.
The correlation function is obtained by computing, from the digitized time composite signal R1(t) present at E1 and from the pseudo-random sequence PN1(t), of which the structure, the length and the rate (50 Mbps for example) are known.
The correlation coefficient K11(τ), on the y-axis of
T can correspond to one or more successive sequence periods.
It is this correlation function that can present the peaks that can be seen in
The computation is valid for any network and from any injection point, provided that the composite signal is observed at the injection point itself.
In the simple network of
τa=2L1/Vp because of the junction A
τb=2(L1+L2)/Vp due to the end E2
τc=2(L1+L3)/Vp due to the end E3
If there were a defect at a distance Ld from the input E1, there would be at least one correlation peak for a delay corresponding to the propagation over a distance 2Ld, that is, at τd=2Ld/Vp. The existence of such a peak does not make it possible to easily know where the defect is, because Ld is greater than L1 (defect beyond the junction A).
However, this signal injected at E1 generates at E2 and E3 other composite signals having a resemblance with the injected digital signal PN1(t), and these signals R2(t), R3(t) can be correlated with the injected sequence to give correlation peaks that also provide information on the structure of the network or that confirm the indications given by the first correlation function K11(τ).
Thus, if R2(t) and PN1(t) are correlated, it should be possible to see a correlation peak at an instant τL1+L2=(L1+L2)/Vp since this delay τL1+L2 is the time taken by the sequence to come directly from the end E1 to the end E2 (the delay τ=0 being taken with the same reference as for the first correlation). Similarly, a correlation peak should be seen between the composite signal R3(t) at E3 and the sequence PN1(t) output at E1, this peak being centered on an instant τL1+L3=(L1+L3)/Vp.
However, in the same way, it is also possible to inject at the ends E2 and E3 two other pseudo-random sequences PN2(t) and PN3(t), and the composite signal R1(t) then present at the point E1 can be correlated with each of these pseudo-random sequences, to culminate in respective correlation functions K21(τ) which is the correlation of the composite signal R1(t) present at E1 with the sequence PN2(t) output at E2, and K31(τ) which is the correlation of the composite signal R1(t) present at E1 with the sequence PN3(t) output at E3. If the delay reference τ=0 is taken at the same reference instant (instant of injection of the sequence PN1(t)), then the correlation functions K21(τ) and K31(τ) should respectively show a correlation peak at an instant τL1+L2=(L1+L2)/Vp and a peak at an instant τL1+L3=(L1+L3)/Vp, the network being assumed to be without defects between E1, E2 and E3.
According to the invention, these other pseudo-random sequences are not correlated with each other or correlated with the first, in order for the computed correlation functions to be able to fully distinguish where the sequences giving rise to correlation peaks originate from.
More generally, N injection points Ei will therefore be taken, these points normally being the accessible ends of the network (but could be other points), and injecting therein N pseudo-random sequences of binary signals that are not correlated with each other, PNi(t), i varying from 1 to N; correlation computations will be performed between each sequence PNi(t) and each of the composite signals Rj(t) that appear at K observation points Sj, j varying from 1 to K. The observation points are preferably the injection points. From these computations, more accurate (that is less ambiguous) information than the information given by the correlation peaks of just the sequence PN1(t) is then deduced.
At an observation point Sj, the following correlation computations are carried out, for some or all of the indices i and j associated with the injection points and with the observation points:
including, obviously, the computation for i=j, namely:
These computations make it possible to plot correlation curves as a function of τ and find correlation peaks.
If the injected pseudo-random sequences were the same, the result would be, in the case of the network of
However, if the pseudo-random sequences present a zero or very low mutual intercorrelation, the different correlations with the composite signals can be distinguished from each other. The different correlation functions computed at one and the same observation point Sj will separately show peaks resulting from the different sequence injection points. It is relative to this injection point that the positions of the impedance discontinuities will be measured.
The diagram of
The peaks corresponding to the reflection at the junction A in this case have a negative sign. There will be a peak for the correlation with the sequence PN1(t) observed at E1, at a distance of 15 meters corresponding to the length L1 of the section T1, a peak for the correlation with the sequence PN2(t) observed at E2, at a distance of 20 m corresponding to the length L2 of the section T2, and a peak for the correlation with the sequence PN3(t) observed at E3, at a distance of 22 m corresponding to the length L3 of the section T3.
The peaks of positive sign are the self-correlation peaks at the input and originate from the periodicity of the injection of the pseudo-random sequence. The sequences PN1(t), PN2(t) and PN3(t) are of different durations and therefore of different periodicities. The de-correlation is in this case produced in such a way that the bit sequences PN1(t) to PN3(t) are of different duration, which explains the three different positions of the self-correlation peaks; these different durations are obtained either by sequences of identical structure but different bit rate, or by sequences of different lengths in terms of number of bits, therefore of different structures, and of identical or different bit rate.
In the example of
The de-correlation of the sequences could also be obtained by choosing sequences of identical duration and identical period, but with different characteristic polynomials for each LFSR. In this case, the self-correlation peaks K11(τ), K22(τ) and K33(τ) would be superimposed on each signal injection period.
For the direct legibility of
In
The dotted-line curve, graduated in distances corresponding to τ, corresponds to the correlation function K21(τ) between the sequence PN2(t) injected at E2 and the composite signal R1(t) observed at E1. This curve presents almost no correlation peak; this means that the signal injected at E2 does not or almost does not reach the input E1; it can be concluded therefrom that the defect whose existence has been confirmed by the curve K11(τ) is a short circuit that interrupts the propagation toward the end E2.
The defect is therefore probably a short circuit on the section T2 at the distance Ld of approximately 10 meters from the junction A.
The third, dashed-line curve, also graduated in distances corresponding to τ, corresponds to the correlation function K31(τ) between the sequence PN3(t) injected at E3 and the composite signal R1(t) observed at E1. This curve presents a positive peak at the distance L3+L1 (37 meters) showing a direct path (without defect) of the sequence from the end E3 to the end E1. It also presents a negative peak at a distance of approximately 57 meters. This peak apparently results from the following propagation from the end E3 to the end E1: propagation in the section T3 (L3: 22 m), partial reflection at A toward the section T2, propagation over T2 to the defect (Ld: 10 m), return from the defect to the junction (Ld: 10 m), and propagation over the section T1 (L1: 15 m). In total: L3+2Ld+L1=57 meters.
The correlation function K31(τ) therefore unambiguously confirms the presence of the defect on the section T2, its short-circuit nature, and its position.
It would also be possible to compute and plot the unrepresented correlation functions K22(τ), K33(τ) as in
It would also be possible to plot the correlation functions K23(τ) and K32(τ). In the example of the defect indicated hereinabove, there would be nothing to see on these curves because of the short-circuit defect on the section T2, which prevents any propagation from E2 to E3 or vice versa.
Finally, it would of course be possible to plot the curves K12(τ) and K13(τ), but it will be understood that they are redundant with the curves K21(τ) and K31(τ).
To implement the invention, it is essential to generate pseudo-random sequences that are decorrelated from each other; there are several ways of obtaining this decorrelation, as has been indicated hereinabove.
First of all, if the bit sequences are longer, it is easier to decorrelate them from each other than if they are shorter. Sequences of 64 bits or more are preferable.
Then, some pseudo-random sequence generators are designed to allow for the production of mutually orthogonal sequences, that is, sequences that present a zero or very low inter-correlation in principle regardless of the time offset between the sequences. The Gold pseudo-random codes are an example thereof. Such codes are well known in satellite positioning techniques where they are used to separate the channels from each other.
Also, the type M pseudo-random sequences (“maximum length” sequences) generated by a cascade of n registers are very little correlated with each other if they have different lengths (in number of bits), that is, if the number of registers of the cascade is different from one sequence to another.
Also, the type M pseudo-random sequences are very little correlated with each other and are therefore ideal if they have different bit rates, even if they have the same length in number of bits. The rates must not be multiples of one another and, if possible, their ratio must not be too simple when this ratio is a rational number: a ratio of rates equal to a simplified rational fraction is ideal if the numerator and the denominator are sufficiently high; in other words, a ratio of numbers that are too small, like 2/3 or 3/4, is to be avoided; a ratio of 7/8 or a ratio of higher numbers is preferred. A ratio equal to an irrational number is desirable provided, obviously, that it is not very close to the numbers to be excluded hereinabove (integer number, rational fraction of numerator and denominator that are too small). An irrational number that differs by at least 5% with one of the numbers to be excluded is ideal for a sequence of at least 64 bits. For example, rates of 50, 55 and 60 Mbps have been chosen for the analysis of the network in
The implementation of the invention also comprises means of acquiring composite signals, of digitizing these signals and of computing the correlation functions. According to a preferred embodiment of the invention, the sources used to generate the different pseudo-random sequences are of fixed and identical rate, for reasons of synchronization and distribution of the clocks. The decorrelation is obtained by using distinct characteristic polynomials.
The number of registers n is adapted according to the problem to be dealt with, and in particular the length of the network, as well as the desired test period.
The invention makes it possible to detect, characterize and locate the defects of a wired network, even if it has a complex topology. It also makes it possible to identify the exact topology in the absence of a defect (precise section length measurements, etc.). The analysis of the network can be done while the network is being used normally, in particular for power transport networks, but also for communication networks, provided, however, that the bit rates of the pseudo-random sequences are sufficiently different from the network's normal communication rates.
In the case of a network with more complex topology than that of
Number | Date | Country | Kind |
---|---|---|---|
06 09358 | Oct 2006 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/061230 | 10/19/2007 | WO | 00 | 6/12/2009 |