The present invention relates generally to photovoltaic materials and manufacturing method. More particularly, the invention provides a device for a thin-film photovoltaic cell without a cadmium-based buffer layer and a method for making thereof. The present method and device provide a thin film photovoltaic cell using a copper indium diselenide absorber material and a cadmium-free window buffer material.
Environmentally clean and renewable sources of energy are desired. An example of a clean source of energy is hydroelectric power. Clean and renewable sources of energy also include wind, waves, biomass, and the like. That is, windmills convert wind energy into more useful forms of energy such as electricity. Still other types of clean energy include solar energy.
Solar energy technology generally converts electromagnetic radiation from the sun to other useful forms of energy. For electrical power applications, solar cells are often used. Although solar energy is environmentally clean and has been successful to a point, many limitations remain to be resolved before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which are derived from semiconductor material ingots. These crystalline materials can be used to fabricate optoelectronic devices that include photovoltaic and photodiode devices that convert electromagnetic radiation into electrical power. However, crystalline materials are often costly and difficult to make on a large scale. Additionally, devices made from such crystalline materials often have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical power. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, thin-film photovoltaic cells traditionally use exotic elements including cadmium, mercury, or telluride, which substantially limit the applications and cause environmental side effects. Often, such thin-film solar devices are difficult to handle during their manufacture processes because of these toxic materials.
From the above, it is seen that improved techniques for manufacturing photovoltaic materials and resulting devices are desired.
The present invention provides a method and a structure for forming a photovoltaic cell. More particularly, the invention provides a method and a thin film device without using cadmium. Embodiments according to the present invention have been implemented in a thin-film solar cell with copper-indium-gallium-diselenide (CIGS) based absorber material and cadmium-free, buffer-free window material.
In a specific embodiment, a method for fabricating a thin film photovoltaic device free from a heavy metal including cadmium is provided. The method includes providing a substrate comprising a thin film photovoltaic absorber. The thin film photovoltaic absorber comprises a surface region including copper species, indium species, gallium species, selenium species, and sulfur species. The surface region is coated with a material containing at least zinc, substantially free of cadmium. Additionally, the method includes a heating step within the surface region to cause formation of a zinc doped material within a depth of the thin-film photovoltaic absorber from the surface region. Then a zinc oxide material is formed over the zinc doped material, followed by forming a transparent conductive material over the zinc oxide material.
In an alternative embodiment, the invention provides a thin film photovoltaic device which includes a substrate and a barrier material overlying the substrate. A first electrode overlies the barrier material, and absorber material overlies the first electrode. The absorber material has a surface region and includes copper, indium, gallium and selenium, characterized by a Cu/(In+Ga) ratio of 0.9±0.05 and p-type conductivity. A junction structure is confined between the surface region. The junction structure is doped by n-type dopants substantially free of cadmium. Furthermore, the device includes a first layer of zinc oxide overlying the junction layer, as well as a second layer of zinc oxide overlying the first zinc oxide. The first zinc oxide has a first resistivity and a first optical transparency and the second zinc oxide material has a second resistivity and a second optical transparency. The first resistivity is substantially greater than the second resistivity and the second optical transparency is equal to or greater than the first optical transparency.
Many benefits can be achieved by embodiments according to the present invention. For example, the thin film single junction photovoltaic cell can be fabricated using in a simplified process, yet with conventional equipment. Advantages of the embodiments of the present method eliminate the use of toxic elements such as cadmium. The process further saves processing material and reduces environmental harm, yet the device achieves high photovoltaic efficiency without need of a buffer layer. The device and its manufacturing method lead to a much improved cost saving and cleaner way to convert sunlight into electric energy.
An absorber material 220 is formed over the first electrode for each cell. Typically the absorber material is a copper-indium-gallium-diselenide (CIGS) or copper-indium-gallium-selenium-sulfide (CIGSS) compound. It is formed in a two-step process by depositing a precursor thin film comprising copper, indium, or gallium species (overlying the first electrode) on the substrate and then performing a selenization and sulfurization process to treat the precursor at an elevated temperature to form the CIGS/CIGSS material. In certain embodiments, gallium is not included to obtain a CIS material. In other embodiments, the precursor material includes sodium which helps to modify the column grain structure of the CIS/CIGS/CIGSS thin film and enhance the power efficiency of the solar cell. Depending on the precursor preparation process including chemical stoichiometry control for the target devices and sputtering conditions, the absorber material has a preferred atomic concentration ratio for Cu/(In+Ga) of about 0.9±0.05, leading to efficiencies of 14% and higher. In certain other embodiments, the absorber material also contains sulfur appeared in compound CuInGa(SeS)2. Alternatively, the absorber material contains a combination of CuInGaSe2 and CuInGa(SeS)2. A more detailed description is found in U.S. patent application Ser. No. 12/568,641, commonly assigned to Stion Corporation, San Jose, Calif., and incorporated by reference herein for all purposes.
Referring to
As shown in
Referring to
In an alternative embodiment,
As shown in
In a specific embodiment, as illustrated in
In an alternative embodiment as shown in
Referring further to
In one embodiment, the thickness H of the original absorber material 220 ranges from 1 μm to 2 μm. The junction structure 240 can have a thickness ranging from 10 nm to 50 nm, about 0.5 to 5 percent of the total thickness of original absorber material. It is known that the zinc species is a good n-type donor for the CIS/CIGS/CIGSS compound. As a result of the thermal assisted diffusion process, at least some of the zinc in the junction structure may be ionized and become a n-type dopant therein. The zinc doping helps to transform a top portion of the absorber material characterized by p-type conductivity into a junction structure characterized by n-type conductivity. In other words, the interface region 243 becomes a boundary separating a p-type film region 230 and an n-type region 240, forming a semiconductor p-n junction. Depending on the embodiments and applications, the zinc diffused into the junction region is about 1020 cm−3 in atomic concentration and n-type doping level due to ionized zinc species can range from 1015 cm−3 to 1018 cm−3. The zinc doping substantially replaces the role of cadmium played in an n-type CdS buffer layer formed on top of the CIS/CIGS/CIGSS absorber material. Of course, other surface reaction and diffusion methods can be used to form the layers described herein.
In one embodiment, the method 100 further includes a process 135 to load the substrate including the CIS/CIGS/CIGSS absorber p-n junction without cadmium species into a chamber. In certain implementation, the surface of the above substrate with the p-n junction can be pre-treated using fluidic chemical including ammonium hydroxide or cyanide to clean up and remove some oxides. The chamber is a vacuum chamber designed for performing metal-organic chemical vapor deposition (MOCVD). One or more conductive transparent materials can be deposited over the zinc doped junction layer formed in process 130.
Following process 135, a process 140 for depositing zinc oxide film material over the zinc-doped junction structure is performed. In a specific embodiment, the zinc oxide is deposited using a MOCVD technique in the chamber with a vacuum environment. Then a work gas including reactants and dopants is mixed with a carrier gas, flowing into the chamber. In one embodiment the reactants include a zinc bearing species such as diethylzinc gas mixed with water vapor. The dopants can include diborone gas. The carrier gas is an inert gas, e.g. nitrogen, argon, or helium. The substrate, as loaded on a heating plate, heated to a temperature in a range of 150° C. to 250° C., preferably within 200-250° C. At these elevated temperatures, zinc in the diethylzinc gas decomposes and reacts with the oxygen in water vapor to form a zinc oxide film on the surface of the junction structure. At the same time, additional zinc species within the junction structure may be further activated to contribute for final n-type conductivity of the junction structure or window layer for the solar cell.
At the same time, the zinc dopant is subjected to further thermal diffusion within the layer so that the junction location or the interface region may shift. In a specific embodiment, the zinc oxide film over the junction may be formed using a MOCVD process without extra doping. The process can be carried out with a reduced flow of, or elimination of dopant gas so that the zinc oxide film has a high resistivity. In an example, the high resistivity is in a range of about 102 to 104 mΩ·cm and greater. The relative high resistivity of the zinc oxide film helps to reduce the possibility of shunts, or formation of conducting phases, so that a good ohmic contact can be formed. The zinc oxide film has good optical transparency, e.g. an optical transmission rate of 80% and greater at least for light spectrum ranging from near UV to infrared light. The zinc oxide film material formed in this process can have a thickness range from 10 nm to 100 nm for minimizing shunting while keeping good optical transparency. In another embodiment, the zinc oxide film material without adding diborone dopant gas can be replaced by depositing a ZnO1-xSx material by continuously flowing water vapor and H2S gas during the MOCVD process. In yet another embodiment, the zinc oxide film material bearing characteristics of relative high resistivity and substantial transparency to sun light spectrum is formed overlying the zinc-doped junction structure to lead a formation of a Cd-free window material for the thin-film solar cell for collecting electrons converted from photons by the absorber material.
Method 100 includes a process 145 of forming a transparent conductive electrode over the zinc oxide film. Many transparent conductive oxides (TCO) such as zinc oxide, indium tin oxide (ITO), fluorine doped tin oxide (FTO), and the like can be used. One approach is to continue depositing a second zinc oxide film material within the previous chamber using MOCVD process for forming the first zinc oxide film material in process 140. In a specific embodiment, the dopants gas flow during MOCVD process is adjusted for appropriate physical characteristics of the transparent conductive material. For example, the diborone gas flow may be turned on with a flow rate so that boron doping occurs during the formation of the second zinc oxide film material. The second zinc oxide film for forming the upper electrode of the solar cell has resistivity of a few mΩ·cm. Additionally, the second zinc oxide film material will have an optical transmission rate, e.g. 90%, which is higher than the first zinc oxide film material.
Following the formation of the zinc doped junction structure, a first zinc oxide film 260 is deposited, e.g. using a MOCVD process which may be followed by an annealing process using rapid thermal annealing. These processes further activate additional zinc species in the zinc doped junction structure to determine a final zinc doping level within the junction structure and modifies the location of the interface region (junction position). The result is an n-type doping level ranging from 1015 cm−3 to 1018 cm−3. The first zinc oxide film 260 overlying the junction structure 241 is characterized by a high resistivity achieved by cutting off boron dopant gas flow during its formation process, thus forming a Cd-free window material together with the n-type zinc doped junction structure over the p-type absorber material. This basically eliminates a CdS buffer layer and associated chemical bath deposition process, as well as certain surface treatment processes so that the thin-film solar cell is substantially free of toxic elements. Finally, a second zinc oxide film 270 can be formed using the MOCVD process while flowing diborone dopant gas to obtain a lower resistivity and higher optical transparency compared to the first zinc oxide film 260. The second zinc oxide film 270 is patterned to form a second electrode for the thin-film solar cell.
The above sequence of steps provides a cadmium free thin-film photovoltaic device and method of forming thereof according to an embodiment of the present invention. Depending on the embodiment, steps may be added or removed without departing from the scope of the claims herein. For example, the window material and second electrode material can be deposited using techniques such as sputtering, vacuum evaporation, and chemical bath deposition, among others.
While the present invention has been described using specific embodiments, it should be understood that various changes, modifications, and variations to the method utilized in the present invention may be effected without departing from the spirit and scope of the present invention as defined in the appended claims. Additionally, embodiments according to the present invention can be applied to other thin film configurations such as those provided by a metal oxide material, a metal sulfide material or a metal selenide material.
This application claims priority to U.S. Provisional Application No. 61/389,129, entitled “Method and Device for Cadmium-Free Solar Cells,” filed on Oct. 1, 2010, by Kannan Ramanathan and Robert D. Wieting, commonly assigned, and hereby incorporated by reference in its entirety herein for all purpose.
Number | Name | Date | Kind |
---|---|---|---|
3520732 | Nakayama et al. | Jul 1970 | A |
3828722 | Reuter et al. | Aug 1974 | A |
3975211 | Shirland | Aug 1976 | A |
4062038 | Cuomo et al. | Dec 1977 | A |
4263336 | Thompson et al. | Apr 1981 | A |
4332974 | Fraas | Jun 1982 | A |
4335266 | Mickelsen et al. | Jun 1982 | A |
4441113 | Madan | Apr 1984 | A |
4442310 | Carlson et al. | Apr 1984 | A |
4461922 | Gay et al. | Jul 1984 | A |
4465575 | Love et al. | Aug 1984 | A |
4471155 | Mohr et al. | Sep 1984 | A |
4499658 | Lewis | Feb 1985 | A |
4507181 | Nath et al. | Mar 1985 | A |
4517403 | Morel et al. | May 1985 | A |
4518855 | Malak | May 1985 | A |
4542255 | Tanner et al. | Sep 1985 | A |
4581108 | Kapur et al. | Apr 1986 | A |
4589194 | Roy | May 1986 | A |
4598306 | Nath et al. | Jul 1986 | A |
4599154 | Bender et al. | Jul 1986 | A |
4611091 | Choudary et al. | Sep 1986 | A |
4612411 | Wieting et al. | Sep 1986 | A |
4623601 | Lewis et al. | Nov 1986 | A |
4625070 | Berman et al. | Nov 1986 | A |
4638111 | Gay | Jan 1987 | A |
4661370 | Tarrant | Apr 1987 | A |
4663495 | Berman et al. | May 1987 | A |
4705912 | Nakashima et al. | Nov 1987 | A |
4724011 | Turner et al. | Feb 1988 | A |
4727047 | Bozler et al. | Feb 1988 | A |
4751149 | Vijayakumar et al. | Jun 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4793283 | Sarkozy | Dec 1988 | A |
4798660 | Ermer et al. | Jan 1989 | A |
4816082 | Guha et al. | Mar 1989 | A |
4816420 | Bozler et al. | Mar 1989 | A |
4865999 | Xi et al. | Sep 1989 | A |
4873118 | Elias et al. | Oct 1989 | A |
4915745 | Pollock et al. | Apr 1990 | A |
4950615 | Basol et al. | Aug 1990 | A |
4968354 | Nishiura et al. | Nov 1990 | A |
4996108 | Divigalpitiya et al. | Feb 1991 | A |
5008062 | Anderson et al. | Apr 1991 | A |
5011565 | Dube et al. | Apr 1991 | A |
5028274 | Basol et al. | Jul 1991 | A |
5039353 | Schmitt | Aug 1991 | A |
5045409 | Eberspacher et al. | Sep 1991 | A |
5069727 | Kouzuma et al. | Dec 1991 | A |
5078803 | Pier et al. | Jan 1992 | A |
5125984 | Kruehler et al. | Jun 1992 | A |
5133809 | Sichanugrist et al. | Jul 1992 | A |
5137835 | Karg | Aug 1992 | A |
5154777 | Blackmom et al. | Oct 1992 | A |
5180686 | Banerjee et al. | Jan 1993 | A |
5211824 | Knapp | May 1993 | A |
5217564 | Bozler et al. | Jun 1993 | A |
5231047 | Ovshinsky et al. | Jul 1993 | A |
5248345 | Sichanugrist et al. | Sep 1993 | A |
5259883 | Yamabe et al. | Nov 1993 | A |
5261968 | Jordan | Nov 1993 | A |
5298086 | Guha et al. | Mar 1994 | A |
5336381 | Dalzell, Jr. et al. | Aug 1994 | A |
5336623 | Sichanugrist et al. | Aug 1994 | A |
5346853 | Guha et al. | Sep 1994 | A |
5397401 | Toma et al. | Mar 1995 | A |
5399504 | Ohsawa | Mar 1995 | A |
5436204 | Albin et al. | Jul 1995 | A |
5445847 | Wada | Aug 1995 | A |
5474939 | Pollock et al. | Dec 1995 | A |
5501744 | Albright et al. | Mar 1996 | A |
5512107 | van den Berg | Apr 1996 | A |
5528397 | Zavracy et al. | Jun 1996 | A |
5536333 | Foote et al. | Jul 1996 | A |
5578103 | Araujo et al. | Nov 1996 | A |
5578503 | Karg et al. | Nov 1996 | A |
5622634 | Noma et al. | Apr 1997 | A |
5626688 | Probst et al. | May 1997 | A |
5665175 | Safir | Sep 1997 | A |
5676766 | Probst et al. | Oct 1997 | A |
5698496 | Fastnacht et al. | Dec 1997 | A |
5726065 | Szlufcik et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5804466 | Arao et al. | Sep 1998 | A |
5858819 | Miyasaka | Jan 1999 | A |
5868869 | Albright et al. | Feb 1999 | A |
5925228 | Panitz et al. | Jul 1999 | A |
5948176 | Ramanathan et al. | Sep 1999 | A |
5977476 | Guha et al. | Nov 1999 | A |
5981868 | Kushiya et al. | Nov 1999 | A |
5985691 | Basol et al. | Nov 1999 | A |
6040521 | Kushiya et al. | Mar 2000 | A |
6048442 | Kushiya et al. | Apr 2000 | A |
6092669 | Kushiya et al. | Jul 2000 | A |
6107562 | Hashimoto et al. | Aug 2000 | A |
6127202 | Kapur et al. | Oct 2000 | A |
6160215 | Curtin | Dec 2000 | A |
6166319 | Matsuyama | Dec 2000 | A |
6172297 | Hezel et al. | Jan 2001 | B1 |
6258620 | Morel et al. | Jul 2001 | B1 |
6288325 | Jansen et al. | Sep 2001 | B1 |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6307148 | Takeuchi et al. | Oct 2001 | B1 |
6310281 | Wendt et al. | Oct 2001 | B1 |
6323417 | Gillespie et al. | Nov 2001 | B1 |
6328871 | Ding et al. | Dec 2001 | B1 |
6361718 | Shinmo et al. | Mar 2002 | B1 |
6372538 | Wendt et al. | Apr 2002 | B1 |
6423565 | Barth et al. | Jul 2002 | B1 |
6632113 | Noma et al. | Oct 2003 | B1 |
6635307 | Huang et al. | Oct 2003 | B2 |
6653701 | Yamazaki et al. | Nov 2003 | B1 |
6667492 | Kendall | Dec 2003 | B1 |
6690041 | Armstrong et al. | Feb 2004 | B2 |
6692820 | Forrest et al. | Feb 2004 | B2 |
6784492 | Morishita | Aug 2004 | B1 |
6852920 | Sager et al. | Feb 2005 | B2 |
6878871 | Scher et al. | Apr 2005 | B2 |
6974976 | Hollars | Dec 2005 | B2 |
7122398 | Pichler | Oct 2006 | B1 |
7179677 | Ramanathan et al. | Feb 2007 | B2 |
7194197 | Wendt et al. | Mar 2007 | B1 |
7220321 | Barth et al. | May 2007 | B2 |
7235736 | Buller et al. | Jun 2007 | B1 |
7252923 | Kobayashi | Aug 2007 | B2 |
7265037 | Yang et al. | Sep 2007 | B2 |
7319190 | Tuttle | Jan 2008 | B2 |
7364808 | Sato et al. | Apr 2008 | B2 |
7390731 | Kroll et al. | Jun 2008 | B2 |
7441413 | Bae et al. | Oct 2008 | B2 |
7442413 | Zwaap et al. | Oct 2008 | B2 |
7544884 | Hollars | Jun 2009 | B2 |
7611573 | Bhattacharya | Nov 2009 | B2 |
7736755 | Igarashi et al. | Jun 2010 | B2 |
7741560 | Yonezawa | Jun 2010 | B2 |
7855089 | Farris, III et al. | Dec 2010 | B2 |
7863074 | Wieting | Jan 2011 | B2 |
7910399 | Wieting | Mar 2011 | B1 |
7955891 | Wieting | Jun 2011 | B2 |
7960204 | Lee | Jun 2011 | B2 |
7993954 | Wieting | Aug 2011 | B2 |
7993955 | Wieting | Aug 2011 | B2 |
7998762 | Lee et al. | Aug 2011 | B1 |
8003430 | Lee | Aug 2011 | B1 |
8008110 | Lee | Aug 2011 | B1 |
8008111 | Lee | Aug 2011 | B1 |
8008112 | Lee | Aug 2011 | B1 |
8017860 | Lee | Sep 2011 | B2 |
8026122 | Lee | Sep 2011 | B1 |
8142521 | Wieting | Mar 2012 | B2 |
8168463 | Wieting | May 2012 | B2 |
8178370 | Lee et al. | May 2012 | B2 |
8183066 | Lee et al. | May 2012 | B2 |
8217261 | Wieting | Jul 2012 | B2 |
8263494 | Patterson | Sep 2012 | B2 |
8287942 | Huang et al. | Oct 2012 | B1 |
8361831 | Yane | Jan 2013 | B2 |
20020002992 | Kariya et al. | Jan 2002 | A1 |
20020004302 | Fukumoto et al. | Jan 2002 | A1 |
20020061361 | Nakahara et al. | May 2002 | A1 |
20020063065 | Sonoda et al. | May 2002 | A1 |
20030075717 | Kondo et al. | Apr 2003 | A1 |
20030089899 | Lieber et al. | May 2003 | A1 |
20030188777 | Gaudiana et al. | Oct 2003 | A1 |
20030230338 | Menezes | Dec 2003 | A1 |
20040063320 | Hollars | Apr 2004 | A1 |
20040084080 | Sager et al. | May 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040110393 | Munzer et al. | Jun 2004 | A1 |
20040161539 | Miyakawa | Aug 2004 | A1 |
20040187917 | Pichler | Sep 2004 | A1 |
20040235286 | Kroll et al. | Nov 2004 | A1 |
20040245912 | Thurk et al. | Dec 2004 | A1 |
20040252488 | Thurk | Dec 2004 | A1 |
20040256001 | Mitra et al. | Dec 2004 | A1 |
20050074915 | Tuttle et al. | Apr 2005 | A1 |
20050098205 | Roscheisen et al. | May 2005 | A1 |
20050109392 | Hollars | May 2005 | A1 |
20050164432 | Lieber et al. | Jul 2005 | A1 |
20050194036 | Basol | Sep 2005 | A1 |
20050257825 | Ramanathan et al. | Nov 2005 | A1 |
20050287717 | Heald et al. | Dec 2005 | A1 |
20060034065 | Thurk | Feb 2006 | A1 |
20060040103 | Whiteford et al. | Feb 2006 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060096536 | Tuttle | May 2006 | A1 |
20060096537 | Tuttle | May 2006 | A1 |
20060096635 | Tuttle | May 2006 | A1 |
20060102230 | Tuttle | May 2006 | A1 |
20060112983 | Parce et al. | Jun 2006 | A1 |
20060130890 | Hantschel et al. | Jun 2006 | A1 |
20060160261 | Sheats et al. | Jul 2006 | A1 |
20060173113 | Yabuta et al. | Aug 2006 | A1 |
20060174932 | Usui et al. | Aug 2006 | A1 |
20060219288 | Tuttle | Oct 2006 | A1 |
20060219547 | Tuttle | Oct 2006 | A1 |
20060220059 | Satoh et al. | Oct 2006 | A1 |
20060249202 | Yoo et al. | Nov 2006 | A1 |
20060267054 | Martin et al. | Nov 2006 | A1 |
20070006914 | Lee | Jan 2007 | A1 |
20070089782 | Scheuten et al. | Apr 2007 | A1 |
20070116892 | Zwaap | May 2007 | A1 |
20070116893 | Zwaap | May 2007 | A1 |
20070151596 | Nasuno et al. | Jul 2007 | A1 |
20070157966 | Meguro et al. | Jul 2007 | A1 |
20070163643 | Van Duren et al. | Jul 2007 | A1 |
20070169810 | Van Duren et al. | Jul 2007 | A1 |
20070193623 | Krasnov | Aug 2007 | A1 |
20070209700 | Yonezawa et al. | Sep 2007 | A1 |
20070264488 | Lee | Nov 2007 | A1 |
20070283998 | Kuriyagawa et al. | Dec 2007 | A1 |
20070289624 | Kuriyagawa et al. | Dec 2007 | A1 |
20080029154 | Mishtein et al. | Feb 2008 | A1 |
20080032044 | Kuriyagawa et al. | Feb 2008 | A1 |
20080041446 | Wu et al. | Feb 2008 | A1 |
20080057616 | Robinson et al. | Mar 2008 | A1 |
20080092945 | Munteanu et al. | Apr 2008 | A1 |
20080092953 | Lee | Apr 2008 | A1 |
20080092954 | Choi | Apr 2008 | A1 |
20080105294 | Kushiya et al. | May 2008 | A1 |
20080110491 | Buller et al. | May 2008 | A1 |
20080110495 | Onodera et al. | May 2008 | A1 |
20080121264 | Chen et al. | May 2008 | A1 |
20080121277 | Robinson et al. | May 2008 | A1 |
20080204696 | Kamijima | Aug 2008 | A1 |
20080210303 | Lu et al. | Sep 2008 | A1 |
20080280030 | Van Duren et al. | Nov 2008 | A1 |
20080283389 | Aoki | Nov 2008 | A1 |
20090021157 | Kim et al. | Jan 2009 | A1 |
20090058295 | Auday et al. | Mar 2009 | A1 |
20090087940 | Kushiya | Apr 2009 | A1 |
20090087942 | Meyers | Apr 2009 | A1 |
20090145746 | Hollars | Jun 2009 | A1 |
20090191359 | Bhattacharya | Jul 2009 | A1 |
20090217969 | Matsushima et al. | Sep 2009 | A1 |
20090223556 | Niesen et al. | Sep 2009 | A1 |
20090234987 | Lee et al. | Sep 2009 | A1 |
20090235983 | Girt et al. | Sep 2009 | A1 |
20090235987 | Akhtar et al. | Sep 2009 | A1 |
20090293945 | Peter | Dec 2009 | A1 |
20100081230 | Lee | Apr 2010 | A1 |
20100087016 | Britt et al. | Apr 2010 | A1 |
20100087026 | Winkeler et al. | Apr 2010 | A1 |
20100096007 | Mattmann et al. | Apr 2010 | A1 |
20100101648 | Morooka et al. | Apr 2010 | A1 |
20100101649 | Huignard et al. | Apr 2010 | A1 |
20100122726 | Lee | May 2010 | A1 |
20100167460 | Yane | Jul 2010 | A1 |
20100197051 | Schlezinger et al. | Aug 2010 | A1 |
20100210064 | Hakuma et al. | Aug 2010 | A1 |
20100233386 | Krause et al. | Sep 2010 | A1 |
20100243045 | Tsuchiya et al. | Sep 2010 | A1 |
20100255630 | Meyer et al. | Oct 2010 | A1 |
20100258179 | Wieting | Oct 2010 | A1 |
20100267190 | Hakuma et al. | Oct 2010 | A1 |
20110018103 | Wieting | Jan 2011 | A1 |
20110020980 | Wieting | Jan 2011 | A1 |
20110056541 | Martinez et al. | Mar 2011 | A1 |
20110070682 | Wieting | Mar 2011 | A1 |
20110070683 | Wieting | Mar 2011 | A1 |
20110070684 | Wieting | Mar 2011 | A1 |
20110070685 | Wieting | Mar 2011 | A1 |
20110070686 | Wieting | Mar 2011 | A1 |
20110070687 | Wieting | Mar 2011 | A1 |
20110070688 | Wieting | Mar 2011 | A1 |
20110070689 | Wieting | Mar 2011 | A1 |
20110070690 | Wieting | Mar 2011 | A1 |
20110071659 | Farris, III et al. | Mar 2011 | A1 |
20110073181 | Wieting | Mar 2011 | A1 |
20110203634 | Wieting | Aug 2011 | A1 |
20110212565 | Wieting | Sep 2011 | A1 |
20110259395 | Wieting et al. | Oct 2011 | A1 |
20110259413 | Wieting et al. | Oct 2011 | A1 |
20110263064 | Wieting | Oct 2011 | A1 |
20110269260 | Buquing | Nov 2011 | A1 |
20110277836 | Lee | Nov 2011 | A1 |
20120003789 | Doering et al. | Jan 2012 | A1 |
20120018828 | Shao | Jan 2012 | A1 |
20120021552 | Alexander et al. | Jan 2012 | A1 |
20120073649 | Blue et al. | Mar 2012 | A1 |
20120094432 | Wieting | Apr 2012 | A1 |
20120122304 | Wieting | May 2012 | A1 |
20120186975 | Lee et al. | Jul 2012 | A1 |
20120270341 | Lee et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
199878651 | Feb 1999 | AU |
200140599 | Aug 2001 | AU |
3314197 | Nov 1983 | DE |
10104726 | Aug 2002 | DE |
102005062977 | Sep 2007 | DE |
2646560 | Nov 1990 | FR |
2124826 | Feb 1984 | GB |
2000173969 | Jun 2000 | JP |
2000219512 | Aug 2000 | JP |
2002167695 | Jun 2002 | JP |
2002270871 | Sep 2002 | JP |
2002299670 | Oct 2002 | JP |
2004332043 | Nov 2004 | JP |
2005311292 | Nov 2005 | JP |
0157932 | Aug 2001 | WO |
2005011002 | Feb 2005 | WO |
2006126598 | Nov 2006 | WO |
2007022221 | Feb 2007 | WO |
2007077171 | Jul 2007 | WO |
2008025326 | Mar 2008 | WO |
Entry |
---|
Baumann, A., et al., Photovoltaic Technology Review, presentation Dec. 6, 2004, 18 pages. |
Chopra et al., “Thin-Film Solar Cells: An Overview”, 2004, Progress in Photovoltaics: Research and Applications, 2004, vol. 12, pp. 69-92. |
Ellmer et al., Copper Indium Disulfide Solar Cell Absorbers Prepared in a One-Step Process by Reactive Magnetron Sputtering from Copper and Indium Targets; Elsevier Science B.V; Thin Solid Films 413 (2002) pp. 92-97. |
Guillen C., “CuInS2 Thin Films Grown Sequentially from Binary Sulfides as Compared to Layers Evaporated Directly from the Elements”, Semiconductor Science and Technology, vol. 21, No. 5, May 2006, pp. 709-712. |
Huang et al., Photoluminescence and Electroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks, Applied Physics, Lett. 70 (18), May 5, 1997, pp. 2335-2337. |
Huang et al., Preparation of ZnxCdi-xS Nanocomposites in Polymer Matrices and their Photophysical Properties, Langmuir 1998, 14, pp. 4342-4344. |
International Solar Electric Technology, Inc. (ISET) “Thin Film CIGS”, Retrieved from http://www.isetinc.com/cigs.html on Oct. 1, 2008, 4 pages. |
Kapur et al., “Fabrication of CIGS Solar Cells via Printing of Nanoparticle Precursor Inks”, DOE Solar Program Review Meeting 2004, DOE/GO-102005-2067, p. 135-136. |
Kapur et al., “Non-Vacuum Printing Process for CIGS Solar Cells on Rigid and Flexible Substrates”, 29th IEEE Photovoltaic Specialists Conf., New Orleans, LA, IEEE, 2002, pp. 688-691. |
Kapur et al., “Non-Vacuum Processing of CIGS Solar Cells on Flexible Polymer Substrates”, Proceedings of the Third World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2P-D3-43, 2003. |
Kapur et al., “Non-Vacuum Processing of CuIn1-xGaxSe2 Solar Cells on Rigid and Flexible Substrates using Nanoparticle Precursor Inks”, Thin Solid Films, 2003, vol. 431-432, pp. 53-57. |
Kapur et al., “Fabrication of Light Weight Flexible CIGS Solar Cells for Space Power Applications”, Materials Research Society, Proceedings vol. 668, (2001) pp. H3.5.1-H3.5.6. |
Kapur et al., “Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells”, Materials Research Society Proceedings, vol. 668, (2001) pp. H2.6.1-H2.6.7. |
Mehta et al., “A graded diameter and oriented nanorod-thin film structure for solar cell application: a device proposal”, Solar Energy Materials & Solar Cells, 2005, vol. 85, pp. 107-113. |
Onuma et al., Preparation and Characterization of CuInS2 Thin Films Solar Cells with Large Grain, Elsevier Science B.V; Solar Energy Materials & Solar Cells 69 (2001) pp. 261-269. |
Salvador, “Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis,” Journal of Applied Physics, vol. 55, No. 8, pp. 2977-2985, Apr. 15, 1984. |
Srikant V., et al., “On the Optical Band Gap of Zinc Oxide”, Journal of Applied Physics, vol. 83, No. 10, May 15, 1998, pp. 5447-5451. |
Yang et al., “Preparation, Characterization and Electroluminescence of ZnS Nanocrystals in a Polymer Matrix”, Journal Material Chem., 1997, vol. 7, No. 1, pp. 131-133. |
Yang et al., “Electroluminescence from ZnS/CdS Nanocrystals/Polymer Composite”, Synthetic Metals 1997, vol. 91, pp. 347-349. |
Yang et al., “Fabrication and Characteristics of ZnS Nanocrystals/Polymer Composite Doped with Tetraphenylbenzidine Single Layer Structure Light-emitting Diode”, Applied Physics Letters, vol. 69, No. 3, Jul. 15, 1996, pp. 377-379. |
Number | Date | Country | |
---|---|---|---|
20120240989 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61389129 | Oct 2010 | US |