This application is a national phase filing under 35 USC § 371 from PCT Application serial number PCT/DE2016/000340 filed on Sep. 8, 2016 and claims priority therefrom. This application further claims priority from German Patent Application DE 10 2015 011 503.0 filed on Sep. 9, 2015. PCT/DE2016/000340 and DE 10 2015 011 503.0 are each incorporated by reference in its entirety.
The invention relates to a device and a method for applying fluids, in particular in a method for producing three-dimensional objects.
European Patent EP 0 431 924 B1 describes a process for producing three-dimensional objects based on computer data. In the process, a thin layer of particulate material is deposited on a platform by means of a coater (recoater) and has a binder material selectively printed thereon by means of a print head. The particulate region with the binder printed thereon bonds and solidifies under the influence of the binder and, optionally, an additional hardener. Next, the construction platform is lowered by one layer thickness or the coater/print head unit is raised and a new layer of particulate material is applied, the latter also being printed on selectively as described above. These steps are repeated until the desired height of the object is achieved. Thus, the printed and solidified regions form a three-dimensional object (molded part).
Upon completion, the object made of solidified particulate material is embedded in loose particulate material, from which it is subsequently freed. For this purpose a suction device may be used, for example. This leaves the desired objects which then have to be freed from any powder adhering to them, e.g. by brushing them off manually.
3D printing on the basis of pulverulent materials and the introduction of liquids using a print head is the quickest method among the layer construction techniques.
This method allows the processing of different fluids, such as particulate materials, for example, which includes—as a non-exhaustive example—natural biological raw materials, polymeric plastic materials, metals, ceramics and sands.
Other powder-based rapid prototyping processes, e.g. selective laser sintering or electron beam sintering, work in a similar manner, also applying loose particulate material layer by layer and selectively solidifying it using a controlled physical source of radiation.
Moreover, there are further methods, such as e.g. Fused Deposition Modeling (FDM) layer construction methods, wherein the cross-sections of each part are constructed using a liquid medium which solidifies outside a nozzle, changing the position of the construction platform by one layer thickness with respect to the previous position, and repeating these steps until the part is finished.
In the following, all these processes will be summarized by the term “three-dimensional printing method” or “3D printing method”.
Some of these methods use different coating options. In some methods, the particulate material required for the entire layer is placed in front of a thin blade. The latter is then moved over the construction area, spreading the material placed in front of it and thereby smoothing it. Another type of layer application consists in continuously placing a small volume of particulate material in front of the blade as it moves. For this purpose, the blade is usually mounted to the underside of a movable silo. Directly above or next to the blade, an adjustable gap is provided through which the particulate material can flow out of the silo. The flow is stimulated by introducing oscillations into the silo/blade system.
Conventional coaters using the functional principle of oscillating blades usually serve only to apply a specific material. In this case, the oscillation is generated by an eccentric mechanism. A material/parameter change, such as a change in the amplitude of oscillation, for example, requires the mechanical adaptation of oscillating blade or the oscillating mechanism, respectively, by means of rather complex external mechanisms. In this case, the prior art provides for the exchange of eccentrics in order to change the amplitude of oscillation. The coater angle may be adjusted by rotating the entire coater and/or by mechanically changing the distance between the coater and the eccentric.
Therefore, it was an object of the present invention to provide a device and a method allowing easy and reliable adjustment of the amplitude of oscillation.
Another object of the present invention, was to provide a device and a method allowing easy adjustment of the coater angle, optionally during an application process.
In one aspect, the disclosure relates to a method for applying fluids, in particular in a method for producing three-dimensional models, by means of a device onto a construction field, wherein a coater, comprising a blade, a fluid outlet and a reservoir, is provided and wherein the blade is moved over the construction field in a manner allowing it to perform an oscillation in the form of a rotary motion, and wherein said oscillation is effected by a linear actuator generating a stroke.
In another aspect, the disclosure also relates to a device for applying fluids, in particular in a method for producing three-dimensional models, onto a construction field, wherein a coater, comprising a blade, a fluid outlet and a reservoir, is provided and wherein the blade can be moved over the construction field in a manner allowing it to perform an oscillation in the form of a rotary motion, and wherein a linear actuator generating a stroke is provided in order to generate said oscillation.
In a still further aspect, the disclosure relates to a coater for applying fluids, in particular in a method for producing three-dimensional models, onto a construction field, said coater comprising a blade, a fluid outlet and a reservoir, and wherein the blade can be moved over the construction field in a manner allowing it to perform an oscillation in the form of a rotary motion, and wherein a linear actuator generating a stroke is provided in order to generate said oscillation.
In the following, several terms will be defined more precisely. Otherwise, the terms used shall have the meanings known to the person skilled in the art.
In the sense of the invention, “3D printing methods” are all methods known from the prior art which enable the construction of parts in three-dimensional molds and are compatible with the described process components and devices.
“Selective binder application” or “selective binder system application” in the sense of the invention may be effected after each particulate material application or irregularly, i.e. non-linearly and parallel after each particulate material application, depending on the requirements for the molded article and for optimization of the molded article production. Thus, “selective binder application” or “selective binder system application” may be adjusted individually, during the course of the molded article production.
A “molded article” or “part” in the sense of the invention means all three-dimensional objects manufactured by means of the method according to the invention or/and the device according to the invention and exhibiting dimensional stability.
The “device” used for carrying out the method according to the invention may be any known 3D-printing device which includes the required parts. Common components include coater, construction field, means for moving the construction field or other parts, a metering device and heating means and other parts which are known to the person skilled in the art and will therefore not be described in detail herein.
As “fluids”, all flowable materials known for 3D printing may be used, in particular in the form of a powder, slag or liquid. These may include, for example, sands, ceramic powders, glass powders and other powders of inorganic materials, metal powders, plastic materials, wood particles, fiber materials, celluloses or/and lactose powders, as well as other types of organic, pulverulent materials. The particulate material is preferably a free-flowing powder when dry, but a cohesive, cut-resistant powder may also be used. This cohesivity may also result from adding a binder material or an auxiliary material.
A “construction field” is the plane or, in a broader sense, the geometric location on or in which the particulate material bed grows during the construction process by repeated coating with particulate material. The construction field is frequently bounded by a bottom, i.e. the construction platform, by walls and an open top surface, i.e. the construction plane.
The “print head” consists of various components. These include the print modules which are aligned with respect to the print head. The print head is aligned with respect to the machine. This allows the position of a nozzle to be assigned to the machine coordinate system.
“Coater” or “recoater” means the unit by means of which the fluid is applied into or onto the construction field. The unit may consist of a fluid reservoir and a fluid application unit wherein, according to the present invention, the fluid application unit comprises a fluid outlet and a coating blade.
A “blade”, “oscillating blade” or “coating blade” in the sense of the invention is that part which levels the applied fluid.
A “fluid outlet” in the sense of the invention is the opening by means of which the fluid is applied onto the construction field. The “fluid outlet” comprises at least one discharge gap, but may also comprise several discharge gaps. The “fluid outlet” may preferably form a unit with one or two fluid reservoirs.
In this case, the “reservoir” or “fluid reservoir” is the receptacle for the fluid. This container may be arranged to oscillate, or not, when the blade oscillates. There are embodiments in which the blade forms part of the reservoir.
A “linear actuator” is understood to be an actuator for generating the oscillation of the blade and whose attachment points perform an approximately linear, oscillating movement with respect to each other.
The “stroke” is understood to be the maximum linear movement of the actuator. According to the invention, this is the movement which generates the amplitude of oscillation. Preferably, the stroke also serves to achieve an angle adjustment of the coating blade or of the coater, respectively, or optionally to close the fluid outlet.
“Angle adjustment” in the sense of the invention is the adjustment of the angle between the construction field and the coating blade, and the “coater angle” is that angle which the construction field normal and the line connecting the fulcrum and the blade enclose. The coater oscillation takes place around this line as the zero line.
An oscillation in the form of a rotary motion in the sense of the invention is the movement of the blade or coating blade via a fulcrum, said movement preferably being generated by an actuator.
Various aspects of the invention will be described below.
In one aspect, the invention relates to a method for applying fluids, in particular in a method for producing three-dimensional molded articles, by means of a device onto a construction field, wherein a coater, comprising a blade with a fluid outlet and a reservoir, is provided and wherein the blade is moved over the construction field in a manner allowing it to perform an oscillation in the form of a rotary motion, and wherein said oscillation is effected by a linear actuator generating a stroke.
Using a method according to the present invention, the oscillating range of the blade is extended. This is achieved by using a linear actuator which can generate an oscillation stroke in a freely controllable/adjustable manner.
The free controllability/adjustability of the stroke allows easy adjustment of the amplitude of oscillation. For this purpose, prior art coaters require complex kinematics or a modified connection (e.g. eccentricity).
According to a preferred embodiment of the invention, the actuator may generate a stroke of at least 3× the amplitude of oscillation, in which case the stroke is easily adjustable to produce greater amplitudes of oscillation, although it may also serve to achieve an angle adjustment of the coating blade or of the coater, respectively, or optionally to close the fluid outlet.
In a method according to the invention, the stroke is preferably generated electrically, electrodynamically, electrostatically, pneumatically, hydraulically and/or mechanically. This may also be achieved by using mechanical lever systems.
According to an embodiment of the invention, a connection of the coater to the device is performed in at least one fulcrum. Such an embodiment has proven advantageous because it allows the oscillation to be generated relatively easily.
In a method according to the invention, an adjustment of a coater angle with respect to the construction field may preferably be effected without shifting any connection points and, optionally, even during a coating process. The adjustment of the coater angle could be effected here by shifting a starting position of the actuator.
This is advantageous because the angle of the coater with respect to the construction field is very important for the coating result and also needs to be adapted for different materials. In prior art coaters, the entire coater needs to be pivoted in order to adjust it or the connection points need to be shifted.
According to a preferred embodiment of the invention, the adjustment of the coater angle can now also be performed during operation of the device or during the coating operation.
By selecting a large stroke, it is even possible, according to the present invention, for the coating blade to be lifted off the construction field by pivoting the blade. This requires neither any additional lifting device nor lowering of the construction field in order to achieve a sufficient distance.
According to a particularly preferred embodiment of the present invention, coating is possible in both directions of movement. This is possible because the coating angle is easy to adjust, thus facilitating adjustment of the coater angle according to the movement direction, and thereby allowing coating in both directions.
In another aspect, the present invention also relates to a device for applying fluids, in particular in a method for producing three-dimensional molded articles, onto a construction field, wherein a coater, comprising a blade, a fluid outlet and a reservoir, is provided and wherein the blade can be moved over the construction field in a manner allowing it to perform an oscillation in the form of a rotary motion, and wherein a linear actuator generating a stroke is provided in order to generate said oscillation.
The actuator is preferably designed to generate a stroke of at least 3 times the amplitude of oscillation.
The stroke may be generated by electric, electrodynamic, electrostatic, pneumatic, hydraulic and/or mechanical systems.
The coater is preferably connected to the device in at least one fulcrum.
According to another preferred embodiment of the invention, a counterpiece corresponding to the blade is provided for closing an opening of the coater in an outer area of the maximum amplitude, opposite the actuator. Thus, by pivoting the coater it is now possible to close the coater opening and thereby enable selective application in specific location and/or prevent inadvertent leakage of the reservoir.
In another aspect, the present invention relates to a coater for applying fluids, in particular in a method for producing three-dimensional molded articles, onto a construction field, said coater comprising a blade and a reservoir, and wherein the blade can be moved over the construction field in a manner allowing it to perform an oscillation in the form of a rotary motion, wherein a linear actuator generating a stroke is provided in order to generate said oscillation.
Preferred embodiments will be described below.
The present invention will be explained in more detail below, with reference to examples representing preferred embodiments.
A schematic representation of a coater with an oscillating blade according to the prior art in a resting state and in an oscillating state is shown in
A coater (5) comprising a blade (1), a fluid outlet and a reservoir (2) is connected to a device for producing three-dimensional molded parts via a connection (6), a fulcrum (3).
According to this embodiment shown here, anything arranged below the fulcrum (3) oscillates. Thus, the reservoir (2) and the blade (1) oscillate. According to the present invention, the oscillation of the reservoir (2) is not absolutely necessary. However, an oscillation of the reservoir (2) may serve to achieve better fluidization of the fluid.
A schematic representation of a coater with an oscillating blade according to a preferred embodiment of the present invention is shown in
In this case, the fulcrum (3) is responsible for guiding and stabilizing the blade movement. Its rigidity and freedom of movement have a substantial impact on the coating result.
Due to the possibility of a relatively large stroke of the linear actuator (4), the coater (5) can pivot so far to the left that it can be locked in a “locking station” (9).
According to the present invention, it is possible to achieve improved filling of the coater.
It has turned out that, by selective tilting of the reservoir (2) during filling, the material cone in the reservoir can be changed such that, after subsequent straightening of its position for coating, the material cone (10) has a much better shape, thereby considerably minimizing the undesired effect of the particulate material flowing over the edge of the reservoir after fluidization (by switching on the coater (5)).
By a short initial oscillation of the reservoir (2) in a tilted position, it is additionally possible to further optimize the material cone (10) and/or to discard some of the particulate material before the coater (5) is returned to its angular position for coating (
Lifting of the coating blade (2) by a distance (801) from the construction field (600) is effected, for example, by pivoting the blade. This is shown in
1 Blade
2 Reservoir
3 coater fulcrum
4 stroke generation
5 coater
6 connection point
7 actuator movement for angle adjustment
8 oscillation
9 locking device
10 material cone
600 construction field
601 coater angle
602 layer thickness
603 final layer thickness
801 lifting distance
Number | Date | Country | Kind |
---|---|---|---|
10 2015 011 503 | Sep 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2016/000340 | 9/8/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/041779 | 3/16/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3668997 | Ratowsky | Jun 1972 | A |
3913503 | Becker | Oct 1975 | A |
4247508 | Housholder | Jan 1981 | A |
4575330 | Hull | Mar 1986 | A |
4591402 | Evans et al. | May 1986 | A |
4600733 | Ohashi et al. | Jul 1986 | A |
4665492 | Masters | May 1987 | A |
4669634 | Leroux | Jun 1987 | A |
4711669 | Paul et al. | Dec 1987 | A |
4752352 | Feygin | Jun 1988 | A |
4752498 | Fudim | Jun 1988 | A |
4863538 | Deckard | Sep 1989 | A |
4938816 | Beaman et al. | Jul 1990 | A |
4944817 | Bourell et al. | Jul 1990 | A |
5017753 | Deckard | May 1991 | A |
5031120 | Pomerantz et al. | Jul 1991 | A |
5047182 | Sundback et al. | Sep 1991 | A |
5053090 | Beaman et al. | Oct 1991 | A |
5059266 | Yamane et al. | Oct 1991 | A |
5120476 | Scholz | Jun 1992 | A |
5126529 | Weiss et al. | Jun 1992 | A |
5127037 | Bynum | Jun 1992 | A |
5132143 | Deckard | Jul 1992 | A |
5134569 | Masters | Jul 1992 | A |
5136515 | Helinski | Aug 1992 | A |
5140937 | Yamane et al. | Aug 1992 | A |
5147587 | Marcus et al. | Sep 1992 | A |
5149548 | Yamane et al. | Sep 1992 | A |
5155324 | Deckard et al. | Oct 1992 | A |
5156697 | Bourell et al. | Oct 1992 | A |
5182170 | Marcus et al. | Jan 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5216616 | Masters | Jun 1993 | A |
5229209 | Gharapetian et al. | Jul 1993 | A |
5248456 | Evans, Jr. et al. | Aug 1993 | A |
5252264 | Forderhase et al. | Oct 1993 | A |
5263130 | Pomerantz et al. | Nov 1993 | A |
5269982 | Brotz | Dec 1993 | A |
5284695 | Barlow et al. | Feb 1994 | A |
5296062 | Bourell et al. | Mar 1994 | A |
5324617 | Majima et al. | Jun 1994 | A |
5340656 | Sachs et al. | Aug 1994 | A |
5342919 | Dickens, Jr. et al. | Aug 1994 | A |
5352405 | Beaman et al. | Oct 1994 | A |
5382308 | Bourell et al. | Jan 1995 | A |
5387380 | Cima et al. | Feb 1995 | A |
5398193 | deAngelis | Mar 1995 | A |
5418112 | Mirle et al. | May 1995 | A |
5427722 | Fouts et al. | Jun 1995 | A |
5431967 | Manthiram et al. | Jul 1995 | A |
5433261 | Hinton | Jul 1995 | A |
5482659 | Sauerhoefer | Jan 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5503785 | Crump et al. | Apr 1996 | A |
5506607 | Sanders, Jr. et al. | Apr 1996 | A |
5518060 | Cleary et al. | May 1996 | A |
5518680 | Cima et al. | May 1996 | A |
5555176 | Menhennett et al. | Sep 1996 | A |
5573721 | Gillette | Nov 1996 | A |
5589222 | Thometzek et al. | Dec 1996 | A |
5616631 | Kiuchi et al. | Apr 1997 | A |
5637175 | Feygin et al. | Jun 1997 | A |
5639070 | Deckard | Jun 1997 | A |
5639402 | Barlow et al. | Jun 1997 | A |
5647931 | Retallick et al. | Jul 1997 | A |
5658412 | Retallick et al. | Aug 1997 | A |
5665401 | Serbin et al. | Sep 1997 | A |
5717599 | Menhennett et al. | Feb 1998 | A |
5730925 | Mattes et al. | Mar 1998 | A |
5740051 | Sanders, Jr. et al. | Apr 1998 | A |
5747105 | Haubert | May 1998 | A |
5749041 | Lakshminarayan et al. | May 1998 | A |
5753274 | Wilkening et al. | May 1998 | A |
5824250 | Whalen | Oct 1998 | A |
5837960 | Lewis et al. | Nov 1998 | A |
5851465 | Bredt | Dec 1998 | A |
5884688 | Hinton et al. | Mar 1999 | A |
5902441 | Bredt et al. | May 1999 | A |
5902537 | Almquist et al. | May 1999 | A |
5904889 | Serbin et al. | May 1999 | A |
5934343 | Gaylo et al. | Aug 1999 | A |
5940674 | Sachs et al. | Aug 1999 | A |
5943235 | Earl et al. | Aug 1999 | A |
5989476 | Lockard et al. | Nov 1999 | A |
5997795 | Danforth | Dec 1999 | A |
6007318 | Russell et al. | Dec 1999 | A |
6042774 | Wilkening et al. | Mar 2000 | A |
6048188 | Hull et al. | Apr 2000 | A |
6048954 | Barlow et al. | Apr 2000 | A |
6133353 | Bui et al. | Oct 2000 | A |
6146567 | Sachs et al. | Nov 2000 | A |
6147138 | Hochsmann et al. | Nov 2000 | A |
6155331 | Langer et al. | Dec 2000 | A |
6164850 | Speakman | Dec 2000 | A |
6165406 | Jang et al. | Dec 2000 | A |
6169605 | Penn et al. | Jan 2001 | B1 |
6193922 | Ederer | Feb 2001 | B1 |
6210625 | Matsushita | Apr 2001 | B1 |
6216508 | Matsubara et al. | Apr 2001 | B1 |
6217816 | Tang | Apr 2001 | B1 |
6243616 | Droscher et al. | Jun 2001 | B1 |
6259962 | Gothait | Jul 2001 | B1 |
6270335 | Leyden et al. | Aug 2001 | B2 |
6305769 | Thayer et al. | Oct 2001 | B1 |
6316060 | Elvidge et al. | Nov 2001 | B1 |
6318418 | Grossmann et al. | Nov 2001 | B1 |
6335052 | Suzuki et al. | Jan 2002 | B1 |
6335097 | Otsuka et al. | Jan 2002 | B1 |
6350495 | Schriener et al. | Feb 2002 | B1 |
6355196 | Kotnis et al. | Mar 2002 | B1 |
6375874 | Russell et al. | Apr 2002 | B1 |
6395811 | Nguyen et al. | May 2002 | B1 |
6401001 | Jang et al. | Jun 2002 | B1 |
6403002 | Van Der Geest | Jun 2002 | B1 |
6405095 | Jang et al. | Jun 2002 | B1 |
6423255 | Hoechsmann et al. | Jul 2002 | B1 |
6460979 | Heinzl et al. | Oct 2002 | B1 |
6476122 | Leyden | Nov 2002 | B1 |
6485831 | Fukushima et al. | Nov 2002 | B1 |
6500378 | Smith | Dec 2002 | B1 |
6554600 | Hofmann et al. | Apr 2003 | B1 |
6596224 | Sachs et al. | Jul 2003 | B1 |
6616030 | Miller | Sep 2003 | B2 |
6649121 | Hamamoto | Nov 2003 | B1 |
6658314 | Gothait | Dec 2003 | B1 |
6672343 | Perret et al. | Jan 2004 | B1 |
6713125 | Sherwood et al. | Mar 2004 | B1 |
6722872 | Swanson et al. | Apr 2004 | B1 |
6733528 | Abe et al. | May 2004 | B2 |
6742456 | Kasperchik et al. | Jun 2004 | B1 |
6827988 | Krause et al. | Dec 2004 | B2 |
6830643 | Hayes | Dec 2004 | B1 |
6838035 | Ederer et al. | Jan 2005 | B1 |
6896839 | Kubo et al. | May 2005 | B2 |
6905645 | Iskra | Jun 2005 | B2 |
6972115 | Ballard | Dec 2005 | B1 |
7087109 | Bredt et al. | Aug 2006 | B2 |
7120512 | Kramer et al. | Oct 2006 | B2 |
7153463 | Leuterer et al. | Dec 2006 | B2 |
7291002 | Russell et al. | Nov 2007 | B2 |
7296990 | Devos et al. | Nov 2007 | B2 |
7332537 | Bredt et al. | Feb 2008 | B2 |
7348075 | Farr et al. | Mar 2008 | B2 |
7378052 | Harryson | May 2008 | B2 |
7387359 | Hernandez et al. | Jun 2008 | B2 |
7455805 | Oriakhi et al. | Nov 2008 | B2 |
7497977 | Nielsen et al. | Mar 2009 | B2 |
7578958 | Patel et al. | Aug 2009 | B2 |
7597835 | Marsac | Oct 2009 | B2 |
7641461 | Khoshnevis | Jan 2010 | B2 |
7790096 | Merot et al. | Sep 2010 | B2 |
7799253 | Höschmann et al. | Sep 2010 | B2 |
7887264 | Naunheimer et al. | Feb 2011 | B2 |
8186415 | Marutani et al. | May 2012 | B2 |
8574485 | Kramer | Nov 2013 | B2 |
8951033 | Höchsmann et al. | Feb 2015 | B2 |
9327450 | Hein et al. | May 2016 | B2 |
20010045678 | Kubo et al. | Nov 2001 | A1 |
20010050031 | Bredt et al. | Dec 2001 | A1 |
20020015783 | Harvey | Feb 2002 | A1 |
20020016387 | Shen | Feb 2002 | A1 |
20020026982 | Bredt et al. | Mar 2002 | A1 |
20020079601 | Russell et al. | Jun 2002 | A1 |
20020090410 | Tochimoto et al. | Jul 2002 | A1 |
20020111707 | Li et al. | Aug 2002 | A1 |
20020155254 | McQuate et al. | Oct 2002 | A1 |
20020167100 | Moszner et al. | Nov 2002 | A1 |
20020182351 | Akiyama | Dec 2002 | A1 |
20030004599 | Herbak | Jan 2003 | A1 |
20030065400 | Beam et al. | Apr 2003 | A1 |
20030083771 | Schmidt | May 2003 | A1 |
20030113729 | DaQuino et al. | Jun 2003 | A1 |
20030114936 | Sherwood et al. | Jun 2003 | A1 |
20040003738 | Imiolek et al. | Jan 2004 | A1 |
20040012112 | Davidson et al. | Jan 2004 | A1 |
20040025905 | Ederer et al. | Feb 2004 | A1 |
20040026418 | Ederer et al. | Feb 2004 | A1 |
20040035542 | Ederer et al. | Feb 2004 | A1 |
20040036200 | Patel et al. | Feb 2004 | A1 |
20040038009 | Leyden et al. | Feb 2004 | A1 |
20040045941 | Herzog et al. | Mar 2004 | A1 |
20040056378 | Bredt et al. | Mar 2004 | A1 |
20040084814 | Boyd et al. | May 2004 | A1 |
20040094058 | Kasperchik et al. | May 2004 | A1 |
20040112523 | Crom | Jun 2004 | A1 |
20040145088 | Patel et al. | Jul 2004 | A1 |
20040170765 | Ederer | Sep 2004 | A1 |
20040187714 | Napadensky et al. | Sep 2004 | A1 |
20040207123 | Patel et al. | Oct 2004 | A1 |
20040239009 | Collins et al. | Dec 2004 | A1 |
20050003189 | Bredt et al. | Jan 2005 | A1 |
20050017386 | Harrysson | Jan 2005 | A1 |
20050017394 | Hochsmann et al. | Jan 2005 | A1 |
20050046067 | Oriakhi | Mar 2005 | A1 |
20050074511 | Oriakhi et al. | Apr 2005 | A1 |
20050079086 | Farr | Apr 2005 | A1 |
20050093194 | Oriakhi et al. | May 2005 | A1 |
20050167872 | Tsubaki et al. | Aug 2005 | A1 |
20050174407 | Johnson et al. | Aug 2005 | A1 |
20050179167 | Hachikian | Aug 2005 | A1 |
20050212163 | Bausinger et al. | Sep 2005 | A1 |
20050218549 | Farr et al. | Oct 2005 | A1 |
20050219942 | Wallgren | Oct 2005 | A1 |
20050276976 | Pfeifer et al. | Dec 2005 | A1 |
20050280185 | Russell et al. | Dec 2005 | A1 |
20050283136 | Skarda | Dec 2005 | A1 |
20060012058 | Hasei | Jan 2006 | A1 |
20060103054 | Pfeifer et al. | May 2006 | A1 |
20060105102 | Hochsmann et al. | May 2006 | A1 |
20060159896 | Pfeifer et al. | Jul 2006 | A1 |
20060175346 | Ederer et al. | Aug 2006 | A1 |
20060208388 | Bredt et al. | Sep 2006 | A1 |
20060237159 | Hochsmann | Oct 2006 | A1 |
20060251535 | Pfeifer et al. | Nov 2006 | A1 |
20060254467 | Farr et al. | Nov 2006 | A1 |
20060257579 | Farr et al. | Nov 2006 | A1 |
20070045891 | Martinoni | Mar 2007 | A1 |
20070054143 | Otoshi | Mar 2007 | A1 |
20070057412 | Weiskopf et al. | Mar 2007 | A1 |
20070065397 | Ito et al. | Mar 2007 | A1 |
20070126157 | Bredt | Jun 2007 | A1 |
20070215020 | Miller | Sep 2007 | A1 |
20070238056 | Baumann et al. | Oct 2007 | A1 |
20070241482 | Giller et al. | Oct 2007 | A1 |
20080001331 | Ederer | Jan 2008 | A1 |
20080003390 | Hayashi | Jan 2008 | A1 |
20080018018 | Nielsen et al. | Jan 2008 | A1 |
20080047628 | Davidson et al. | Feb 2008 | A1 |
20080069994 | Kanda | Mar 2008 | A1 |
20080138515 | Williams | Jun 2008 | A1 |
20080187711 | Alam et al. | Aug 2008 | A1 |
20080233302 | Elsner et al. | Sep 2008 | A1 |
20080241404 | Allaman et al. | Oct 2008 | A1 |
20080260945 | Ederer et al. | Oct 2008 | A1 |
20080299321 | Ishihara | Dec 2008 | A1 |
20090068376 | Philippi et al. | Mar 2009 | A1 |
20090283501 | Erikson et al. | Nov 2009 | A1 |
20100007048 | Schweininger | Jan 2010 | A1 |
20100007062 | Larsson et al. | Jan 2010 | A1 |
20100026743 | Van Thillo et al. | Feb 2010 | A1 |
20100152865 | Jonsson et al. | Jun 2010 | A1 |
20100207288 | Dini | Aug 2010 | A1 |
20100212584 | Ederer et al. | Aug 2010 | A1 |
20100244301 | Ederer et al. | Sep 2010 | A1 |
20100247742 | Shi et al. | Sep 2010 | A1 |
20100272519 | Ederer et al. | Oct 2010 | A1 |
20100279007 | Briselden et al. | Nov 2010 | A1 |
20100291314 | Kahani-Shirazi | Nov 2010 | A1 |
20100323301 | Tang et al. | Dec 2010 | A1 |
20110049739 | Uckelmann et al. | Mar 2011 | A1 |
20110059247 | Kuzusako et al. | Mar 2011 | A1 |
20110177188 | Bredt et al. | Jul 2011 | A1 |
20110223437 | Ederer et al. | Sep 2011 | A1 |
20120046779 | Pax et al. | Feb 2012 | A1 |
20120094026 | Ederer | Apr 2012 | A1 |
20120097258 | Harmann et al. | Apr 2012 | A1 |
20120113439 | Ederer et al. | May 2012 | A1 |
20120126457 | Abe et al. | May 2012 | A1 |
20120189102 | Maurer, Jr. et al. | Jul 2012 | A1 |
20120291701 | Grasegger et al. | Nov 2012 | A1 |
20120329943 | Hicks et al. | Dec 2012 | A1 |
20130000549 | Hartmann et al. | Jan 2013 | A1 |
20130004610 | Hartmann et al. | Jan 2013 | A1 |
20130026680 | Ederer et al. | Jan 2013 | A1 |
20130029001 | Gunther et al. | Jan 2013 | A1 |
20130157193 | Moritani et al. | Jun 2013 | A1 |
20130189434 | Randall et al. | Jul 2013 | A1 |
20130199444 | Hartmann | Aug 2013 | A1 |
20130234355 | Hartmann et al. | Sep 2013 | A1 |
20130302575 | Mogele et al. | Nov 2013 | A1 |
20140048980 | Crump et al. | Feb 2014 | A1 |
20140065194 | Yoo | Mar 2014 | A1 |
20140212677 | Gnuchtel et al. | Jul 2014 | A1 |
20140227123 | Gunster | Aug 2014 | A1 |
20140236339 | Fagan | Aug 2014 | A1 |
20140271961 | Khoshnevis | Sep 2014 | A1 |
20140306379 | Hartmann et al. | Oct 2014 | A1 |
20150042018 | Gunther et al. | Feb 2015 | A1 |
20150110910 | Hartmann | Apr 2015 | A1 |
20150224718 | Ederer et al. | Aug 2015 | A1 |
20150266238 | Ederer et al. | Sep 2015 | A1 |
20150273572 | Ederer et al. | Oct 2015 | A1 |
20150290881 | Ederer et al. | Oct 2015 | A1 |
20150375419 | Gunther et al. | Dec 2015 | A1 |
20160318251 | Ederer et al. | Mar 2016 | A1 |
20160263828 | Ederer et al. | Sep 2016 | A1 |
20160303762 | Gunther | Oct 2016 | A1 |
20160311167 | Gunther et al. | Oct 2016 | A1 |
20160311210 | Gunther et al. | Oct 2016 | A1 |
20160368214 | Sasaki | Dec 2016 | A1 |
20160368215 | Miyano | Dec 2016 | A1 |
20170050378 | Ederer | Feb 2017 | A1 |
20170106595 | Gunther et al. | Apr 2017 | A1 |
20170151727 | Ederer et al. | Jun 2017 | A1 |
20170157852 | Ederer et al. | Jun 2017 | A1 |
20170182711 | Gunther et al. | Jun 2017 | A1 |
20170210037 | Ederer et al. | Jul 2017 | A1 |
20170297263 | Ederer et al. | Oct 2017 | A1 |
20170305139 | Hartmann | Oct 2017 | A1 |
20170341302 | Hochsmann | Nov 2017 | A1 |
20170355137 | Ederer et al. | Dec 2017 | A1 |
20180079133 | Ederer et al. | Mar 2018 | A1 |
20180141271 | Gunter et al. | May 2018 | A1 |
20180326662 | Gunther et al. | Nov 2018 | A1 |
20180339452 | Heymel et al. | Nov 2018 | A1 |
20180369910 | Gunter et al. | Dec 2018 | A1 |
20190047218 | Ederer et al. | Feb 2019 | A1 |
20190084229 | Gunther | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
720255 | May 2000 | AU |
1163586 | Oct 1997 | CN |
1988990 | Jun 2007 | CN |
101146666 | Mar 2008 | CN |
103706794 | Apr 2014 | CN |
3221357 | Dec 1983 | DE |
3930750 | Mar 1991 | DE |
4102260 | Jul 1992 | DE |
4305201 | Apr 1994 | DE |
4 325 573 | Feb 1995 | DE |
29506204 | Jun 1995 | DE |
4440397 | Sep 1995 | DE |
19525307 | Jan 1997 | DE |
19530295 | Jan 1997 | DE |
19528215 | Feb 1997 | DE |
29701279 | May 1997 | DE |
19545167 | Jun 1997 | DE |
69031808 | Apr 1998 | DE |
19853834 | May 2000 | DE |
69634921 | Dec 2005 | DE |
201 22 639 | Nov 2006 | DE |
10 2006 040 305 | Mar 2007 | DE |
102006029298 | Dec 2007 | DE |
102007040755 | Mar 2009 | DE |
102007047326 | Apr 2009 | DE |
102011053205 | Mar 2013 | DE |
0361847 | Apr 1990 | EP |
1415792 | May 2004 | EP |
1457590 | Sep 2004 | EP |
2297516 | Aug 1996 | GB |
S62275734 | Nov 1987 | JP |
2003136605 | May 2003 | JP |
2004082206 | Mar 2004 | JP |
2009202451 | Sep 2009 | JP |
9003893 | Apr 1990 | WO |
0140866 | Jun 2001 | WO |
2004014637 | Feb 2004 | WO |
2006100166 | Sep 2006 | WO |
2008049384 | May 2008 | WO |
2008061520 | May 2008 | WO |
2011063786 | Jun 2011 | WO |
2013075696 | May 2013 | WO |
2014090207 | Jun 2014 | WO |
2014166469 | Oct 2014 | WO |
2016019942 | Feb 2016 | WO |
2017008777 | Jan 2017 | WO |
Entry |
---|
US 4,937,420 A, 06/1990, Deckard (withdrawn) |
International Search Report and Written Opinion, PCT Application No. PCT/DE2016/000343, dated Dec. 21, 2016. |
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993. |
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994. |
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, pp. 130-133. |
Gebhart, Rapid Prototyping, pp. 118-119, 1996. |
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000. |
EOS Operating Manual for Laser Sintering Machine with Brief Summary Feb. 22, 2005. |
Sachs, E., P. Williams, D. Brancazio, M. Cima, and K. Kremmin, Three dimensional printing: Rapid Tooling and Prototypes Directly from a CAD Model. In Proceedings of Manufacturing International 1990 (Atlanta, GA, Mar. 25-28). ASME, New York, 1990, pp. 131-136. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151, Jan. 1990. |
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, abstract only; Sep. 25, 2001. |
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012. |
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015. |
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”. |
Number | Date | Country | |
---|---|---|---|
20180339452 A1 | Nov 2018 | US |