The invention relates to a method of biometric identification of persons according to the hand, by which the shape of the hand is scanned, evaluated and compared with the database of hand shapes.
The invention also relates to a device for biometric identification of persons according to the hand comprising a pad and a scanning device coupled with a control and evaluating unit.
The biometric security systems are becoming to be widely spread nowadays. Their success in the market is conditioned by many factors, among others the most decisive is e.g. the entropy factor (i.e. how great number of users the system is able to distinguish one from another) and also the willingness of users to use the given biometric identification system.
The only system available in the market under a commercial name “HandKey” or “HandPunch” is described in EP 0 132 665 B1 and in EP 0 209 317 B1, and also on http://recognitionsystems.schlage.com/products/product.php?id=2. This system is based on scanning and recognition of two-dimensional (2D) contour of a human hand, while the system works with 16 specifications/dimensions. At this solution the hand is inserted into the device and positioned on a board with hold-down pins, which serve for a proper positioning of fingers, so that they are always equally distanced and the hand is inserted into the measuring chamber correctly. Positioning of these hold-down pins is also a subject of a patent. The hand is primarily scanned from above, while the hand contour is decisive, that means its 2D shape in the plane of the board on which the hand is being positioned. In this direction of view the system acquires 14 values as the specifications about 2D hand contour. Another 2 specifications presents 2D image of the hand from the lateral side, where in the device there is positioned on the inner lateral side a mirror, which projects this side 2D image of the hand into the camera positioned on the top. The device uses only 1 camera. In the view from above, 14 dimensions are determined on the monitored hand, such as the length of fingers, the width of fingers and the width of back of the hand, and in the view from the side on the monitored hand 2 specifications are determined, like the height of fingers and height of the back of the hand. In this way obtained 16 dimensions are scored and compared with the database by which the biometric identification of person is performed.
The main disadvantage of this system is a low level of the biometric entropy information obtained by this system, which is therefore not able to achieve the necessary certainty in distinguishing the proper person without confusion with another person. In principle the quantity of measured features of the hand is insufficient to achieve the required low probability that for two various persons the same data will be acquired, through which these two various persons would be considered by the system to be one person.
The goal of the invention is to improve especially the distinguishing abilities and accuracy of biometric identification of persons based on monitoring the hand.
The goal of the invention has been achieved through a method of biometric identification of persons, whose principle consists in that a three-dimensional (3D) shape of a hand is scanned, this is analysed and a three-dimensional model of the hand is created, which is compared with a database of three-dimensional models of hands.
Through scanning of the 3D shape of the hand an important increasing of biometric entropy is achieved, because the whole surface of the hand is taken, including its height arrangement, recesses, projections, etc. By this method even anomalies of the hand, which are not applicable in the 2D model, may be considered.
The principle of the device for biometric identification of persons according to the hand comprising a pad, source of light and at least one camera is that the pad comprises the positioning depression in the shape of a hand, while the positioning depression is whole situated in the field of view of a scanning device and in the area of impact of radiation from the source of light, while the scanning device is connected with a control and evaluating unit.
The advantageous embodiments of invention are subject of the dependent claims and they are also shown in the description of examples of embodiments of the invention.
The invention is schematically represented on the drawing, where the
The method of biometric identification of persons according to the invention is based on the principle of recognition of three-dimensional (3D) shape of the hand, through which significantly higher distinguishing range is achieved, what may be utilised for a reliable identification of significantly larger group of persons than by the solution known from the background art.
Biometric identification according to the invention is performed so that on the pad, which comprises the positioning depression 1 in the shape of a hand, as it is represented in the
The hand placed on the pad is scanned by the scanning device 2 and its 3D image is obtained, more exactly the 3D image of its surface is obtained.
As represented in the
The camera 20 exemplary has the CCD scanning element, in another example of embodiment it has another type of scanning element, e.g. the CMOS etc. In the represented example of embodiment as a source 21 of light, the light-emitting diode (LED) is applied, while in a not represented example of embodiment as a source 21 of light the OLED source, the laser source, etc. is applied. The raster plate 22 is according to one embodiment a part of the source 21 of light, e.g. it is performed through direct etching of projected lines to the laser diode etc., or it is formed by an independent element. The raster plate 22 has a suitable shape of its lines which need not to be right-angled, the lines may be performed in the form of right-angled grid, non right-angled grid, linear lines, mutually crossing lines, etc. In a not represented example of embodiment the raster plate 22 is moveable and contains a single line, which moves above the whole hand and so gradually displays individual cross profiles of the monitored hand, consequently in a mathematical way from individual cross profiles the 3D profile of the whole hand is composed.
According to a not represented example of embodiment the 3D image of the hand placed on the pad is obtained through stereoscopic scanning by mean of two cameras.
Activity of the device and evaluation is performed by a not represented control and evaluating unit (e.g. computer), which is connected with the scanning device 2.
Algorithm of processing of the 3D shape of the hand is schematically represented in the
In the first step scanning of the 3D geometry of the hand is performed as it is obvious from the previous description. After then a pre-processing of the image follows in the scope of which usual graphic operations with the image are performed like improving the image quality, adjustment of contrast/brightness, focusing/defocusing, adaptive thresholding etc. After pre-processing of image a detection of the structure follows, which is further followed by reconstruction of the surface and creation of the 3D shape of the hand (pattern). These steps as such are composed of more sub-steps, whose goal is to find the important points of the structure out of which the 3D surface may be reconstructed. Some of these important points are transferred into features, which create the hand pattern. This is followed by extraction of features, which may be also extracted from other information, such as the mutual position of points, from the course of curves between the points, etc. In case of raster information (texture) it may be a description of structure of the texture. After then the step of recognition/comparison follows, when the obtained 3D image of the hand is compared with the database of 3D images (patterns) of hand of registered persons. Recognition is based on two basic steps. The first is a rough alignment (comparing the rotation and translation between the hand pattern and the just obtained 3D hand shape). The second is a fine alignment, in the scope of which the concordance of obtained 3D hand image with the pre-defined tolerance limit (so called tolerance boxes) is determined.
The result of the whole process of recognition/comparison is determining of matching rate (so called comparison score), which corresponds to percentage matching of the pattern with the newly scanned/obtained 3D hand image. The higher is the matching rate, the higher is the probability that both images of 3D hand shape originate from the same user. The threshold for decision, whether the given value of matching rate shall be considered as a value corresponding to the matching depends on decision of system administrator, i.e. on strictness of requirement as to exact identification. Too low value of the threshold may lead to acceptance of matching of two compared patterns that do not originate from the same person, on the contrary too high value of the threshold results to too high number of non-conformities (rejections), i.e. cases, when the obtained 3D images being of the same person are considered to be different.
Number | Date | Country | Kind |
---|---|---|---|
PV2008-453 | Jul 2008 | CZ | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CZ2009/000092 | 7/15/2009 | WO | 00 | 1/20/2011 |