The present disclosure relates to a method and device for assessing and monitoring voltage security in a power system. More specifically, the method and device provides for the calculation of the value of reactive power load when changes in reactive power outputs of at least some of the generators in the electrical power system cause all of the generators on the system to reach the combined operating limit of their reactive power output.
Voltage instability has played a major role in at least two of the recent major blackouts in North America, namely the Jul. 2, 1996 Western American blackout and the Aug. 14, 2003 Northeastern blackout. Voltage instability was encountered in these two blackouts because reactive power supplies such as generator reactive power outputs and shunt capacitor devices were exhausted ahead of the eventual blackouts.
Unlike active power, which can flow from sources to sinks over long transmission paths, reactive power must be supplied and balanced locally to meet the reactive power demands at load centers. Reactive power losses over transmission lines and transformers are typically several factors higher than active power losses. It is well known that voltage stability phenomena tend to be local while active power phenomena may involve geographically widespread operational domains. Although there is a breadth of theoretical analysis of voltage stability is relatively well understood, there exist only a few methods and devices for monitoring and mitigating voltage instability in a real-time operational environment.
The present description provides for the calculation of the value of reactive power load when changes in reactive power outputs of at least some of the generators in the electrical power system cause all of the generators on the system to reach the combined operating limit of their reactive power output.
These and other desired benefits of the preferred embodiments, including combinations of features thereof, will become apparent from the following description. It will be understood, however, that a process or arrangement could still appropriate the claimed invention without accomplishing each and every one of these desired benefits, including those gleaned from the following description. The appended claims, not these desired benefits, define the subject matter of the invention. Any and all benefits are derived from the multiple embodiments of the invention, not necessarily the description in general.
Provided is a method and device for assessing and monitoring voltage security in a power system. More specifically, a method and device is provided which calculates the value of reactive power load when changes in reactive power outputs of at least some of the generators in the electrical power system cause all of the generators in the system to reach the combined operating limit of their reactive power output. Such calculations may be performed by either a fast predictive QV margin calculator or a direct predictive QV margin calculator. The direct predictive QV margin calculator may be based in part on power-flow Jacobian computations.
In response thereto, the method and device are further adapted to initiate suitable control measures such as switching of transformer banks and/or capacitor/reactor banks, as well as shedding loads whenever necessary to mitigate an impending voltage stability problem. According to one aspect, the device further includes an apparatus (e.g., a load shedding apparatus) for reducing the reactive power load at one of the load distribution substations. In another aspect, the device further includes an apparatus for increasing or decreasing reactive power outputs of some of the generators.
A method for assessing and monitoring voltage stability in an electrical power system including a plurality of generators is further provided including the steps of acquiring phasor or Supervisory Control and Data Acquisition (SCADA) measurements from various locations on the power system; calculating a reactive power loading margin based on the acquired measurements; and calculating the value of reactive power load when changes in reactive power outputs of at least some of the generators in the electrical power system cause the plurality of generators to reach the combined operating limit of their reactive power output.
It should be understood that described herein are a number of different aspects or features which may have utility alone and/or in combination with other aspects or features. Accordingly, this summary is not an exhaustive identification of each such aspect or feature that is now or may hereafter be claimed, but represents an overview of certain aspects described herein to assist in understanding the more detailed description that follows. The scope of the invention is not limited to the specific embodiments described below, but is set forth in the claims now or hereafter filed.
The method and device described herein are adapted to quantify the voltage security status of the operating condition of generators within an electrical power system. The method and device are further adapted to identify potential problem areas within the electrical power system that are prone to static voltage instability. More specifically, the device generally includes a reactive power loading margin calculator and a predictive reactive power load limit calculator for calculating the value of reactive power load when changes in reactive power outputs of at least some of the generators in the electrical power system cause all of the generators on the system to reach the combined operating limit of their reactive power output.
The voltage security processor 100 generally includes a reactive power loading margin calculator adapted to calculate a reactive power loading margin based on received phasor measurements 102 and/or SCADA measurements 104 acquired at various locations on the power system. The voltage security processor 100 also includes a predictive reactive power load limit calculator adapted to calculate the value of reactive power load when changes in reactive power outputs of at least some of the generators in the electrical power system cause all of the generators on the system to reach the combined operating limit of their reactive power output.
When the reactive power load falls below a select threshold, the voltage security processor 100 is further adapted to initiate specific control and/or monitoring actions. For example, the voltage security processor 100 may be adapted to provide a voltage security status signal 106 or trigger a voltage security control 108 in response thereto. In another example, the voltage security processor 100 may be further adapted to initiate suitable control measures such as switching of transformer banks and/or capacitor/reactor banks, as well as shedding loads whenever necessary to mitigate an impending voltage stability problem. According to one aspect, the voltage security processor 100 may be coupled to a device (e.g., a load shedding apparatus) for reducing the reactive power load at one of the load distribution substations. In another aspect, the voltage security processor 100 may be coupled to a device for increasing or decreasing reactive power outputs of some of the generators.
The voltage security processor 200 may further include a memory location 212 such as a FLASH, RAM or FPGA accessible by the microcontroller 210. The memory location 212 may include instructions for a fast predictive reactive power/voltage margin calculator and/or a direct predictive reactive power/voltage margin (i.e., a fast predictive QV margin calculator and/or a direct predictive QV margin calculator) calculator 216. For both calculators, the microcontroller 210 processes a reactive power loading margin according to the instructions stored in memory 212 upon receipt of synchrophasor measurements 202, and/or SCADA measurements 204. The value of reactive power load is also calculated when changes in reactive power outputs of at least some of the generators in the electrical power system cause all of the generators on the system to reach the combined operating limit of their reactive power output.
When the reactive power loading margin falls below a select threshold, the voltage security processor 200 is further adapted to initiate specific control and/or monitoring actions. For example, the voltage security processor 200 may be adapted to provide a voltage security status 206 or trigger a voltage security control 208 in response thereto. In another example, the voltage security processor 200 may be further adapted to initiate suitable control measures such as switching of transformer banks and/or capacitor/reactor banks, as well as shedding loads whenever necessary to mitigate an impending voltage stability problem. The voltage security processor 200 may be coupled to a device (e.g., a load shedding apparatus) for reducing the reactive power load at one of the load distribution substations. The voltage security processor 200 may be coupled to a device for increasing or decreasing reactive power outputs of some of the generators.
More specifically, the method provides that there are two power-flow solutions denoted Solution A and B at each iteration as shown at 302 and 304, respectively. Using the two solutions, the value of the reactive power load QLi when the next generator is likely to cause all of the generators within the system to reach the combined operating limit of their reactive power output is computed or predicted as shown at 306. If one of the two power-flow solutions fails to converge in any step, the lack of existence of power-flow solution implies that the reactive power loading of QLi is beyond the static limit and the limiting value is adjusted accordingly as shown at 308, 310, and 312. The flow of the iterations is controlled by a measure called QGΣ, which is defined as the sensitivity of the net change in generation Q outputs to an incremental change in QLi. It is claimed that QGΣ stays near one for lightly loaded conditions and increases well above one when the system approaches static limits as shown at 314. Therefore, the value of QGΣ is used as a measure of proximity to the static limit in the method of
The determination by the fast predictive calculator may be used to initiate specific control and/or monitoring actions as shown at 316. For example, a voltage security status alarm or voltage security control may be triggered in response thereto. In another example, suitable control measures may be initiated such as switching of transformer banks and/or capacitor/reactor banks, as well as shedding loads whenever necessary to mitigate an impending voltage stability problem. The reactive power load at one of the load distribution substations may be reduced. The reactive power outputs of some of the generators may be increased or decreased in response thereto.
For example, in order to determine the QV margin at bus i, wherein the starting value for the reactive power load at bus i is QLi0, the change of the reactive power load is assumed as being 0 (ΔQLi=0) as shown at 400. The QV margin QLimargin at bus i is computed so that the load value of QLi=QLi0+QLimargin will correspond to the static limit or the nose of the QV curve as shown at 402.
In
For example, the computation of the generator reactive power sensitivities from the power-flow Jacobian is as follows:
Suppose the state variables are represented as x where
The power-flow equations are then stated as
Suppose a power-flow solution to the equations (A.2) is represented as x*. Then, (A.2) at x* is linearized as follows.
Next, it is assumed the effects from a small perturbation of +ε in QLi on generator reactive power outputs QGi are computed. Assuming that ε is sufficiently small, the net effect on QGi from the load change ΔQLi=+ε can be computed from linearized equations (A.3). First, note that ΔQPQi=−ε and the remaining entries of ΔQPQ=0. It is assumed that the active power loads do not change, which implies that ΔPPQ=0. Accordingly, it is also assumed that the active power generations do not change, and therefore, ΔPPV=0 as well. Moreover, by assumption, the PV buses remain constant which implies that ΔVPV=0. Based on the observations above, the changes in ΔQPV can then be calculated as follows:
In the implementation of the direct predictive method, it is assumed that the starting power-flow solution and the full Jacobian matrix in equation (A.3) at this power-flow solution are available at the beginning of the calculations. In each step in the method shown in
Next, in another embodiment, is it assumed that there are small perturbations in any of the real and reactive power loads, and there is a desire to compute the corresponding changes in generator real and reactive power outputs. That is, it is assumed that ΔPPQ and ΔQPQ are specified and ΔPPV and ΔQPV are to be computed. First, it is assumed that the changes ΔPPQ are small in magnitude so that the corresponding changes in line losses can be ignored. Then, active power conservation implies that
The individual changes in ΔPPV
By assuming any one of the three formulations above, changes in the active power outputs of generators can be computed and hence, it can be assumed that ΔPPV is known as well. The problem thus reduces to finding ΔQPV, which can be solved from the Jacobian equation (A.3) by recognizing all the known quantities and by simple algebraic manipulations. Again, it is noted that ΔVPV=0 in (A.3), which allows us to solve the remaining state variable changes as follows.
Next, ΔQPV can be solved as follows.
The embodiment of
The determination by the direct predictive calculator may be used to initiate specific control and/or monitoring actions as shown at 406a, 406b, 406c. For example, a voltage security status alarm or voltage security control may be triggered in response thereto. In another example, suitable control measures may be initiated such as switching of transformer banks and/or capacitor/reactor banks, as well as shedding loads whenever necessary to mitigate an impending voltage stability problem. The reactive power load at one of the load distribution substations may be reduced. The reactive power outputs of some of the generators may be increased or decreased in response thereto.
While this invention has been described with reference to certain illustrative aspects, it will be understood that this description shall not be construed in a limiting sense. Rather, various changes and modifications can be made to the illustrative embodiments without departing from the true spirit, central characteristics and scope of the invention, including those combinations of features that are individually disclosed or claimed herein. Furthermore, it will be appreciated that any such changes and modifications will be recognized by those skilled in the art as an equivalent to one or more elements of the following claims, and shall be covered by such claims to the fullest extent permitted by law.
This application claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/976,324, entitled “METHOD AND DEVICE FOR ASSESSING AND MONITORING VOLTAGE SECURITY IN A POWER SYSTEM,” filed Sep. 28, 2007, naming Vaithianathan Venkatasubramanian and Armando Guzman-Casillas as inventors, the complete disclosure thereof being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5594659 | Schlueter | Jan 1997 | A |
5610834 | Schlueter | Mar 1997 | A |
6219591 | Vu | Apr 2001 | B1 |
6236949 | Hart | May 2001 | B1 |
6476521 | Lof | Nov 2002 | B1 |
6492801 | Sims et al. | Dec 2002 | B1 |
6662124 | Schweitzer | Dec 2003 | B2 |
6694270 | Hart | Feb 2004 | B2 |
6845333 | Anderson | Jan 2005 | B2 |
7480580 | Zweigle | Jan 2009 | B2 |
7630863 | Zweigle | Dec 2009 | B2 |
7660649 | Hope et al. | Feb 2010 | B1 |
20030220752 | Hart | Nov 2003 | A1 |
20040059469 | Hart | Mar 2004 | A1 |
20040093177 | Schweitzer | May 2004 | A1 |
20050187726 | Korba | Aug 2005 | A1 |
20060030972 | Schlueter et al. | Feb 2006 | A1 |
20060224336 | Petras | Oct 2006 | A1 |
20070206644 | Bertsch | Sep 2007 | A1 |
20080074810 | Guzman-Casillas et al. | Mar 2008 | A1 |
20080077368 | Nasle | Mar 2008 | A1 |
Entry |
---|
A.P. Sakis Meliopoulos, George J. Cokkinides, Floyd Galvan, Bruce Fardanesh, Distributed State Estimator—Advances and Demonstration, Jan. 7, 2008. |
Saman A. Zonouz and William H. Sanders, A Kalman-based Coordination for Hierarchical State Estimation: Algorithm and Analysis Jan. 7, 2008. |
Cold Load Pickup Issues, A Report to the Line Protection Subcommittee of the Power System Relay Committee of the IEEE Power Engineering Society, May 16, 2008. |
P. Zhang, Measurement-Based Load Modeling, EPRI Electric Power Research Institute, Dec. 6, 2006. |
Number | Date | Country | |
---|---|---|---|
20090085407 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60976324 | Sep 2007 | US |